JP3351489B2 - Nonwoven laminated net, manufacturing method and product using the same - Google Patents

Nonwoven laminated net, manufacturing method and product using the same

Info

Publication number
JP3351489B2
JP3351489B2 JP8975794A JP8975794A JP3351489B2 JP 3351489 B2 JP3351489 B2 JP 3351489B2 JP 8975794 A JP8975794 A JP 8975794A JP 8975794 A JP8975794 A JP 8975794A JP 3351489 B2 JP3351489 B2 JP 3351489B2
Authority
JP
Japan
Prior art keywords
thermoplastic
resin
elastic resin
fiber
thermoplastic elastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8975794A
Other languages
Japanese (ja)
Other versions
JPH07300761A (en
Inventor
英夫 磯田
靖司 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP8975794A priority Critical patent/JP3351489B2/en
Publication of JPH07300761A publication Critical patent/JPH07300761A/en
Application granted granted Critical
Publication of JP3351489B2 publication Critical patent/JP3351489B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Artificial Filaments (AREA)
  • Nonwoven Fabrics (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、難燃性を有し、優れた
クッション性と耐熱耐久性及び振動吸収性とを有し、リ
サイクルが可能な不織布積層網状体と製法および該網状
体を用いた布団、家具、ベッド、車両用クッション材等
の製品と製法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a recyclable nonwoven laminated net having flame retardancy, excellent cushioning properties, heat resistance and vibration absorption, and a method for producing the same. The present invention relates to products and manufacturing methods such as futons, furniture, beds, and cushioning materials for vehicles.

【0002】[0002]

【従来の技術】現在、家具、ベッド、電車、自動車等の
クッション材に、発泡ウレタン、非弾性捲縮繊維詰綿、
及び非弾性捲縮繊維を接着した樹脂綿や硬綿などが使用
されている。
2. Description of the Related Art At present, foamed urethane, inelastic crimped fiber-filled cotton,
Resin cotton and hard cotton to which inelastic crimped fibers are bonded are used.

【0003】しかしながら、発泡−架橋型ウレタンはワ
ディング層やクッション材としての耐久性は極めて良好
だが、透湿透水性に劣り蓄熱性があるため蒸れやすく、
かつ、熱可塑性では無いためリサイクルが困難となり焼
却される場合、焼却炉の損傷が大きく、かつ、有毒ガス
除去に経費が掛かる。このため埋め立てされることが多
くなったが、地盤の安定化が困難なため埋め立て場所が
限定され経費も高くなっていく問題がある。また、加工
性は優れるが製造中に使用される薬品の公害問題なども
ある。また、熱可塑性ポリエステル繊維詰綿では繊維間
が固定されていないため、使用時形態が崩れたり、繊維
が移動して、かつ、捲縮のへたりで嵩高性の低下や弾力
性の低下が問題になる。
[0003] However, foamed-crosslinked urethane is extremely good in durability as a wadding layer and a cushion material, but is inferior in moisture permeability and heat storage, so that it is easily stuffed.
In addition, when the incinerator is incinerated because it is not thermoplastic and is difficult to recycle, the incinerator is greatly damaged and toxic gas removal is costly. For this reason, landfills have been increased, but there is a problem in that it is difficult to stabilize the ground, so that landfill locations are limited and costs increase. Further, although the processability is excellent, there is a problem of pollution of chemicals used during the production. In addition, in the case of the cotton filled with thermoplastic polyester fiber, since the space between the fibers is not fixed, the shape at the time of use collapses, the fiber moves, and the crimp set causes a decrease in bulkiness and a decrease in elasticity. become.

【0004】ポリエステル繊維を接着剤で接着した樹脂
綿、例えば接着剤にゴム系を用いたものとして特開昭6
0−11352号公報、特開昭61−141388号公
報、特開昭61−141391号公報等がある。又、架
橋性ウレタンを用いたものとして特開昭61−1377
32号公報等がある。これらのクッション材は耐久性に
劣り、且つ、熱可塑性でなく、単一組成でもないためリ
サイクルも出来ない等の問題、及び加工性の煩雑さや製
造中に使用される薬品の公害問題などもある。
Japanese Patent Application Laid-Open Publication No. Sho 6 (1994) discloses a resin cotton in which polyester fibers are bonded with an adhesive, for example, a rubber using an adhesive as a rubber.
Nos. 0-11352, JP-A-61-141388 and JP-A-61-141391. Further, JP-A-61-1377 discloses a method using a crosslinkable urethane.
No. 32 publication. These cushioning materials are inferior in durability, are not thermoplastic, cannot be recycled because they are not a single composition, and have problems such as complicated workability and pollution of chemicals used during production. .

【0005】ポリエステル硬綿、例えば特開昭58−3
1150号公報、特開平2−154050号公報、特開
平3−220354号公報等があるが、用いている熱接
着繊維の接着成分が脆い非晶性のポリマ−を用いるため
(例えば特開昭58−136828号公報、特開平3−
249213号公報等)接着部分が脆く、使用中に接着
部分が簡単に破壊されて形態や弾力性が低下するなどの
耐久性に劣る問題がある。改良法として、交絡処理する
方法が特開平4−245965号公報等で提案されてい
るが、接着部分の脆さは解決されず弾力性の低下が大き
い問題がある。また、加工時の煩雑さもある。更には接
着部分が変形しにくくソフトなクッション性を付与しに
くい問題もある。このため、接着部分を柔らかい、且つ
ある程度変形しても回復するポリエステルエラストマ−
を用い、芯成分に非弾性ポリエステルを用いた熱接着繊
維が特開平4−240219号公報で、同繊維を用いた
クッション材がWO−91/19032号公報、特開平
5−156561号公報、特開平5−163654号公
報等で提案されている。この繊維構造物に使われる接着
成分がポリエステルエラストマ−のソフトセグメントと
してはポリアルキレングリコ−ルの含有量が30〜50
重量%、ハ−ドセグメントの酸成分にテレフタル酸を5
0〜80モル%含有し、他の酸成分組成として特公昭6
0−1404号公報に記載された繊維と同様にイソフタ
ル酸を含有して非晶性が増すことになり、融点も180
℃以下となり低溶融粘度として熱接着部分の形成を良く
してアメーバー状の接着部を形成しているが塑性変形し
やいため、及び芯成分が非弾性ポリエステルのため、特
に加熱下での塑性変形が著しくなり、耐熱抗圧縮性が低
下する問題点がある。これらの改良法として、特開平5
−163654号公報にシ−ス成分にイソフタル酸を含
有するポリエステルエラストマ−、コア成分に非弾性ポ
リエステルを用いた熱接着複合繊維のみからなる構造体
が提案されているが上述の理由で加熱下での塑性変形が
著しくなり、耐熱抗圧縮性が低下し、ワディング層やク
ッション材に使用するには問題がある。他方、硬綿の母
材にシリコ−ン油剤を付与して繊維の摩擦係数を下げて
耐久性を向上し、風合いを良くする方法が特開昭63−
158094号公報で提案されている。が、熱接着繊維
の接着性に問題があり、耐久性が劣るのでワディング層
やクッション材に使用するには好ましくない。
[0005] Polyester hard cotton, for example, JP-A-58-3
JP-A No. 1150, JP-A-2-154050, JP-A-3-220354, etc., are disclosed in Japanese Patent Application Laid-Open No. Sho 58-58, because the adhesive component of the heat-bonding fiber used is a brittle amorphous polymer. -136828, JP-A-3-
There is a problem that the adhesive portion is brittle and the durability is poor such that the adhesive portion is easily broken during use and the form and elasticity are reduced. As an improved method, a method of performing confounding treatment has been proposed in Japanese Patent Application Laid-Open No. 4-245965, but there is a problem that the brittleness of the bonded portion is not solved and the elasticity is greatly reduced. In addition, there is also complexity in processing. Further, there is a problem that the bonded portion is hardly deformed and it is difficult to provide soft cushioning. For this reason, the adhesive is soft and the polyester elastomer recovers even if deformed to some extent.
Japanese Patent Application Laid-Open No. 4-240219 discloses a thermal bonding fiber using an inelastic polyester as a core component, and WO-91 / 19032, Japanese Patent Application Laid-Open No. 5-156561 discloses a cushioning material using the fiber. It has been proposed in, for example, JP-A-5-163654. When the adhesive component used in this fiber structure is a soft segment of polyester elastomer, the content of polyalkylene glycol is 30 to 50.
5% by weight of terephthalic acid in the acid component of the hard segment
0-80 mol%, and as another acid component composition
In the same manner as the fiber described in JP-A No. 0-1404, isophthalic acid is contained to increase the amorphousness, and the melting point is also 180.
℃ or lower and low melt viscosity to improve the formation of the heat-bonded part to form an amoeboid bonded part, but plastic deformation is easy, and the core component is inelastic polyester, so plastic deformation especially under heating And there is a problem that heat resistance and compression resistance decrease. As these improved methods, Japanese Patent Application Laid-Open
JP-A-163654 proposes a structure composed of only a polyester elastomer containing isophthalic acid as a sheath component and a heat-adhesive conjugate fiber using an inelastic polyester as a core component. Plastic deformation is remarkable, heat resistance and compression resistance are reduced, and there is a problem in using it for wadding layers and cushion materials. On the other hand, Japanese Patent Application Laid-Open No. Sho 63-163 discloses a method in which a silicone oil agent is applied to a hard cotton base material to reduce the friction coefficient of the fiber, thereby improving durability and improving texture.
It has been proposed in US Pat. However, there is a problem in the adhesiveness of the heat-bonding fiber, and the durability is inferior.

【0006】土木工事用に使用する熱可塑性のオレフィ
ン網状体が特開昭47−44839号公報に開示されて
いる。が、細い繊維から構成したクッションとは異なり
表面が凸凹でタッチが悪く、素材がオレフィンのため耐
熱耐久性が著しく劣りワディング層やクッション材には
使用ができないものである。また、特公平3−1766
6号公報には繊度の異なる吐出線条を互いに融着してモ
−ル状物を作る方法があるがクッション材には適さない
網状構造体である。特公平3−55583号公報には、
ごく表面のみ冷却前に回転体等の細化装置で細くする方
法が記載されている。この方法では表面をフラット化で
きず、厚みのある細い線条層を作ることできない。した
がって座り心地の良好なクッション材にはならない。特
開平1−207462号公報では、塩化ビニ−ル製のフ
ロアマットの開示があるが、室温での圧縮回復性が悪
く、耐熱性は著しく悪いので、ワディング材やクッショ
ン材としては好ましくないものである。なお、上述構造
体は難燃性に関する配慮が全くなされていない。
A thermoplastic olefin network used for civil engineering is disclosed in JP-A-47-44839. However, unlike a cushion made of fine fibers, the surface is uneven and the touch is poor, and since the material is olefin, the heat resistance is remarkably inferior and cannot be used as a wading layer or a cushion material. In addition, 3-1766
Japanese Patent Application Laid-Open No. 6-204, there is a method in which discharge filaments having different fineness are fused to each other to form a molding, but this is a net-like structure that is not suitable for a cushion material. In Japanese Patent Publication No. 3-55583,
A method is described in which only the very surface is thinned by a thinning device such as a rotating body before cooling. In this method, the surface cannot be flattened, and a thick and thin linear layer cannot be formed. Therefore, the cushioning material does not provide a comfortable sitting comfort. JP-A-1-207462 discloses a floor mat made of vinyl chloride. However, since it has poor compression recovery at room temperature and extremely poor heat resistance, it is not preferable as a wading material or a cushion material. is there. In addition, the structure mentioned above does not consider the flame retardance at all.

【0007】[0007]

【発明が解決しようとする課題】上記問題点を解決し、
振動を遮断し、耐熱耐久性、形態保持性、クッション性
の優れた蒸れ難い、難燃性を有するクッション材に適し
た不織布積層網状体と製法及び難燃性積層網状体を用い
た布団、家具、ベッド、車両用クッション等の製品と製
法を提供することを目的とする。
SUMMARY OF THE INVENTION In order to solve the above problems,
Non-woven laminated netting suitable for cushioning material with excellent heat resistance and durability, good shape retention and excellent cushioning properties. It is an object to provide products and manufacturing methods such as beds, beds and vehicle cushions.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
の手段、即ち、本発明は、ソフトセグメント量(A重量
%)と燐含有量(Bppm)が60A+200≦B≦1
00000の関係を満足する熱可塑性弾性樹脂からなる
繊度が100000デニ−ル以下の連続した線条を曲が
りくねらせ互いに接触させて該接触部の大部分を融着し
た3次元立体構造体を形成し、その両面が実質的にフラ
ット化された網状体の片面又は両面に熱可塑性弾性樹脂
と熱可塑性非弾性樹脂からなる熱接着性短繊維と熱可塑
性非弾性樹脂からなる短繊維が三次元構造を形成して融
着一体化した層が積層接合されている見掛け密度が0.
01g/cm3 から0.2g/cm3 の不織布積層網状体、
複数のオリフィスを持つ多列ノズルよりソフトセグメン
ト量(A重量%)と燐含有量(Bppm)が60A+2
00≦B≦100000の関係を満足する熱可塑性弾性
樹脂を各ノズルオリフィスに分配し、該熱可塑性樹脂の
融点より10〜80℃高い溶融温度で、該ノズルより下
方に向けて吐出させ、溶融状態で互いに接触させて融着
させ3次元構造を形成しつつ、引取り装置で挟み込み冷
却槽で冷却せしめた後、片面又は両面に熱可塑性弾性樹
脂と熱可塑性非弾性樹脂からなる熱接着性短繊維と熱可
塑性非弾性樹脂からなる短繊維とを混合開繊して三次元
化したウエッブを積層し、圧縮しつつ熱成形する不織布
積層網状体の製法および前記不織布積層網状体を用いた
製品である。
Means for Solving the Problems Means for solving the above-mentioned problems, that is, the present invention provides a soft segment content (A weight%) and a phosphorus content (Bppm) of 60A + 200 ≦ B ≦ 1.
A continuous filament having a fineness of 100,000 deniers or less, made of a thermoplastic elastic resin satisfying the relationship of 00000, is meandered and brought into contact with each other to form a three-dimensional three-dimensional structure in which most of the contact portions are fused. On one or both sides of a net-like body whose both sides are substantially flattened, a short fiber composed of a thermoplastic adhesive resin and a thermoplastic inelastic resin and a short fiber composed of a thermoplastic inelastic resin has a three-dimensional structure. The apparent density at which the formed, fused and integrated layers are laminated and joined is 0.
Nonwoven laminate meshwork of 0.2 g / cm 3 from 01g / cm 3,
Soft segment amount (A weight%) and phosphorus content (Bppm) are more than 60A + 2 from a multi-row nozzle having a plurality of orifices
A thermoplastic elastic resin satisfying the relationship of 00 ≦ B ≦ 100000 is distributed to each nozzle orifice, and discharged downward from the nozzle at a melting temperature higher than the melting point of the thermoplastic resin by 10 to 80 ° C. Heat-bonding short fibers composed of thermoplastic elastic resin and thermoplastic inelastic resin on one or both surfaces after being sandwiched by a take-off device and cooled in a cooling tank while forming a three-dimensional structure by contacting and fusing with each other. And a short fiber made of a thermoplastic inelastic resin. The three-dimensional web is mixed and opened, and a three-dimensional web is laminated. .

【0009】本発明における熱可塑性弾性樹脂とは、ソ
フトセグメントとして分子量300〜5000のポリエ
−テル系グリコ−ル、ポリエステル系グリコ−ル、ポリ
カ−ボネ−ト系グリコ−ルまたは長鎖の炭化水素末端を
カルボン酸または水酸基にしたオレフィン系化合物等を
ブロック共重合したポリエステル系エラストマ−、ポリ
アミド系エラストマ−、ポリウレタン系エラストマ−、
ポリオレフィン系エラストマ−などが挙げられる。熱可
塑性弾性樹脂とすることで、再溶融により再生が可能と
なるため、リサイクルが容易となる。例えば、ポリエス
テル系エラストマ−としては、熱可塑性ポリエステルを
ハ−ドセグメントとし、ポリアルキレンジオ−ルをソフ
トセグメントとするポリエステルエ−テルブロック共重
合体、または、脂肪族ポリエステルをソフトセグメント
とするポリエステルエステルブロック共重合体が例示で
きる。ポリエステルエ−テルブロック共重合体のより具
体的な事例としては、テレフタル酸、イソフタル酸、ナ
フタレン2・6ジカルボン酸、ナフタレン2・7ジカル
ボン酸、ジフェニル4・4’ジカルボン酸等の芳香族ジ
カルボン酸、1・4シクロヘキサンジカルボン酸等の脂
環族ジカルボン酸、琥珀酸、アジピン酸、セバチン酸ダ
イマ−酸等の脂肪族ジカルボン酸または、これらのエス
テル形成性誘導体などから選ばれたジカルボン酸の少な
くとも1種と、1・4ブタンジオ−ル、エチレングリコ
−ル、トリメチレングリコ−ル、テトレメチレングリコ
−ル、ペンタメチレングリコ−ル、ヘキサメチレングリ
コ−ル等の脂肪族ジオ−ル、1・1シクロヘキサンジメ
タノ−ル、1・4シクロヘキサンジメタノ−ル等の脂環
族ジオ−ル、またはこれらのエステル形成性誘導体など
から選ばれたジオ−ル成分の少なくとも1種、および平
均分子量が約300〜5000のポリエチレングリコ−
ル、ポリプロピレングリコ−ル、ポリテトラメチレング
リコ−ル、エチレンオキシド−プロピレンオキシド共重
合体等のポリアルキレンジオ−ルのうち少なくとも1種
から構成される三元ブロック共重合体である。ポリエス
テルエステルブロック共重合体としては、上記ジカルボ
ン酸とジオ−ル及び平均分子量が約300〜5000の
ポリラクトン等のポリエステルジオ−ルのうち少なくと
も各1種から構成される三元ブロック共重合体である。
熱接着性、耐加水分解性、伸縮性、耐熱性等を考慮する
と、ジカルボン酸としてはテレフタル酸、または、及び
ナフタレン2・6ジカルボン酸、ジオ−ル成分としては
1・4ブタンジオ−ル、ポリアルキレンジオ−ルとして
はポリテトラメチレングリコ−ルの3元ブロック共重合
体または、ポリエステルジオ−ルとしてポリラクトンの
3元ブロック共重合体が特に好ましい。特殊な例では、
ポリシロキサン系のソフトセグメントを導入したものも
使うこたができる。また、上記エラストマ−に非エラス
トマ−成分をブレンドされたもの、共重合したもの、ポ
リオレフィン系成分をソフトセグメントにしたもの等も
本発明の熱可塑性弾性樹脂に包含される。ポリアミド系
エラストマ−としては、ハ−ドセグメントにナイロン
6、ナイロン66、ナイロン610、ナイロン612、
ナイロン11、ナイロン12等及びそれらの共重合ナイ
ロンを骨格とし、ソフトセグメントには、平均分子量が
約300〜5000のポリエチレングリコ−ル、ポリプ
ロピレングリコ−ル、ポリテトラメチレングリコ−ル、
エチレンオキシド−プロピレンオキシド共重合体等のポ
リアルキレンジオ−ルのうち少なくとも1種から構成さ
れるブロック共重合体を単独または2種類以上混合して
用いてもよい。更には、非エラストマ−成分をブレンド
されたもの、共重合したもの等も本発明に使用できる。
ポリウレタン系エラストマ−としては、通常の溶媒(ジ
メチルホルムアミド、ジメチルアセトアミド等)の存在
または不存在下に、(A)数平均分子量1000〜60
00の末端に水酸基を有するポリエ−テル及び又はポリ
エステルと(B)有機ジイソシアネ−トを主成分とする
ポリイソシアネ−トを反応させた両末端がイソシアネ−
ト基であるプレポリマ−に、(C)ジアミンを主成分と
するポリアミンにより鎖延長したポリウレタンエラスト
マ−を代表例として例示できる。(A)のポリエステ
ル、ポリエ−テル類としては、平均分子量が約1000
〜6000、好ましくは1300〜5000のポリブチ
レンアジペ−ト共重合ポリエステルやポリエチレングリ
コ−ル、ポリプロピレングリコ−ル、ポリテトラメチレ
ングリコ−ル、エチレンオキシド−プロピレンオキシド
共重合体からなるグリコ−ル等のポリアルキレンジオ−
ルが好ましく、(B)のポリイソシアネ−トとしては、
従来公知のポリイソシアネ−トを用いることができる
が、ジフェニルメタン4・4’ジイソシアネ−トを主体
としたイソシアネ−トを用い、必要に応じ従来公知のト
リイソシアネ−ト等を微量添加使用してもよい。(C)
のポリアミンとしては、エチレンジアミン、1・2プロ
ピレンジアミン等公知のジアミンを主体とし、必要に応
じて微量のトリアミン、テトラアミンを併用してもよ
い。これらのポリウレタン系エラストマ−は単独又は2
種類以上混合して用いてもよい。なお、本発明の熱可塑
性弾性樹脂の融点は耐熱耐久性が保持できる140℃以
上が好ましく、160℃以上のものを用いると耐熱耐久
性が向上するのでより好ましい。なお、本発明の網状体
は難燃性を付与するため燐系化合物を含有させるため、
熱安定性が難燃剤を含有しないものよりやや劣るので必
要に応じ、抗酸化剤等を添加して耐熱性や耐久性を向上
させるのが特に好ましい。抗酸化剤は、好ましくはヒン
ダ−ド系抗酸化剤としては、ヒンダ−ドフェノ−ル系と
ヒンダ−ドアミン系があり、窒素を含有しないヒンダ−
ドフェノ−ル系抗酸化剤を1%〜5%添加して熱分解を
抑制すると燃焼時の致死量が少ない有毒ガスの発生を抑
えられるので特に好ましい。本発明の目的である振動や
応力の吸収機能をもたせる成分を構成する熱可塑性弾性
樹脂のソフトセグメント含有量は好ましくは15重量%
以上、より好ましくは30重量%以上であり、耐熱耐へ
たり性からは80重量%以下が好ましく、より好ましく
は70重量%以下である。即ち、本発明の弾性網状体の
振動や応力の吸収機能をもたせる成分のソフトセグメン
ト含有量は好ましくは15重量%以上80重量%以下で
あり、より好ましくは30重量%以上70重量%以下で
ある。
In the present invention, the thermoplastic elastic resin is a polyether-based glycol, polyester-based glycol, polycarbonate-based glycol or long-chain hydrocarbon having a molecular weight of 300 to 5000 as a soft segment. Polyester-based elastomer, polyamide-based elastomer, polyurethane-based elastomer, which is obtained by block-copolymerizing an olefinic compound having a carboxylic acid or a hydroxyl group at a terminal.
And polyolefin-based elastomers. By using a thermoplastic elastic resin, regeneration becomes possible by re-melting, so that recycling becomes easy. For example, as a polyester-based elastomer, a polyester ether block copolymer having a thermoplastic polyester as a hard segment and a polyalkylenediol as a soft segment, or a polyester ester having an aliphatic polyester as a soft segment A block copolymer can be exemplified. More specific examples of polyester ether block copolymers include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, naphthalene 2.6 dicarboxylic acid, naphthalene 2.7 dicarboxylic acid, and diphenyl 4.4 4 'dicarboxylic acid. Alicyclic dicarboxylic acids such as 1.4 cyclohexanedicarboxylic acid, aliphatic dicarboxylic acids such as succinic acid, adipic acid, sebacic acid dimer acid, and at least one dicarboxylic acid selected from ester-forming derivatives thereof; Species and aliphatic diols such as 1.4 butanediol, ethylene glycol, trimethylene glycol, tetramethylene glycol, pentamethylene glycol, hexamethylene glycol, 1.1 cyclohexane Alicyclic diols such as dimethanol and 1,4-cyclohexane dimethanol, or these At least one diol component selected from the group consisting of ester-forming derivatives and polyethylene glycol having an average molecular weight of about 300 to 5,000.
A triblock copolymer composed of at least one of polyalkylenediols such as ethylene glycol, polypropylene glycol, polytetramethylene glycol, and ethylene oxide-propylene oxide copolymer. The polyester ester block copolymer is a ternary block copolymer composed of at least one of each of the above dicarboxylic acids, diols, and polyester diols such as polylactone having an average molecular weight of about 300 to 5,000. .
In consideration of thermal adhesion, hydrolysis resistance, stretchability, heat resistance, etc., terephthalic acid or naphthalene 2.6 dicarboxylic acid as a dicarboxylic acid, 1.4 butanediol as a diol component, poly As the alkylenediol, a triblock copolymer of polytetramethylene glycol or a terpolymer of polyester is particularly preferable. In a special case,
Those having a polysiloxane-based soft segment introduced can also be used. The thermoplastic elastomer resin of the present invention also includes those obtained by blending the above-mentioned elastomer with a non-elastomer component, copolymerized product, and polyolefin-based component made into a soft segment. As the polyamide-based elastomer, the hard segments include nylon 6, nylon 66, nylon 610, nylon 612,
Nylon 11, nylon 12, etc. and their copolymerized nylon are used as the skeleton, and the soft segment includes polyethylene glycol, polypropylene glycol, polytetramethylene glycol having an average molecular weight of about 300 to 5000,
A block copolymer composed of at least one kind of polyalkylenediol such as an ethylene oxide-propylene oxide copolymer may be used alone or as a mixture of two or more kinds. Further, those in which a non-elastomer component is blended or copolymerized can be used in the present invention.
As the polyurethane elastomer, (A) a number average molecular weight of 1000 to 60 in the presence or absence of a usual solvent (dimethylformamide, dimethylacetamide, etc.)
The polyether and / or polyester having a hydroxyl group at the terminal of 00 and (B) a polyisocyanate containing an organic diisocyanate as a main component are reacted at both ends with isocyanate.
As a typical example, (C) a polyurethane elastomer obtained by chain extension with a polyamine containing a diamine as a main component can be exemplified. The polyester and polyethers of (A) have an average molecular weight of about 1000
And 6000, preferably 1300 to 5000, such as polybutylene adipate copolymerized polyester, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and glycols composed of ethylene oxide-propylene oxide copolymer. Polyalkylene dio-
And the polyisocyanate (B) is preferably
A conventionally known polyisocyanate can be used, but an isocyanate mainly composed of diphenylmethane 4.4 'diisocyanate may be used, and a small amount of a conventionally known triisocyanate may be added if necessary. (C)
As the polyamine, mainly known diamines such as ethylenediamine and 1.2 propylenediamine may be used, and trace amounts of triamine and tetraamine may be used in combination as needed. These polyurethane elastomers can be used alone or in combination.
You may mix and use more than one type. In addition, the melting point of the thermoplastic elastic resin of the present invention is preferably 140 ° C. or higher, which can maintain the heat resistance, and the use of 160 ° C. or higher is more preferable because the heat resistance is improved. The reticulated body of the present invention contains a phosphorus-based compound to impart flame retardancy,
Since the thermal stability is slightly inferior to that containing no flame retardant, it is particularly preferable to add an antioxidant or the like as necessary to improve heat resistance and durability. The antioxidant is preferably a hindered antioxidant, which includes a hindered phenol and a hindered amine, and a nitrogen-free hindered antioxidant.
It is particularly preferable to add 1% to 5% of a dofenol-based antioxidant to suppress thermal decomposition because the generation of toxic gas with a small lethal amount during combustion can be suppressed. The soft segment content of the thermoplastic elastic resin constituting the component having the function of absorbing vibration and stress, which is the object of the present invention, is preferably 15% by weight.
The content is more preferably 30% by weight or more, and is preferably 80% by weight or less, more preferably 70% by weight or less from the viewpoint of heat and sag resistance. That is, the soft segment content of the component having the function of absorbing vibration and stress of the elastic network of the present invention is preferably 15% by weight or more and 80% by weight or less, more preferably 30% by weight or more and 70% by weight or less. .

【0010】本発明の難燃性を有する網状体は熱可塑性
弾性樹脂中に燐含有量(Bppm)がソフトセグメント
含有量(A重量%)に対し、60A+200≦B≦10
0000の関係を満足する必要がある。満足しない場合
は難燃性が劣るので好ましくない。100000ppm
を越えると可塑化効果による塑性変形が大きくなり熱可
塑性弾性樹脂の耐熱性が劣るので好ましくない。好まし
い燐含有量(Bppm)はソフトセグメント含有量(A
重量%)に対し、30A+1800≦B≦100000
であり、より好ましい燐含有量(Bppm)はソフトセ
グメント含有量(A重量%)に対し、16A+2600
≦B≦50000である。難燃性は多量のハロゲン化物
と無機物を添加して高度の難燃性を付与する方法がある
が、燃焼時に致死量の少ない有毒なハロゲンガスを多量
に発生し、火災時の中毒の問題があり、焼却時には、焼
却炉の損傷が大きく好ましくない。本発明では、ハロゲ
ン化物の含有量は少なくとも1重量%以下、好ましく
は、ハロゲン化物の含有量は0.5重量%以下、より好
ましくはハロゲン化物を含有しないものである。本発明
の燐系難燃剤としては、例えば、ポリエステル系熱可塑
性弾性樹脂の場合、樹脂重合時に、ハ−ドセグメント部
分に難燃剤として、例えば特開昭51−82392号公
報等に記載された10〔2・3・ジ(2・ヒドロキシエ
トキシ)−カルボニルプロピル〕9・10・ジヒドロ・
9・オキサ・10ホスファフェナレンス・10オキシロ
等のカルボン酸をハ−ドセグメントの酸成分の一部とし
て共重合したポリエステル系熱可塑性弾性樹脂とする方
法や、熱可塑性弾性樹脂に後工程で、例えば、既存化学
物質番号(3)−3735等の燐系化合物を添加して難
燃性を付与することができる。その他、難燃性を付与で
きる難燃剤としては、各種燐酸エステル、亜燐酸エステ
ル、ホスホン酸エステル(必要に応じハロゲン元素を含
有する上記燐酸エステル類)、もしくはこれら燐化合物
から誘導される重合物が例示できる。本発明は、熱可塑
性弾性樹脂中に各種改質剤、添加剤、着色剤等を必要に
応じて添加できる。本発明の難燃性網状体は、難燃性を
付与するために燐を含有させており、この理由は、上記
している如く、安全性の観点から、火災時に発生するシ
アンガス、ハロゲンガス等の致死量の少ない有毒ガスを
できるだけ少なくすることにある。このため、本発明の
難燃性網状体の燃焼ガスの毒性指数は好ましくは6以
下、より好ましくは5.5以下である。また、側地やワ
ディング層にポリエステル繊維を使用される場合が多い
ので、好ましくはポリエステル系熱可塑性弾性樹脂とす
ることで分別せずに再生リサイクルができる。
The flame-retardant network of the present invention has a phosphorus content (Bppm) in the thermoplastic elastic resin of 60 A + 200 ≦ B ≦ 10 with respect to the soft segment content (A weight%).
0000 must be satisfied. Unsatisfactory results in poor flame retardancy, which is not preferred. 100000ppm
Exceeding the range is not preferred because the plastic deformation due to the plasticizing effect increases and the heat resistance of the thermoplastic elastic resin deteriorates. The preferred phosphorus content (Bppm) is the soft segment content (A
30A + 1800 ≦ B ≦ 100,000
The more preferable phosphorus content (Bppm) is 16A + 2600 with respect to the soft segment content (A weight%).
≦ B ≦ 50,000. There is a method of imparting high flame retardancy by adding a large amount of halides and inorganic substances, but a large amount of toxic halogen gas with a small lethal amount is generated at the time of combustion, and the problem of poisoning in a fire is reduced. Yes, the incinerator is greatly damaged during incineration, which is not preferable. In the present invention, the content of the halide is at least 1% by weight or less, preferably the content of the halide is 0.5% by weight or less, and more preferably no halide is contained. As the phosphorus-based flame retardant of the present invention, for example, in the case of a polyester-based thermoplastic elastic resin, at the time of resin polymerization, as a flame retardant in a hard segment portion, for example, 10 described in JP-A-51-82392. [2,3-di (2-hydroxyethoxy) -carbonylpropyl] 9,10-dihydro.
A method in which a carboxylic acid such as 9, oxa, 10 phosphaphenylene, or 10 oxylo is copolymerized as a part of an acid component of a hard segment to obtain a polyester-based thermoplastic elastic resin, For example, flame retardancy can be imparted by adding a phosphorus compound such as existing chemical substance number (3) -3735. In addition, examples of the flame retardant capable of imparting flame retardancy include various phosphates, phosphites, phosphonates (the above-mentioned phosphates containing a halogen element as necessary), or polymers derived from these phosphorus compounds. Can be illustrated. In the present invention, various modifiers, additives, coloring agents and the like can be added to the thermoplastic elastic resin as needed. The flame-retardant network of the present invention contains phosphorus for imparting flame retardancy. This is because, as described above, from the viewpoint of safety, cyan gas, halogen gas, etc. generated at the time of fire. The purpose of the present invention is to minimize the amount of toxic gas with low lethality. For this reason, the toxicity index of the combustion gas of the flame-retardant network of the present invention is preferably 6 or less, more preferably 5.5 or less. In addition, since polyester fibers are often used for the side layer and the wadding layer, it is preferable to use a polyester-based thermoplastic elastic resin so that the polyester fiber can be recycled without separation.

【0011】本発明の不織布積層網状体を構成する熱可
塑性弾性樹脂は、示差走査型熱量計にて測定した融解曲
線において、融点以下に吸熱ピ−クを有するのが好まし
い。融点以下に吸熱ピ−クを有するものは、耐熱耐へた
り性が吸熱ピ−クを有しないものより著しく向上する。
例えば、本発明の好ましいポリエステル系熱可塑性樹脂
として、ハ−ドセグメントの酸成分に剛直性のあるテレ
フタル酸やナフタレン2・6ジカルボン酸などを90モ
ル%以上含有するもの、より好ましくはテレフタル酸や
ナフタレン2・6ジカルボン酸の含有量は95モル%以
上、特に好ましくは100モル%とグリコ−ル成分をエ
ステル交換後、必要な重合度まで重合し、次いで、ポリ
アルキレンジオ−ルとして、好ましくは平均分子量が5
00以上5000以下、特に好ましくは1000以上3
000以下のポリテトラメチレングリコ−ルを15重量
%以上70重量%以下、より好ましくは30重量%以上
60重量%以下共重合量させた場合、ハ−ドセグメント
の酸成分に剛直性のあるテレフタル酸やナフタレン2・
6ジカルボン酸の含有量が多いとハ−ドセグメントの結
晶性が向上し、塑性変形しにくく、かつ、耐熱抗へたり
性が向上するが、溶融熱接着後更に融点より少なくとも
10℃以上低い温度でアニ−リング処理するとより耐熱
抗へたり性が向上する。圧縮歪みを付与してからアニ−
リングすると更に耐熱抗へたり性が向上する。このよう
な処理をした網状構造体の線条を示差走査型熱量計で測
定した融解曲線に室温以上融点以下の温度で吸熱ピーク
をより明確に発現する。なおアニ−リングしない場合は
融解曲線に室温以上融点以下に吸熱ピ−クを発現しな
い。このことから類推するに、アニ−リングにより、ハ
−ドセグメントが再配列され、疑似結晶化様の架橋点が
形成され、耐熱抗へたり性が向上しているのではないか
とも考えられる。(この処理を疑似結晶化処理と定義す
る)この疑似結晶化処理効果は、ポリアミド系弾性樹脂
やポリウレタン系弾性樹脂にも有効である。
The thermoplastic elastic resin constituting the nonwoven fabric laminate network of the present invention preferably has an endothermic peak below the melting point in a melting curve measured by a differential scanning calorimeter. Those having an endothermic peak below the melting point have remarkably improved heat resistance and sag resistance than those having no endothermic peak.
For example, preferred polyester-based thermoplastic resins of the present invention include those containing 90 mol% or more of rigid terephthalic acid or naphthalene 2.6 dicarboxylic acid in the acid component of the hard segment, more preferably terephthalic acid or the like. The content of naphthalene 2.6 dicarboxylic acid is 95 mol% or more, particularly preferably 100 mol%, and after transesterification of the glycol component, polymerization is carried out to a required degree of polymerization, and then as polyalkylenediol, preferably Average molecular weight of 5
00 or more and 5000 or less, particularly preferably 1000 or more and 3 or less
When the amount of polytetramethylene glycol of 000 or less is copolymerized in the range of 15% by weight to 70% by weight, more preferably 30% by weight or more and 60% by weight or less, terephthalic acid having rigidity in the acid component of the hard segment is obtained. Acid and naphthalene 2.
If the content of 6-dicarboxylic acid is large, the crystallinity of the hard segment is improved, the plastic segment is hardly deformed, and the resistance to heat resistance is improved. When the annealing treatment is performed, heat resistance and sag resistance are further improved. After applying compression strain,
Ringing further improves heat resistance and sag resistance. An endothermic peak more clearly appears at a temperature between room temperature and the melting point in the melting curve of the filaments of the network structure treated by a differential scanning calorimeter. When no annealing is performed, an endothermic peak does not appear in the melting curve from room temperature to the melting point. By analogy with this, it is considered that the annealing may cause rearrangement of the hard segments, form pseudo-crystallization-like cross-linking points, and improve heat resistance and sag resistance. (This process is defined as a pseudo-crystallization process.) This pseudo-crystallization effect is also effective for polyamide-based elastic resins and polyurethane-based elastic resins.

【0012】本発明における熱可塑性非弾性樹脂とは、
ポリエステル、ポリアミド、ポリオレフィン等が例示で
きる。例えば、ポリエステルでは、ポリエチレンテレフ
タレ−ト(PET)、ポリエチレンナフタレ−ト(PE
N)、ポリシクロヘキシレンジメチレンテレフタレ−ト
(PCHDT)、ポリシクロヘキシレンジメチレンナフ
タレ−ト(PCHDN)、ポリブチレンテレフタレ−ト
(PBT)、ポリブチレンナフタレ−ト(PBN)、ポ
リアリレ−ト等、及びそれらの共重合ポリエステル等が
例示できる。ポリアミドでは、ポリカプロラクタム(N
Y6)、ポリヘキサメチレンアジパミド(NY66)、
ポリヘキサメチレンセバカミド(NY6−10)等が例
示できる。ポリオレフィンとしては、ポリプロピレン
(PP)、ポリブテン・1(PB・1)等が例示でき
る。なお、本発明ではガラス転移点温度が少なくとも4
0℃以上のものを使用するのが好ましい。本発明に用い
る熱可塑性非弾性樹脂としては、クッション材の側地に
ポリエステルを用いる場合が多いので、廃棄する場合に
分離せずにリサイクルが可能なクッション素材として、
耐熱性も良好なPET、PEN、PBN、PCHDT等
のポリエステルが特に好ましい。更には、PET、PE
N、PBN、PCHDT等と重縮合して燐含有エステル
形成性化合物を共重合または燐含有難燃剤を含有してな
る難燃性ポリエステル(以下難燃性ポリエステルと略
す)が好ましく、例えば、特開昭51−82392号公
報、特開昭55−7888号公報、特公昭55−416
10号公報等に例示されたものが挙げられる。なお、塩
化ビニ−ルは自己消火性を有するが燃焼すると有毒ガス
を多く発生するので本発明に用いるのは好ましくない。
In the present invention, the thermoplastic inelastic resin is
Examples thereof include polyester, polyamide, and polyolefin. For example, in the case of polyester, polyethylene terephthalate (PET), polyethylene naphthalate (PE)
N), polycyclohexylene dimethylene terephthalate (PCHDT), polycyclohexylene dimethylene naphthalate (PCHDN), polybutylene terephthalate (PBT), polybutylene naphthalate (PBN), polyaryle And copolymerized polyesters thereof. For polyamides, polycaprolactam (N
Y6), polyhexamethylene adipamide (NY66),
Examples include polyhexamethylene sebacamide (NY6-10). Examples of the polyolefin include polypropylene (PP) and polybutene-1 (PB-1). In the present invention, the glass transition temperature is at least 4
It is preferable to use one at 0 ° C. or higher. As the thermoplastic inelastic resin used in the present invention, polyester is often used for the side material of the cushioning material, so as a cushioning material that can be recycled without being separated when discarded,
Polyesters such as PET, PEN, PBN, and PCHDT which also have good heat resistance are particularly preferred. Furthermore, PET, PE
Flame-retardant polyesters (hereinafter abbreviated as flame-retardant polyesters) which are polycondensed with N, PBN, PCHDT or the like and copolymerized with a phosphorus-containing ester-forming compound or containing a phosphorus-containing flame retardant are preferred. JP-A-51-82392, JP-A-55-7888, and JP-B-55-416.
No. 10 publication and the like. Although vinyl chloride has self-extinguishing properties, it emits a large amount of toxic gas when burnt, and is not preferred for use in the present invention.

【0013】本発明は、燐含有熱可塑性弾性樹脂からな
る繊度が100000デニ−ル以下の連続した線条を曲
がりくねらせ互いに接触させて該接触部の大部分を融着
した3次元立体構造体を形成し、その両面が実質的にフ
ラット化した網状体の片面又は両面に熱接着成分が熱可
塑性弾性樹脂からなる短繊維と熱可塑性非弾性樹脂から
なる繊維とが三次元構造を形成して融着一体化した層が
積層接合された見掛け密度が0.01g/cm3 から0.
2g/cm3 の不織布積層網状体である。クッション材の
機能は、クッション層は基本の繊度を太くして少し硬く
して体型保持を受け持つ層と振動減衰性の良い成分で密
度を少し高くし振動を吸収して振動を遮断する層で構成
し、表面層は繊度を細くし構成繊維本数を多くした柔ら
かな層として適度の沈み込みにより快適な臀部のタッチ
を与えて臀部の圧力分布を均一分散化させると共にクッ
ション層で吸収できなかった振動を吸収して人体の共振
部分の振動を遮断する層が一体化されることで、応力や
振動を一体で変形し吸収させ座り心地を向上させること
ができる。本発明では、クッション層の機能を熱可塑性
弾性樹脂からなる融着した3次元立体構造体を形成した
網状体に持たせ、表面層の機能を熱接着成分が熱可塑性
弾性樹脂からなる短繊維と熱可塑性非弾性樹脂からなる
短繊維とからなる不織布(短繊維不織布)に持たせ、接
合一体化して好ましいクッション材の機能を付与できる
不織布積層網状体である。本発明の積層網状体を構成す
る表面層機能を持つ短繊維不織布は柔らかな層として適
度の沈み込みにより快適な臀部のタッチを与えるため、
熱接着成分が熱可塑性弾性樹脂からなる(好ましくは、
振動吸収機能と変形応力吸収機能が充足できる40重量
%以上、70重量%を越えると短繊維の形態保持性が低
下し、沈み込みが大きくなるので70重量%以下)好ま
しくは繊度が20デニ−ル以下の短繊維(熱接着繊維)
と熱可塑性非弾性樹脂からなる好ましくは繊度が20デ
ニ−ル以下の短繊維(母材繊維)とが混合開繊されて三
次元構造化され、接触部の大部分が熱接着成分により融
着一体化した面が実質的にフラット化された不織布で構
成する。20デニ−ルを越えると短繊維不織布の見掛け
密度を好ましい表面層機能を付与できる0.01g/cm
3 以上0.05g/cm3 以下にする場合、構成本数が少
なくなり、緻密な構造体としての特徴が出ず快適なタッ
チを損なうので好ましくない。また、熱接着繊維は繊度
が太くなるほど構成本数が少なくなり、熱接着点が減少
して変形応力の分散がわるくなり、接着点での応力集中
が大きくなって耐へたり性が低下するので好ましくな
い。更には、熱接着繊維が熱可塑性非弾性樹脂を含むの
で繊度が太くなるほど圧縮変形に対しての熱可塑性非弾
性樹脂の機械的変形が大きくなり、塑性変形が大きくな
って耐へたり性が低下するので好ましくない。他方、繊
度が細すぎると母材繊維とのマイグレ−ションが悪くな
り、熱接着繊維のつくる熱接着点に斑が発生し、変形応
力の分散が悪くなり接着点に応力集中を生じたり、抗圧
縮性が低下して容易に変形し、熱可塑性非弾性樹脂部分
が塑性変形して回復性が低下する場合があるので好まし
くない。好ましい熱接着繊維の繊度は1デニ−ル以上1
5デニ−ル以下、より好ましくは2デニ−ルから6デニ
−ルである。母材繊維は適度の沈み込みを付与する弾発
性を保持する必要から好ましくは3デニ−ル〜15デニ
−ル、より好ましくは5デニ−ル〜13デニ−ルであ
る。熱接着繊維と母材繊維が混合開繊されて3次元構造
化され、接触部の大部分が熱接着により融着一体化した
(好ましくは接触点の全てが融着一体化した)面が実質
的にフラット化された不織布とすることで臀部の局部的
な圧力を面で受け止め、圧力分布を均一分散化させると
共に、短繊維不織布の3次元立体構造体を熱接着成分の
熱可塑性弾性樹脂が融着一体化しているので、熱接着繊
維と熱接着点が大変形をしながら構造体全体が変形して
エネルギ−変換により変形応力を吸収し、変形応力が解
除されると熱可塑性弾性樹脂のゴム弾性で容易に元の形
態に回復する機能があるので耐へたり性が良好である。
更には、クッション層へのダメ−ジを逓減でき、構造体
全体の耐へたり性も向上する。融着一体化されていない
場合は形態が保持できず、局部的な圧力を面で受け止
め、圧力分布を均一分散化できず、更に構造体全体が変
形してエネルギ−変換出来ないので耐久性が劣り好まし
くない。熱接着繊維が振動吸収性の良好な熱可塑性弾性
樹脂から構成されているので、クッション層で吸収でき
なかった振動も吸収して人体の共振部分の振動を遮断す
る層としての機能もはたす。熱接着繊維が熱可塑性非弾
性樹脂からなる場合は、局部的な変形応力に追随出来な
いため、応力集中により構造が破壊されていき回復性が
劣るので好ましくない。また、熱可塑性非弾性樹脂は振
動吸収性が悪いので振動を遮断する層としての機能が劣
り好ましくない。短繊維不織布層の厚みは特には限定さ
れないが、表面層機能が発現できる3mm〜30mmが好ま
しく、5mm〜20mmが特に好ましい。他方、クッション
層機能を持つ網状体は熱可塑性弾性樹脂からなる連続し
た線条が接触部の大部分が融着した3次元立体構造体を
形成し融着一体化され、両面が実質的にフラット化され
ており、外部から与えられた振動を熱可塑性弾性樹脂の
振動吸収機能で大部分の振動を吸収減衰し、局部的に大
きい変形応力を与えられた場合でも網状体の表面が実質
的にフラット化され接触部の大部分が融着しており、表
面は短繊維不織布と面で接合されているので、網状体の
面で変形応力を受け止め変形応力を分散させ体型保持機
能を発現すると共に、熱可塑性弾性樹脂からなる線条が
3次元立体構造体を形成し融着一体化されているので、
構造体全体が変形してエネルギ−変換により変形応力を
吸収し、変形応力が解除されると熱可塑性弾性樹脂のゴ
ム弾性で容易に元の形態に回復する機能があるので耐へ
たり性が良好である。公知の非弾性樹脂のみからなる線
条で構成した網状体では、表面層で吸収できない大きい
変形を受けるとゴム弾性を持たないので圧縮変形により
塑性変形を生じて回復しなくなり耐久性が劣る。網状体
の表面が実質的にフラット化されてない場合、短繊維不
織布から伝達される局部的な外力は、表面の線条及び接
着点部分までに選択的に伝達され、応力集中が発生する
場合があり、このような外力に対しては応力集中による
疲労が発生して耐へたり性が低下する場合がある。な
お、該線条が熱可塑性弾性樹脂からなる場合は3次元構
造部分で構造全体が変形するので応力集中は緩和される
が、非弾性樹脂では、そのまま応力が接着点に集中して
構造破壊を生じ回復しなくなる。更には、表面が実質的
にフラット化されてなく凸凹があると座った時臀部に異
物感を与えるため座り心地が悪くなり好ましくない。な
お、線状が連続していない場合は、繊度が太い網状体で
は接着点が応力の伝達点となるため接着点に著しい応力
集中が起こり構造破壊を生じ耐熱耐久性が劣り好ましく
ない。融着していない場合は、形態保持が出来ず、構造
体が一体で変形しないため、応力集中による疲労現象が
起こり耐久性が劣ると同時に、形態が変形して体型保持
ができなくなるので好ましくない。本発明のより好まし
い融着の程度は、線条が接触している部分の大半が融着
した状態であり、もっとも好ましくは接触部分が全て融
着した状態である。かくして、振動吸収性と弾性回復性
の良い熱可塑性弾性樹脂からなる連続した線条が接触部
の大部分が融着した3次元立体構造体を形成し融着一体
化され表面が実質的にフラット化されたクッション層機
能を持つ網状体は、熱接着成分が熱可塑性弾性樹脂から
なる短繊維不織布で構成する表面層から伝達される変形
応力を面で受け止め応力の分散を良くし、個々の線状に
掛かる応力を少なくして構造全体が変形して変形応力を
吸収し、且つ臀部を支えるクッション性も向上させ、応
力が解除されると回復し、フレ−ムから伝わる振動も振
動吸収性と弾性回復性の良い熱可塑性弾性樹脂からなる
クッション層が吸収して人体の共振部分の振動を遮断す
るため座り心地と耐久性を向上させることができる。こ
の目的から、本発明の網状体を形成する振動吸収性と弾
性回復性の良い熱可塑性弾性樹脂からなる線条の繊度は
100000デニ−ル以下である。見掛け密度を0.2
g/cm3 以下にした場合、100000デニ−ルを越え
ると構成本数が少なくなり、密度斑を生じて部分的に耐
久性の悪い構造ができ、応力集中による疲労が大きくな
り耐久性が低下するので好ましくない。本発明の熱可塑
性弾性樹脂からなる線条の好ましい繊度は、繊度が細す
ぎると抗圧縮性が低くなり過ぎて変形による応力吸収性
が低下するので100デニ−ル以上であり、構成本数の
低下による構造面の緻密性を損なわない50000デニ
−ル以下である。より好ましくは500デニ−ル以上、
10000デニ−ル以下である。本発明の網状体の見掛
け密度は、0.005g/cm3 では反発力が失われ、振
動吸収能力や変形応力吸収能力が不充分となりクッショ
ン機能を発現させにくくなる場合があり、0.25g/
cm3 以上では反発力が高すぎて座り心地が悪くなる場合
があるので、振動吸収能力や変形応力吸収機能が生かせ
てクッション体としての機能が発現されやすい0.01
g/cm3 以上0.20g/cm3 以下が好ましく、より好
ましくは0.03g/cm3 以上0.08g/cm3 以下で
ある。本発明における網状体は繊度の異なる線状を見掛
け密度との組合せで最適な構成とする異繊度積層構造と
する方法も好ましい実施形態として選択できる。本発明
の網状体の厚みは特に限定されないが、厚みが5mm未満
では応力吸収機能と応力分散機能が低下するので、好ま
しい厚みは力の分散をする面機能と振動や変形応力吸収
機能が発現できる厚みとして10mm以上であり、より好
ましくは20mm以上である。本発明の網状体と短繊維不
織布が接合一体化された積層網状体としての見掛け密度
は0.01g/cm3 から0.2g/cm3 である。0.0
1g/cm3 未満では体型保持や振動吸収などのクッショ
ン機能が低下するので好ましくない。0.2g/cm3
越えると反発弾性が大きくなり座り心地が悪くなるので
好ましくない。好ましい見掛け密度は0.02g/cm3
〜0.1g/cm3 であり、より好ましくは0.03g/
cm3 〜0.06g/cm3 である。
According to the present invention, there is provided a three-dimensional three-dimensional structure in which continuous filaments having a fineness of not more than 100,000 denier made of a phosphorus-containing thermoplastic elastic resin are meandered and brought into contact with each other to fuse most of the contact portions. To form a three-dimensional structure of short fibers made of a thermoplastic elastic resin and fibers made of a thermoplastic inelastic resin, on one or both sides of a net-like body whose both sides are substantially flattened. The apparent density at which the fused and integrated layers are laminated and joined is from 0.01 g / cm 3 to 0.1 g / cm 3 .
2 g / cm 3 of a non-woven laminated net. The function of the cushioning material is that the cushioning layer consists of a layer that thickens the basic fineness and makes it a little hard to maintain body shape, and a layer that absorbs vibration a little and increases the density with a component that has good vibration damping properties and absorbs the vibration The surface layer is a soft layer with a finer size and a larger number of constituent fibers, giving a comfortable buttocks touch by moderate sinking, making the pressure distribution in the buttocks evenly distributed and vibrations that could not be absorbed by the cushion layer By integrating the layer that absorbs the vibration and blocks the vibration of the resonance part of the human body, the stress and the vibration can be integrally deformed and absorbed to improve the sitting comfort. In the present invention, the function of the cushion layer is imparted to the mesh formed with the fused three-dimensional three-dimensional structure made of the thermoplastic elastic resin, and the function of the surface layer is made of a short fiber whose thermal adhesive component is made of the thermoplastic elastic resin. It is a nonwoven fabric laminated net that can be provided to a nonwoven fabric (short fiber nonwoven fabric) made of short fibers made of a thermoplastic inelastic resin and joined and integrated to provide a preferable cushioning material function. The short-fiber nonwoven fabric having a surface layer function that constitutes the laminated net of the present invention provides a comfortable buttocks touch by moderate sinking as a soft layer,
The heat bonding component is made of a thermoplastic elastic resin (preferably,
If it exceeds 40% by weight and more than 70% by weight, which can satisfy the vibration absorbing function and the deformation stress absorbing function, the shape retention of short fibers is reduced and the sinking becomes large, so that 70% by weight or less. Staple fiber (thermal bonding fiber)
And a short fiber (base fiber) having a denier of 20 denier or less, which is made of a thermoplastic inelastic resin, is mixed and opened to form a three-dimensional structure, and most of the contact portions are fused by a heat bonding component. The integrated surface is made of a substantially flat nonwoven fabric. If it exceeds 20 denier, the apparent density of the short-fiber nonwoven fabric can be increased to 0.01 g / cm, which can provide a desirable surface layer function.
When the content is 3 or more and 0.05 g / cm 3 or less, the number of components is reduced, and the feature as a dense structure is not obtained, and a comfortable touch is spoiled. In addition, the heat bonding fiber is preferably because the number of constituents decreases as the fineness increases, the number of heat bonding points decreases, the dispersion of deformation stress becomes poor, the stress concentration at the bonding points increases, and the sag resistance decreases, which is preferable. Absent. Furthermore, since the thermal bonding fiber contains a thermoplastic inelastic resin, the larger the fineness, the greater the mechanical deformation of the thermoplastic inelastic resin with respect to compressive deformation, the greater the plastic deformation, and the lower the sag resistance. Is not preferred. On the other hand, if the fineness is too small, the migration with the base fiber is deteriorated, spots are generated at the heat bonding points formed by the heat bonding fibers, the dispersion of deformation stress is deteriorated, and stress concentration occurs at the bonding points, It is not preferable because the compressibility is reduced and easily deformed, and the thermoplastic inelastic resin portion is plastically deformed and recoverability is reduced. Preferred fineness of the heat-bonded fiber is 1 denier or more and 1
It is 5 denier or less, more preferably 2 denier to 6 denier. The matrix fiber is preferably 3 denier to 15 denier, more preferably 5 denier to 13 denier because it is necessary to maintain the elasticity to give a proper sinking. The heat-bonded fiber and the base fiber are mixed and opened to form a three-dimensional structure, and most of the contact portions are substantially fused and integrated by thermal bonding (preferably, all contact points are fused and integrated). By making the non-woven fabric flat, the local pressure of the buttocks can be received by the surface and the pressure distribution can be evenly dispersed, and the three-dimensional three-dimensional structure of the short-fiber non-woven fabric is made of the thermoplastic elastic resin of the heat bonding component. Since the heat bonding fiber and the heat bonding point undergo large deformation, the entire structure deforms and absorbs the deformation stress by energy conversion. When the deformation stress is released, the thermoplastic elastic resin Since the rubber elasticity has the function of easily recovering the original shape, the sag resistance is good.
Further, damage to the cushion layer can be reduced gradually, and the sag resistance of the entire structure is improved. If it is not fused and integrated, the shape cannot be maintained, the local pressure can be received by the surface, the pressure distribution cannot be evenly dispersed, and the entire structure is deformed and energy cannot be converted, so the durability is low. Inferior and not preferred. Since the heat bonding fiber is made of a thermoplastic elastic resin having good vibration absorption, it also functions as a layer that absorbs vibrations that could not be absorbed by the cushion layer and blocks vibrations of the resonance part of the human body. When the heat bonding fiber is made of a thermoplastic inelastic resin, it cannot follow local deformation stress, so that the structure is destroyed due to stress concentration and the recoverability is poor. Further, since the thermoplastic inelastic resin has poor vibration absorption properties, the function as a layer for blocking vibration is inferior and is not preferred. Although the thickness of the short fiber nonwoven fabric layer is not particularly limited, it is preferably 3 mm to 30 mm, and more preferably 5 mm to 20 mm, at which the function of the surface layer can be exhibited. On the other hand, the reticulated body having a cushion layer function forms a three-dimensional three-dimensional structure in which a continuous line of thermoplastic elastic resin is fused to a large part of a contact portion and is fused and integrated, and both surfaces are substantially flat. Most of the vibration is absorbed and attenuated by the vibration absorption function of the thermoplastic elastic resin, and the surface of the mesh body is substantially reduced even when a large deformation stress is applied locally. Flattened, most of the contact area is fused, and the surface is joined to the short fiber non-woven fabric by the surface, so it receives the deformation stress on the surface of the reticulated body, disperses the deformation stress and expresses the body shape holding function Since the filaments made of thermoplastic elastic resin form a three-dimensional structure and are integrated by fusion,
The entire structure is deformed to absorb the deformation stress by energy conversion, and when the deformation stress is released, the rubber elasticity of the thermoplastic elastic resin has the function of easily recovering to the original form, so that the sag resistance is good. It is. In the case of a mesh formed of filaments made of a known inelastic resin alone, if it undergoes a large deformation that cannot be absorbed by the surface layer, it does not have rubber elasticity. When the surface of the reticulated body is not substantially flattened, the local external force transmitted from the short fiber nonwoven fabric is selectively transmitted to the line and the bonding point of the surface, and stress concentration occurs. Such external force may cause fatigue due to stress concentration and reduce sag resistance. When the filaments are made of a thermoplastic elastic resin, stress concentration is relieved because the entire structure is deformed in the three-dimensional structure portion. It does not recover. Furthermore, if the surface is not substantially flat and there are irregularities, the sitting buttocks give a foreign body sensation, which is unfavorable because the sitting comfort becomes poor. In the case where the linear shape is not continuous, in the case of a net having a large fineness, the bonding point becomes a stress transmission point, so that remarkable stress concentration occurs at the bonding point and structural destruction occurs, resulting in poor heat resistance and poor durability. If not fused, the shape cannot be maintained, and the structure does not deform as a single body. Therefore, a fatigue phenomenon due to stress concentration occurs and durability is deteriorated, and at the same time, the shape is deformed and the body shape cannot be maintained, which is not preferable. . A more preferable degree of fusion in the present invention is a state in which most of the portions in contact with the filaments are fused, and most preferably a state in which all the contact portions are fused. In this way, continuous filaments made of thermoplastic elastic resin having good vibration absorption and elastic recovery properties form a three-dimensional three-dimensional structure in which most of the contact portions are fused, are fused and integrated, and the surface is substantially flat. The reticulated body having the function of a cushion layer has a function of receiving deformation stress transmitted from a surface layer composed of a short fiber non-woven fabric made of a thermoplastic elastic resin in a thermal bonding component, improving the dispersion of the stress, and improving individual lines. The stress applied to the shape is reduced, the entire structure is deformed to absorb the deformation stress, and the cushioning property to support the buttocks is also improved. When the stress is released, it recovers, and the vibration transmitted from the frame is also vibration absorbing The cushion layer made of thermoplastic elastic resin having good elastic recovery absorbs and blocks the vibration of the resonance part of the human body, so that the sitting comfort and durability can be improved. For this purpose, the fineness of a filament made of a thermoplastic elastic resin having good vibration absorption and elastic recovery properties that forms the net of the present invention is 100000 denier or less. 0.2 apparent density
In the case of g / cm 3 or less, if the density exceeds 100,000 denier, the number of components decreases, a density unevenness occurs, and a partially inferior durable structure is formed, fatigue due to stress concentration increases, and durability decreases. It is not preferable. The preferred fineness of the filament made of the thermoplastic elastic resin of the present invention is 100 denier or more, since if the fineness is too small, the anti-compression property is too low and the stress absorption due to deformation is reduced. 50,000 denier or less, which does not impair the compactness of the structural surface. More preferably, 500 denier or more,
It is less than 10,000 denier. When the apparent density of the mesh body of the present invention is 0.005 g / cm 3 , the repulsive force is lost, the vibration absorbing ability and the deformation stress absorbing ability are insufficient, and the cushion function may not be easily exhibited.
If it is more than 3 cm3, the resilience may be too high and the sitting comfort may deteriorate, so the function as a cushion body is likely to be developed by utilizing the vibration absorption capacity and the deformation stress absorption function.
g / cm 3 or more 0.20 g / cm 3 or less, and more preferably 0.03 g / cm 3 or more 0.08 g / cm 3 or less. In the present invention, a method of forming a layered structure of different fineness in which the reticulated body has an optimal configuration in combination with the apparent density of linear shapes having different fineness can also be selected as a preferred embodiment. The thickness of the reticulated body of the present invention is not particularly limited. However, if the thickness is less than 5 mm, the stress absorbing function and the stress dispersing function are deteriorated. The thickness is 10 mm or more, more preferably 20 mm or more. The apparent density of the laminated net formed by integrally joining the net of the present invention and the short fiber nonwoven fabric is 0.01 g / cm 3 to 0.2 g / cm 3 . 0.0
If it is less than 1 g / cm 3 , the cushioning functions such as body shape retention and vibration absorption decrease, which is not preferable. If it exceeds 0.2 g / cm 3 , the rebound resilience increases and the sitting comfort deteriorates, which is not preferable. Preferred apparent density is 0.02 g / cm 3
0.1 g / cm 3 , more preferably 0.03 g / cm 3
cm 3 to 0.06 g / cm 3 .

【0014】本発明の網状体の線条の断面形状は特には
限定されないが、中空断面や異形断面にすることで好ま
しい抗圧縮性(反発力)やタッチを付与することができ
るので特に好ましい。抗圧縮性は繊度や用いる素材のモ
ジュラスにより調整して、繊度を細くしたり、柔らかい
素材では中空率や異形度を高くし初期圧縮応力の勾配を
調整できるし、繊度をやや太くしたり、ややモジュラス
の高い素材では中空率や異形度を低くして座り心地が良
好な抗圧縮性を付与する。中空断面や異形断面の他の効
果として中空率や異形度を高くすることで、同一の抗圧
縮性を付与した場合、より軽量化が可能となり、自動車
等の座席に用いると省エネルギ−化ができ、布団などの
場合は、上げ下ろし時の取扱性が向上する。好ましい抗
圧縮性(反発力)やタッチを付与することができる他の
好ましい方法として、本発明の網状体の線条を複合構造
とする方法がある。複合構造としては、シ−スコア構造
またはサイドバイサイド構造及びそれらの組合せ構造な
どが挙げられる。が、特には熱可塑性弾性樹脂層が大変
形してもエネルギ−変換できない振動や変形応力をエネ
ルギ−変換して回復できる立体3次元構造とするために
線状の表面の50%以上を柔らかい熱可塑性弾性樹脂が
占めるシ−スコア構造またはサイドバイサイド構造及び
それらの組合せ構造などが挙げられる。すなわち、シ−
スコア構造ではシ−ス成分は振動や変形応力をエネルギ
−変換が容易なソフトセグメント含有量が多い熱可塑性
弾性樹脂とし、コア成分はソフトセグメント含有量の少
ない熱可塑性弾性樹脂とし、抗圧縮性を付与することで
適度の沈み込みによる臀部への快適なタッチを与えるこ
とができる。サイドバイサイド構造では振動や変形応力
をエネルギ−変換が容易なソフトセグメント含有量が多
い熱可塑性弾性樹脂の溶融粘度を抗圧縮性を示すソフト
セグメント含有量の少ない熱可塑性弾性樹脂の溶融粘度
より低くして線状の表面を占めるソフトセグメント含有
量が多い熱可塑性弾性樹脂の割合を多くした構造(比喩
的には偏芯シ−ス・コア構造のシ−スに熱可塑性弾性樹
脂を配した様な構造)として線状の表面を占めるソフト
セグメント含有量が多い熱可塑性弾性樹脂の割合を80
%以上としたものが特に好ましく、最も好ましくは線状
の表面を占めるソフトセグメント含有量が多い熱可塑性
弾性樹脂の割合を100%としたシ−スコアである。ソ
フトセグメント含有量が多い熱可塑性弾性樹脂の線状の
表面を占める割合が多くなると、溶融して融着するとき
の流動性が高いので接着が強固になる効果があり、構造
が一体で変形する場合、接着点の応力集中に対する耐疲
労性が向上し、耐熱性や耐久性がより向上する。
[0014] The cross-sectional shape of the filaments of the mesh body of the present invention is not particularly limited, but it is particularly preferable that a hollow cross-section or a deformed cross-section can impart favorable compression resistance (repulsive force) and touch. The anti-compression property can be adjusted by fineness and the modulus of the material used to make the fineness thinner.For soft materials, the hollowness and irregularity can be increased to adjust the gradient of the initial compressive stress, and the fineness can be made slightly thicker. A material with a high modulus reduces the hollowness and the degree of irregularity, and imparts good compression resistance to comfortable sitting. As another effect of the hollow cross section and the irregular cross section, by increasing the hollow ratio and the degree of irregularity, when the same compression resistance is imparted, the weight can be further reduced, and when used for a seat of an automobile or the like, energy saving can be achieved. In the case of a futon, the handling at the time of raising and lowering is improved. As another preferable method capable of imparting a preferable anti-compression property (repulsive force) and a touch, there is a method of forming a reticular filament of the present invention into a composite structure. Examples of the composite structure include a core-score structure or a side-by-side structure, and a combination structure thereof. However, in order to form a three-dimensional three-dimensional structure in which vibration and deformation stress, which cannot convert energy even if the thermoplastic elastic resin layer undergoes large deformation, can be recovered by converting the energy into energy, 50% or more of the linear surface is soft heat. Examples thereof include a core-score structure or a side-by-side structure occupied by a plastic elastic resin, and a combination thereof. That is,
In the score structure, the sheath component is a thermoplastic elastic resin with a large soft segment content that can easily convert vibration and deformation stress into energy, and the core component is a thermoplastic elastic resin with a small soft segment content to improve anti-compression properties. By giving it, it is possible to give a comfortable touch to the buttocks by moderate sinking. In the side-by-side structure, the melt viscosity of a thermoplastic elastic resin with a large soft segment content that can easily convert vibration and deformation stress into energy is made lower than the melt viscosity of a thermoplastic elastic resin with a small soft segment content that exhibits anti-compression properties. A structure in which the proportion of thermoplastic elastic resin with a large soft segment content occupying a linear surface is increased (figuratively, a structure in which thermoplastic elastic resin is arranged on an eccentric sheet-core structure sheet) The ratio of the thermoplastic elastic resin having a large soft segment content occupying a linear surface
% Is particularly preferred, and most preferably a scoring score when the proportion of the thermoplastic elastic resin having a large soft segment content occupying a linear surface is defined as 100%. When the ratio of the linear surface of the thermoplastic elastic resin having a large soft segment content occupies a large proportion, the fluidity when melting and fusing is high, so that the adhesion becomes strong, and the structure is integrally deformed. In this case, fatigue resistance against stress concentration at the bonding point is improved, and heat resistance and durability are further improved.

【0015】熱可塑性弾性樹脂からなる網状体と短繊維
不織布が接合一体化されて、実質的に両面がフラット化
された不織布積層網状体であるので、他の網状体、不織
布、編織物、硬綿、フイルム、発泡体、金属等の被熱接
着体とを接着するのに、他の熱接着成分(熱接着不織
布、熱接着繊維、熱接着フィルム、熱接着レジン等)や
接着剤等を用いて一体積層構造体化し、車両用座席、船
舶用座席、車両用、船舶用、病院用等の業務用及び家庭
用ベット、家具用椅子、事務用椅子、布団類等の製品を
得る場合、被接着体面との接触面積を広くできるので、
接着面積が広くなり強固に接着した接着耐久性も良好な
製品を得ることができる。この場合、難燃性の被熱接着
体を用いると難燃性の一体積層構造体を得ることができ
るので、本発明では特に好ましい実施形態である。な
お、網状体及び積層網状体形成段階から製品化される任
意の段階で上述の疑似結晶化処理を施すことにより、構
造体中の熱可塑性弾性樹脂からなる成分を示差走査型熱
量計で測定した融解曲線に室温以上融点以下の温度に吸
熱ピークを持つようにすると製品の耐熱耐久性が格段に
向上するのでより好ましい。本発明の不織布積層網状体
を形成する網状体の線条を複合構造とした場合、また
は、前記熱接着機能をもつ短繊維の不織布層を積層する
ことで不織布積層網状体の裏面に熱接着機能も付与で
き、補強材等を熱接着一体構造化ができる。例えば、網
状体層をシ−スコア構造とする場合、シ−ス成分の振動
や変形応力をエネルギ−変換が容易なソフトセグメント
含有量が多い熱可塑性弾性樹脂を熱接着成分とし、コア
成分の抗圧縮性を示すソフトセグメント含有量が少ない
熱可塑性弾性樹脂を網状形態の保持機能をもたせるため
の高融点成分とする構成で、熱接着成分の融点を高融点
樹脂の融点より10℃以上低くしたものを用いることに
より熱接着層の機能も付与できる。また、本発明の積層
構造体の表面層の短繊維不織布を振動や変形応力をエネ
ルギ−変換が容易なソフトセグメント含有量が多い低融
点の熱可塑性弾性樹脂を熱接着成分とした熱接着繊維で
構成することでも好ましい熱接着機能を付与できる。熱
接着機能を発現させるに好ましい積層網状体中の線条ま
たは繊維を形成する熱接着成分の融点は高融点成分の融
点より15℃から100℃低い融点であり、より好まし
くは20℃から80℃低い融点である。熱接着機能を持
つ本発明の不織布積層網状体は実質的に表面がフラット
化されて、接触部の大部分が融着していることで、網状
体、不織布、編織物、硬綿、フイルム、発泡体、金属等
の被熱接着体面との接触面積を広くできるので、熱接着
面積が広くなり、強固に熱接着した新たな成形体及び車
両用座席、船舶用座席、車両用、船舶用、病院用等の業
務用及び家庭用ベット、家具用椅子、事務用椅子、布団
類になった製品を得ることができる。なお、新たな成形
体及び製品が製品化されるまでの任意の段階で疑似結晶
化処理を施すことにより、構造体中の熱可塑性弾性樹脂
からなる線条を示差走査型熱量計で測定した融解曲線に
室温以上融点以下の温度に吸熱ピークを持つようにする
と製品の耐熱耐久性が格段に向上したものを提供できる
のでより好ましい。
[0015] Since the reticulated body made of thermoplastic elastic resin and the short-fiber nonwoven fabric are joined and integrated to form a nonwoven laminated reticulated body having substantially flat surfaces on both sides, other reticulated bodies, nonwoven fabrics, knitted fabrics, hard Uses other heat-adhesive components (heat-bonded nonwoven fabric, heat-bonded fiber, heat-bonded film, heat-bonded resin, etc.), adhesives, etc. to bond with heat-bonded objects such as cotton, film, foam, metal, etc. In order to obtain products such as vehicle seats, marine seats, vehicles, ships, hospitals and other commercial and household beds, furniture chairs, office chairs, futons, etc. Since the contact area with the adhesive surface can be increased,
It is possible to obtain a product having a large bonding area and strong bonding and good bonding durability. In this case, the use of a flame-retardant heat-bonded body can provide a flame-retardant integrated laminated structure, and is a particularly preferred embodiment of the present invention. In addition, by performing the above-described pseudo-crystallization treatment at an arbitrary stage from the network and the laminated network forming step to the product, the component of the thermoplastic elastic resin in the structure was measured by a differential scanning calorimeter. It is more preferable that the melting curve has an endothermic peak at a temperature between room temperature and the melting point, since the heat resistance of the product is remarkably improved. When the filaments of the mesh forming the nonwoven fabric laminated network of the present invention have a composite structure, or by laminating the nonwoven fabric layer of the short fiber having the thermal bonding function, the heat bonding function is provided on the back surface of the nonwoven fabric laminated network. Can be applied, and a reinforcing material or the like can be integrated with heat bonding. For example, when the mesh layer has a sheath-core structure, a thermoplastic elastic resin having a large soft segment content, which is easy to convert the vibration and deformation stress of the sheath component into energy, is used as a heat bonding component, and the resistance of the core component is reduced. A composition in which a thermoplastic elastic resin having a small soft segment content exhibiting compressibility is used as a high melting point component to have a function of holding a net shape, and the melting point of the heat bonding component is lower than the melting point of the high melting point resin by 10 ° C. or more. The function of the heat bonding layer can also be imparted by using. The short-fiber nonwoven fabric of the surface layer of the laminated structure of the present invention is made of a heat-bonding fiber containing a low-melting thermoplastic elastic resin having a high soft segment content and a high melting point, which can easily convert vibration and deformation stress into energy. A preferred thermal bonding function can be imparted also by constituting. The melting point of the heat-adhesive component forming the filaments or fibers in the laminated network body that is preferable for exhibiting the heat-adhesive function is a melting point 15 to 100 ° C. lower than the melting point of the high-melting component, and more preferably 20 to 80 ° C. It has a low melting point. The nonwoven fabric laminated net of the present invention having a heat bonding function has a substantially flat surface, and most of the contact portions are fused, so that the net, nonwoven fabric, knitted fabric, hard cotton, film, Since the area of contact with the surface of the object to be bonded such as foam or metal can be increased, the area of thermal bonding is increased, and a new molded body and a vehicle seat, a boat seat, a vehicle, a boat, etc. Beds for business use such as hospital use and home use, furniture chairs, office chairs and futons can be obtained. In addition, by performing pseudo-crystallization treatment at an arbitrary stage until a new molded product and product are commercialized, the melting line measured by a differential scanning calorimeter was used to measure the filaments of the thermoplastic elastic resin in the structure. It is more preferable that the curve has an endothermic peak at a temperature between room temperature and the melting point, since a product having significantly improved heat resistance and durability can be provided.

【0016】次に本発明の製法を述べる。本発明の製法
は、複数のオリフィスを持つ多列ノズルよりソフトセグ
メント量(A重量%)と燐含有量(Bppm)が60A
+200≦B≦100000の関係を満足する熱可塑性
弾性樹脂を各ノズルオリフィスに分配し、該熱可塑性樹
脂の融点より10℃以上、80℃未満高い溶融温度で、
該ノズルより下方に向けて吐出させ、溶融状態で互いに
接触させて融着させ3次元構造を形成しつつ、引取り装
置で挟み込み冷却槽で冷却せしめた後、片面又は両面に
熱接着成分が熱可塑性弾性樹脂からなる短繊維と熱可塑
性非弾性樹脂からなる短繊維とを混合開繊して三次元化
したウエッブを積層し、圧縮しつつ熱成形する難燃性積
層網状体の製法であり、好ましくは、冷却後から一体成
形して製品化に至る工程で熱可塑性弾性樹脂の融点より
少なくとも10℃以下の温度でアニ−リングする不織布
積層網状体及び製品の製法である。燐含有熱可塑性弾性
樹脂は、本発明では、前記の如く、燐化合物を重合時に
添加して共重合する方法と重合後に添加して混合練り込
みする方法ができる。混合練り込みは二軸混練押出機又
はダルメ−ジ、ピン等の混練機能をもつ単軸押出機を用
い、溶融押し出し前に行う場合と、溶融押し出し時に行
う場合を選択できる。難燃剤の定量供給が出来れば溶融
押し出し時に混練するのが最も安価な方法となる。固体
状の難燃剤は樹脂と共に乾燥混合して偏析しないように
押出機に供給すれば簡単であるが、液状の難燃剤は樹脂
を混練押出機に定量供給しつつ別途に液状の難燃剤も定
量供給しつつ混練する方法を取るのが最も望ましい。例
えば、二軸混練押出機のベント穴から液状難燃剤を定量
供給する方法等が例示できる。このような方法でソフト
セグメント量(A重量%)と燐含有量(Bppm)が6
0A+200≦B≦100000の関係を満足する燐含
有量を熱可塑性弾性樹脂に添加して、次いで網状体を形
成する。網状体は、熱可塑性弾性樹脂を一般的な溶融押
出機を用いて溶融し、複数のオリフィスを持つ多列ノズ
ルに供給し、オリフィスより下方へ吐出する。この時の
溶融温度は、熱可塑性弾性樹脂の融点より20℃〜80
℃高い温度である。熱可塑性弾性樹脂の融点より80℃
を越える高い溶融温度にすると熱分解が著しくなり熱可
塑性弾性樹脂のゴム弾性特性が低下するので好ましくな
い。他方、熱可塑性弾性樹脂の融点より10℃以上高く
しないとメルトフラクチャ−を発生し正常な線条形成が
出来なくなり、また、吐出後ル−プ形成しつつ接触させ
融着させる際、線条の温度が低下して線条同士が融着し
なくなり接着が不充分な網状体となる場合があり好まし
くない。好ましい溶融温度は融点より20℃から60℃
高い温度、より好ましくは融点より25℃から40℃高
い温度である。オリフィスの形状は特に限定されない
が、中空断面(例えば三角中空、丸型中空、突起つきの
中空等となるよう形状)及び、又は異形断面(例えば三
角形、Y型、星型等の断面二次モ−メントが高くなる形
状)とすることで前記効果以外に溶融状態の吐出線条が
形成する3次元構造が流動緩和し難くし、逆に接触点で
の流動時間を長く保持して接着点を強固にできるので特
に好ましい。特開平1−2075号公報に記載の接着の
ための加熱をする場合、3次元構造が緩和し易くなり平
面的構造化し、3次元立体構造化が困難となるので好ま
しくない。網状体の特性向上効果としては、見掛けの嵩
を高くでき軽量化になり、また抗圧縮性が向上し、弾発
性も改良できへたり難くなる。中空断面では中空率が8
0%を越えると断面が潰れ易くなるので、好ましくは軽
量化の効果が発現できる10%以上70%以下、より好
ましくは20%以上60%以下である。オリフィスの孔
間ピッチは線状が形成するル−プが充分接触できるピッ
チとする必要がある。緻密な構造にするには孔間ピッチ
を短くし、粗密な構造にするには孔間ピッチを長くす
る。本発明の孔間ピッチは好ましくは3mm〜20mm、よ
り好ましくは5mm〜10mmである。本発明では所望に応
じ異密度化や異繊度化もできる。列間のピッチ又は孔間
のピッチも変えた構成、及び列間と孔間の両方のピッチ
も変える方法などで異密度層を形成できる。また、オリ
フィスの断面積を変えて吐出時の圧力損失差を付与する
と、溶融した熱可塑性弾性樹脂を同一ノズルから一定の
圧力で押し出される吐出量が圧力損失の大きいオリフィ
スほど少なくなる原理を使って長手方向の区間でオリフ
ィスの断面積が異なる列を少なくとも複数有するノズル
を用い異繊度線条からなる網状構造体を製造することが
できる。次いで、該ノズルより下方に向けて吐出させ、
ル−プを形成させつつ溶融状態で互いに接触させて融着
させ3次元構造を形成しつつ、引取りネットで挟み込
み、網状体の表面の溶融状態の曲がりくねった吐出線条
を45°以上折り曲げて変形させて表面をフラット化す
ると同時に曲げられていない吐出線条との接触点を接着
して構造を形成後、連続して冷却媒体(通常は室温の水
を用いるのが冷却速度を早くでき、コスト面でも安くな
るので好ましい)で急冷して本発明の3次元立体網状構
造体化した網状体を得る。ノズル面と引取り点の距離は
少なくとも40cm以下にすることで吐出線条が冷却され
接触部が融着しなくなることを防ぐのが好ましい。吐出
線条の吐出量5g/分孔以上と多い場合は10cm〜40
cmが好ましく、吐出線条の吐出量5g/分孔未満と少な
い場合は5cm〜20cmが好ましい。網状体の厚みは溶融
状態の3次元立体構造体両面を挟み込む引取りネットの
開口幅(引取りネット間の間隔)で決まる。本発明では
上述の理由から引取りネットの開口幅は5mm以上とす
る。次いで水切り乾燥するが冷却媒体中に界面活性剤等
を添加すると、水切りや乾燥がしにくくなったり、熱可
塑性弾性樹脂が膨潤することもあり好ましくない。尚、
ノズル面と樹脂を固化させる冷却媒体上に設置した引取
りコンベアとの距離、樹脂の溶融粘度、オリフィスの孔
径と吐出量などにより所望のループ径や線径をきめられ
る。冷却媒体上に設置した間隔が調整可能な一対の引取
りコンベアで溶融状態の吐出線条を挟み込み停留させる
ことで互いに接触した部分を融着させつつ、連続して冷
却媒体中に引込み固化させ網状体を形成する時、上記コ
ンベアの間隔を調整することで、融着した網状体が溶融
状態でいる間で厚み調節が可能となり、所望の厚みのも
のが得られる。コンベア速度も速すぎると、接触点の形
成が不充分になったり、融着点が充分に形成されるまで
に冷却され、接触部の融着が不充分になる場合がある。
また、速度が遅過ぎると溶融物が滞留し過ぎ、密度が高
くなるので、所望の見掛け密度に適したコンベア速度を
設定する必要がある。次いで本発明の製法では、表面層
の機能を持たせる短繊維不織布と接合一体化する。熱接
着成分が熱可塑性弾性樹脂からなる繊度が20デニ−ル
以下の短繊維は、低融点の熱可塑性弾性樹脂と高融点の
熱可塑性非弾性樹脂とを個々に溶融し、公知の複合紡糸
により紡糸し、延伸して完成糸を得られる。が、この方
法では、熱接着成分の融点が低いので、延伸時に高温で
熱セットできないため収縮率が30%から80%と高い
ものしか得られないので、ウエッブを熱成形する際ウエ
ッブ収縮による成形寸法不良を生じる。本発明ではこの
問題を解決するため、3000m/分以上の高速紡糸に
より収縮率を10%以下に低収縮化して一気に完成糸に
する方法で得るのが好ましい。次いで、巻縮を付与し、
所望のカット長に切断して熱接着繊維を得る。本発明に
使用する熱接着繊維の複合形態は特には限定されない
が、熱接着繊維としての機能が必要なのでサイドバイサ
イドまたはシ−スコアで、低融点成分が繊維の表面の5
0%以上を占めるのが好ましく、低融点成分が繊維の表
面の100%以上を占めるのがより好ましい。母材繊維
は公知の方法で非弾性樹脂を非対象冷却法又は複合紡糸
法により潜在捲縮能を付与し、延伸後熱処理により立体
捲縮を発現させて切断または、切断後熱処理して立体捲
縮を発現させて母材繊維を得る。母材繊維は耐へたり性
と耐熱性を要求されるので、初期引張り抵抗度が少なく
とも35g/デニ−ル以上で、70℃での初期引張り抵
抗度が少なくとも10g/デニ−ル以上にしたものが好
ましい。嵩高性と抗圧縮性からの立体捲縮の捲縮度は1
5%以上、捲縮数は10〜25個/インチが好ましい。
かくして得られた熱接着繊維と母材繊維は混合開繊す
る。熱接着繊維が少ないと振動吸収機能が低下して好ま
しくない。熱接着繊維が多すぎると嵩高性が低下する場
合があり、好ましい熱接着繊維と母材繊維は混合比率が
20/80〜60/40重量比として、オ−プナ−等で
予備開繊混合した後カ−ド等で開繊し、3次元化構造と
した開繊ウエッブを、該網状体の表面に積層圧縮して熱
成形により接合一体化するか、一旦単独で開繊ウエッブ
のみを積層圧縮して熱成形により構造体化して短繊維不
織布を作成し、次いで該網状体と短繊維不織布を接合一
体化することもできる。この場合、熱接着層又は接着剤
を別途該網状体と短繊維不織布間に使用して接合一体化
してもよく、該網状体または該短繊維不織布の熱接着機
能を使って接合一体化してもよい。本発明の好ましい方
法としては、該網状体を一旦冷却後、又は一体成形して
得られた積層構造体を製品化に至る任意の工程で熱可塑
性弾性樹脂の融点より少なくとも10℃以下の温度でア
ニ−リングよる疑似結晶化処理を行い積層構造体又は製
品を得るのがより好ましい製法である。疑似結晶化処理
温度は、少なくとも融点(Tm)より10℃以上低く、
Tanδのα分散立ち上がり温度(Tαcr)以上で行
う。この処理で、融点以下に吸熱ピ−クを持ち、疑似結
晶化処理しないもの(吸熱ピ−クを有しないもの)より
耐熱耐へたり性が著しく向上する。本発明の好ましい疑
似結晶化処理温度は(Tαcr+10℃)から(Tm−
20℃)である。単なる熱処理により疑似結晶化させる
と耐熱耐へたり性が向上する。が更には、10%以上の
圧縮変形を付与してアニ−リングすることで耐熱耐へた
り性が著しく向上するのでより好ましい。また、該網状
体を一旦冷却後、乾燥工程を経する場合、乾燥温度をア
ニ−リング温度とすることで同時に疑似結晶化処理を行
うができる。また、製品化する工程で別途疑似結晶化処
理を行うができる。次いで所望の長さまたは形状に切断
してクッション材に用いる。
Next, the production method of the present invention will be described. According to the production method of the present invention, the soft segment amount (A weight%) and the phosphorus content (Bppm) are 60 A from a multi-row nozzle having a plurality of orifices.
A thermoplastic elastic resin satisfying the relationship of + 200 ≦ B ≦ 100000 is distributed to each nozzle orifice, and at a melting temperature higher than the melting point of the thermoplastic resin by 10 ° C. or more and less than 80 ° C.,
After being discharged downward from the nozzle and brought into contact with each other in a molten state and fused to form a three-dimensional structure, it is sandwiched by a take-off device and cooled in a cooling tank, and then the heat-adhesive component is heated on one or both surfaces. It is a method of manufacturing a flame-retardant laminated network body in which short fibers made of a plastic elastic resin and short fibers made of a thermoplastic inelastic resin are mixed and spread to laminate a three-dimensional web, and then thermoformed while being compressed. Preferably, it is a method of producing a nonwoven fabric laminated net and a product which are annealed at a temperature of at least 10 ° C. below the melting point of the thermoplastic elastic resin in a process from the cooling to the integral molding to the commercialization. In the present invention, as described above, the phosphorus-containing thermoplastic elastic resin can be prepared by adding a phosphorus compound at the time of polymerization and copolymerizing it, or by adding it after polymerization and mixing and kneading it. Mixing and kneading can be carried out using a twin-screw kneading extruder or a single-screw extruder having a kneading function such as dalmage or pin, and can be selected to be performed before melt extrusion or at the time of melt extrusion. If the flame retardant can be supplied at a constant rate, kneading during melt extrusion is the cheapest method. It is easy if the solid flame retardant is dry-mixed with the resin and fed to the extruder to prevent segregation.However, the liquid flame retardant is supplied to the kneading extruder quantitatively while the liquid flame retardant is separately measured. It is most desirable to adopt a method of kneading while supplying. For example, a method of quantitatively supplying a liquid flame retardant from a vent hole of a twin-screw kneading extruder can be exemplified. In this way, the soft segment amount (A weight%) and the phosphorus content (B ppm) are 6
A phosphorus content satisfying the relationship of 0A + 200 ≦ B ≦ 100000 is added to the thermoplastic elastic resin, and then a network is formed. The reticulated body melts the thermoplastic elastic resin by using a general melt extruder, supplies the melted resin to a multi-row nozzle having a plurality of orifices, and discharges the resin below the orifice. The melting temperature at this time is 20 ° C. to 80 ° C. below the melting point of the thermoplastic elastic resin.
℃ higher temperature. 80 ° C from the melting point of thermoplastic elastic resin
If the melting temperature exceeds the above range, thermal decomposition becomes remarkable, and the rubber elasticity of the thermoplastic elastic resin deteriorates. On the other hand, if the temperature is not higher than the melting point of the thermoplastic elastic resin by 10 ° C. or more, melt fracture is generated and normal filament formation cannot be performed. The temperature is lowered, and the filaments may not fuse with each other, resulting in a poorly adhered net-like body, which is not preferable. Preferred melting temperature is 20 ° C to 60 ° C from melting point
Higher temperatures, more preferably 25 to 40 ° C. above the melting point. Although the shape of the orifice is not particularly limited, a hollow cross section (for example, a shape having a triangular hollow, a round hollow, a hollow with a projection, or the like) and a modified cross section (for example, a triangular, Y-shaped, star-shaped, etc. In addition to the above-described effects, the three-dimensional structure formed by the melted discharge filaments is less likely to flow, and conversely, the flow time at the contact point is maintained longer to strengthen the bonding point. It is particularly preferred because it can be In the case of heating for bonding described in Japanese Patent Application Laid-Open No. 1-2075, it is not preferable because the three-dimensional structure is easily relaxed, and it becomes difficult to form a three-dimensional structure. As the effect of improving the properties of the net-like body, the apparent bulk can be increased and the weight can be reduced, and the compression resistance and the resilience can be improved. Hollow ratio of 8 in hollow section
If it exceeds 0%, the cross section is likely to be crushed. Therefore, it is preferably 10% or more and 70% or less, more preferably 20% or more and 60% or less, at which the effect of weight reduction can be exhibited. The pitch between the holes of the orifices must be such that the loop formed by the linear shape can sufficiently contact. The pitch between holes is shortened for a dense structure, and the pitch between holes is increased for a dense structure. The pitch between the holes of the present invention is preferably 3 mm to 20 mm, more preferably 5 mm to 10 mm. In the present invention, different densities and different finenesses can be obtained as desired. A different density layer can be formed by a configuration in which the pitch between rows or the pitch between holes is changed, or a method in which the pitch between both rows and between holes is also changed. Also, if the pressure loss difference at the time of discharge is given by changing the cross-sectional area of the orifice, the principle is that the discharge amount that extrudes the molten thermoplastic elastic resin from the same nozzle at a constant pressure decreases as the orifice with a large pressure loss decreases. Using a nozzle having at least a plurality of rows having different cross-sectional areas of the orifices in a section in the longitudinal direction, it is possible to manufacture a reticulated structure composed of filaments of different fineness. Next, the ink is discharged downward from the nozzle,
While forming a loop, they are brought into contact with each other in a molten state and fused to form a three-dimensional structure, sandwiched by a take-off net, and bent at 45 ° or more in the molten tortuous discharge wire on the surface of the mesh body. After forming the structure by deforming and flattening the surface and bonding the contact points with the unbent discharge filaments, the cooling medium (usually using water at room temperature can increase the cooling rate continuously, This is preferable because the cost is reduced, and the net is formed by quenching to obtain a three-dimensional net-like net of the present invention. It is preferable that the distance between the nozzle surface and the take-up point is at least 40 cm or less to prevent the discharge filament from being cooled and the contact portion from being fused. 10 cm to 40 when the discharge rate of discharge line is as large as 5 g / min or more.
cm is preferable, and when the discharge amount of the discharge filament is as small as less than 5 g / minute, the diameter is preferably 5 cm to 20 cm. The thickness of the net-like body is determined by the width of the opening of the take-off net sandwiching both surfaces of the molten three-dimensional structure (the distance between the take-off nets). In the present invention, the opening width of the take-up net is set to 5 mm or more for the above-described reason. Then, drying with water is performed. However, if a surfactant or the like is added to the cooling medium, draining or drying becomes difficult, and the thermoplastic elastic resin may swell, which is not preferable. still,
A desired loop diameter or wire diameter can be determined by the distance between the nozzle surface and a take-off conveyor placed on a cooling medium for solidifying the resin, the melt viscosity of the resin, the hole diameter of the orifice, and the discharge amount. A pair of take-up conveyors with adjustable intervals installed on the cooling medium sandwich the discharge lines in the molten state and stop and fuse the parts in contact with each other, while continuously drawing into the cooling medium and solidifying. When the body is formed, by adjusting the distance between the conveyors, the thickness can be adjusted while the fused net is in a molten state, and a desired thickness can be obtained. If the conveyor speed is too high, the contact point may be insufficiently formed, or the contact point may be cooled until the fusion point is sufficiently formed, and the fusion of the contact portion may be insufficient.
On the other hand, if the speed is too slow, the melt will stay too much and the density will increase, so it is necessary to set a conveyor speed suitable for the desired apparent density. Next, in the manufacturing method of the present invention, the nonwoven fabric is bonded and integrated with the short fiber nonwoven fabric having the function of the surface layer. The short fibers having a fineness of 20 denier or less in which the heat bonding component is made of a thermoplastic elastic resin are obtained by individually melting a low melting point thermoplastic elastic resin and a high melting point thermoplastic inelastic resin, and by known composite spinning. It is spun and stretched to obtain the finished yarn. However, in this method, since the melting point of the heat-adhesive component is low, it cannot be heat-set at a high temperature during stretching, so that only a high shrinkage ratio of 30% to 80% can be obtained. Dimensional defects occur. In order to solve this problem in the present invention, it is preferable to obtain the finished yarn at a stretch by reducing the shrinkage to 10% or less by high-speed spinning at 3000 m / min or more. Next, crimping is applied,
Cut to a desired cut length to obtain a heat bonded fiber. The composite form of the heat-bonding fiber used in the present invention is not particularly limited. However, since the function as the heat-bonding fiber is necessary, the low-melting-point component is 5% on the surface of the fiber by side-by-side or sea core.
Preferably, it occupies 0% or more, and more preferably, the low melting point component occupies 100% or more of the fiber surface. The matrix fiber is given a latent crimping ability by applying a non-symmetric cooling method or a composite spinning method to an inelastic resin by a known method, and is subjected to heat treatment after drawing to develop a three-dimensional crimp, or cut, or heat-treated after cutting to give a three-dimensional crimp. A matrix fiber is obtained by expressing shrinkage. Since the base fiber is required to have set resistance and heat resistance, the initial tensile resistance is at least 35 g / denier or more, and the initial tensile resistance at 70 ° C. is at least 10 g / denier or more. Is preferred. The degree of crimp of three-dimensional crimps from bulkiness and compression resistance is 1
5% or more, and the number of crimps is preferably 10 to 25 pieces / inch.
The thus obtained heat bonding fiber and base material fiber are mixed and opened. When the amount of the heat bonding fiber is small, the vibration absorbing function is lowered, which is not preferable. If the amount of the heat-bonding fiber is too large, the bulkiness may be reduced, and the preferable ratio of the heat-bonding fiber and the base fiber is 20/80 to 60/40 by weight, and the pre-spreading and mixing are performed with an opener or the like. After opening the fiber with a card or the like to form a three-dimensional structure, the opened web is laminated and compressed on the surface of the mesh body and bonded and integrated by thermoforming, or only the opened web alone is laminated and compressed. Then, a short-fiber nonwoven fabric can be formed by thermoforming to form a short-fiber nonwoven fabric, and then the reticulated body and the short-fiber nonwoven fabric can be joined and integrated. In this case, a heat bonding layer or an adhesive may be separately used between the reticulated body and the short-fiber non-woven fabric to be joined and integrated, or the re-woven body or the short-fiber non-woven fabric may be joined and integrated using a heat bonding function. Good. As a preferred method of the present invention, after the network is once cooled, or in any step leading to commercialization of the laminated structure obtained by integral molding, at a temperature of at least 10 ° C. or less than the melting point of the thermoplastic elastic resin. A more preferable production method is to perform a pseudo-crystallization treatment by annealing to obtain a laminated structure or a product. The pseudo-crystallization temperature is at least 10 ° C. lower than the melting point (Tm),
This is performed at a temperature higher than the α dispersion rising temperature (Tαcr) of Tan δ. This treatment has an endothermic peak below the melting point, and significantly improves heat resistance and sag resistance as compared with those without the pseudo-crystallization treatment (without the endothermic peak). The preferred pseudo crystallization treatment temperature of the present invention is (Tαcr + 10 ° C.) to (Tm−
20 ° C). Pseudo crystallization by simple heat treatment improves heat set resistance. However, it is more preferable to perform annealing by giving a compression deformation of 10% or more, since the heat set resistance is remarkably improved. Further, when the network is once cooled and then subjected to a drying step, a pseudo crystallization treatment can be performed simultaneously by setting the drying temperature to the annealing temperature. In addition, a pseudo crystallization process can be separately performed in a process of commercialization. Next, it is cut into a desired length or shape and used as a cushion material.

【0017】本発明の不織布積層網状体をクッション用
いる場合、その使用目的、使用部位により使用する樹
脂、繊度、ル−プ径、嵩密度を選択する必要がある。例
えば、ソフトなタッチと適度の沈み込みと張りのある膨
らみを付与するためには、低密度で細い繊度、細かいル
−プ径にするのが好ましく、中層のクッション機能も発
現させるには、共振振動数を低くし、適度の硬さと圧縮
時のヒステリシスを直線的に変化させて体型保持性を良
くし、耐久性を保持させるために、中密度で太い繊度、
やや大きいル−プ径の層と低密度で細い繊度、細かいル
−プ径の層を積層一体化した構造にするのが好ましい。
また、3次元構造を損なわない程度に成形型等を用いて
使用目的にあった形状に成形してそのまま側地を被せ車
両用座席、船舶用座席、ベット、椅子、家具等に用いる
ことができる。勿論、用途との関係で要求性能に合うべ
く他の素材、例えば、異なる網状体、短繊維集合体から
なる硬綿クッション材、不織布等と組合せて用いること
も可能である。また、樹脂製造過程以外でも性能を低下
させない範囲で製造過程から成形体に加工し、製品化す
る任意の段階で難燃化、防虫抗菌化、耐熱化、撥水撥油
化、着色、芳香等の機能付与を薬剤添加等の処理加工が
できる。
In the case of using the nonwoven fabric laminated net of the present invention as a cushion, it is necessary to select a resin, a fineness, a loop diameter and a bulk density to be used depending on the purpose of use and the site of use. For example, in order to provide a soft touch and a moderate sunk and firm bulge, it is preferable to use a low-density, fine fineness and a small loop diameter. To reduce the frequency, moderately change the hardness and the hysteresis at the time of compression linearly to improve body shape retention and maintain durability, medium density and thick fineness,
It is preferable to adopt a structure in which a layer having a relatively large loop diameter and a layer having a low density, a fine fineness and a small loop diameter are laminated and integrated.
Further, it can be formed into a shape suitable for the purpose of use using a molding die or the like to the extent that the three-dimensional structure is not impaired, and can be used as a vehicle seat, a boat seat, a bed, a chair, furniture, or the like by directly covering the side ground. . Of course, it is also possible to use in combination with other materials, for example, a different net-like material, a hard cotton cushion material composed of a short fiber aggregate, a nonwoven fabric, or the like in order to meet the required performance in relation to the application. In addition to the resin manufacturing process, the product is processed into a molded product from the manufacturing process to the extent that the performance is not degraded, and flame retardation, antibacterial and antibacterial, heat resistance, water and oil repellency, coloring, fragrance etc. The function can be imparted by processing such as adding a drug.

【0018】[0018]

【実施例】以下に実施例で本発明を詳述する。The present invention will be described in detail with reference to the following examples.

【0019】なお、実施例中の評価は以下の方法で行っ
た。 1.融点(Tm)および融点以下の吸熱ピ−ク 島津製作所製TA50,DSC50型示差熱分析計を使
用し、昇温速度20℃/分で測定した吸発熱曲線から吸
熱ピ−ク(融解ピ−ク)温度を求めた。 2.Tαcr ポリマ−を融点+10℃に加熱して、厚み約300μm
のフイルムを作成して、オリエンテック社製バイブロン
DDVII型を用い、110Hz、昇温速度1℃/分で測
定したTanδ(虚数弾性率M”と弾性率の実数部分
M’との比M”/M’)のゴム弾性領域から融解領域へ
の転移点温度に相当するα分散の立ち上がり温度。 3.見掛け密度 試料を15cm×15cmの大きさに切断し、4か所の高さ
を測定し、体積を求め試料の重さを体積で徐した値で示
す。(n=4の平均値) 4.線条の繊度 試料を10箇所から各線条部分を切り出し、アクリル樹
脂で包埋して断面を削り出し切片を作成して断面写真を
得る。各部分の断面写真より各部の断面積(Si)を求
める。また、同様にして得た切片をアセトンでアクリル
樹脂を溶解し、真空脱泡して密度勾配管を用いて40℃
にて測定した比重(SGi)を求める。ついで次式より
線状の9000mの重さを求める。(単位cgs) 繊度=〔(1/n)ΣSi×SGi〕×900000 5.融着 試料を目視判断で融着しているか否かを接着している繊
維同士を手で引っ張って外れないか否かで外れないもの
を融着していると判断する。 6.難燃性 F−MVSS302法により難燃基準(60秒以下で消
炎する)を満たすものを合格、満たさないものを不合格
と判定した。 7.燃焼ガスの毒性指数 JIS−K−7217の方法で測定した各燃焼ガス量
(mg)を10分間吸入での致死量(mg/10リット
ル)で除した値の積算値で示す。 8.耐熱耐久性(70℃残留歪) 試料を15cm×15cmの大きさに切断し、50%圧縮し
て70℃乾熱中22時間放置後冷却して圧縮歪みを除き
1日放置後の厚み(b)を求め、処理前の厚み(a)か
ら次式、即ち(a−b)/a×100より算出する。単
位%(n=3の平均値) 9.繰返し圧縮歪 試料を15cm×15cmの大きさに切断し、島津製作所製
サ−ボパルサ−にて、25℃65%RH室内にて50%
の厚みまで1Hzのサイクルで圧縮回復を繰り返し2万
回後の試料を1日放置後の厚み(b)を求め、処理前の
厚み(a)から次式、即ち(a−b)/a×100より
算出する。単位%(n=3の平均値) 10.座り心地 バケットシ−トの形状に切断した難燃性積層網状体を熱
成形用雌金型に入れ、牡金型で圧縮して詰め込み160
℃〜230℃の熱風にて5分間熱成形してバケットシ−
ト状に成形したクッションに東洋紡績製ハイムからなる
ポリエステルモケットの側地を被って、座席用フレ−ム
にセットして座部は4か所、背部は6か所の側地止めを
入れた座席を作成し、30℃RH75%室内で作成した
座席にパネラ−を座らせ以下の評価をおこなった。(n
=5) (1) 床つき感:座ったときの「どすん」と床に当たった
感じの程度を感覚的に定性評価した。感じない;◎、殆
ど感じない;○、やや感じる;△、感じる;× (2) 蒸れ感:2時間座っていて、臀部やふと股の内側の
座席と接する部分が蒸れた感じを感覚的に定性評価し
た。殆ど感じない:◎、僅かに蒸れを感じる;○、やや
蒸れを感じる;△、蒸れを著しく感じる;× (3) 8時間以内でどの程度我慢して座席に座っていられ
るか:1時間以内;×、2時間以内;△、4時間以内;
○、4時間以上;◎ (4) 4時間座席に座らせたときの腰の疲れ程度を感覚的
に定性評価した。無し;◎、殆ど疲れない;○、やや疲
れる;△、非常に疲れる;× (5) 総合評価: (1)から(4) までの評価の◎を4点、○
を3点、△を2点、×を1点として12点以上で△を含
まないもの;非常に良い(◎)、12点以上で△を含む
もの;良い(○)、10点以上で×を含まないもの;や
や悪い(△)、×を含むもの;悪い(×)として評価し
た。
The evaluation in the examples was performed by the following method. 1. Endothermic peak at melting point (Tm) and below the melting point The endothermic peak (melting peak) was obtained from an endothermic curve measured at a heating rate of 20 ° C./min using a Shimadzu TA50 / DSC50 differential thermal analyzer. -H) The temperature was determined. 2. Heat the Tαcr polymer to the melting point + 10 ° C and make the thickness about 300μm.
And a Tan δ (ratio M ″ / tan δ (imaginary elastic modulus M ″ and real part M ′ of elastic modulus) measured at 110 Hz and at a heating rate of 1 ° C./min using a Vibron DDVII model manufactured by Orientec. M ′) is the rise temperature of α-dispersion corresponding to the transition point temperature from the rubber elastic region to the melting region. 3. Apparent density The sample is cut into a size of 15 cm × 15 cm, the height of four places is measured, the volume is determined, and the weight of the sample is indicated by a value obtained by reducing the weight by the volume. (Average value of n = 4) 4. Fineness of filaments Each filamentous portion is cut out from 10 places of the sample, and the cross section is cut out by embedding with an acrylic resin to prepare a section to obtain a photograph of the cross section. The cross-sectional area (Si) of each part is determined from a cross-sectional photograph of each part. Further, the section obtained in the same manner was dissolved in an acrylic resin with acetone, degassed in vacuo, and heated at 40 ° C. using a density gradient tube.
The specific gravity (SGi) measured in is obtained. Next, the linear weight of 9000 m is obtained from the following equation. (Unit cgs) Fineness = [(1 / n) ΣSi × SGi] × 90000000 5. Fusion Check whether the sample is fused by visual judgment. It is judged that what is not separated is fused. 6. Flame Retardancy Those that satisfy the flame retardancy standard (extinguish flame in 60 seconds or less) according to the F-MVSS302 method are judged as pass, and those that do not meet the criteria are judged as fail. 7. Toxicity index of combustion gas It shows the integrated value of the value obtained by dividing each combustion gas amount (mg) measured by the method of JIS-K-7217 by lethal dose (mg / 10 liter) by inhalation for 10 minutes. 8. Heat resistance and durability (70 ° C residual strain) A sample was cut into a size of 15 cm × 15 cm, compressed by 50%, allowed to stand in dry heat at 70 ° C for 22 hours, cooled to remove the compressive strain, and removed after 1 day of thickness ( b) is calculated, and is calculated from the thickness (a) before the processing according to the following equation, that is, (ab) / a × 100. Unit% (average value of n = 3) 9. Repetitive compressive strain A sample was cut into a size of 15 cm × 15 cm, and 50% in a RH chamber at 25 ° C. and 65% with a Shimadzu servo pulsar.
The compression recovery is repeated at a cycle of 1 Hz until the thickness of the sample reaches 20,000 times, the thickness (b) of the sample after standing for 1 day is determined, and the thickness (a) before the treatment is calculated from the following formula, that is, (ab) / a × Calculated from 100. Unit% (average value of n = 3) 10. Sit-to-come The flame-retardant laminated net, cut into the shape of a bucket sheet, is put into a female mold for thermoforming, and is compressed by a male mold and packed 160
Thermoforming for 5 minutes with hot air at ℃-230 ℃
The polyester moquette made of Toyobo Co., Ltd. was covered with a side cushion of a cushion molded in a shape of G, and set on a seating frame. Four seat stoppers were provided at the seat and six back stoppers were placed at the back. A seat was prepared, and a paneler was seated on a seat prepared in a room at 30 ° C. and 75% RH, and the following evaluation was performed. (N
= 5) (1) Feeling of flooring: The degree of feeling of hitting the floor with "doing" while sitting was qualitatively evaluated sensuously. Not felt; ◎, almost felt; ○, slightly felt; △, felt; × (2) Feeling of stuffiness: After sitting for two hours, sensationally felt that the part in contact with the buttocks and the inner part of the crotch was stuffy. It was qualitatively evaluated. Almost no: ◎, slight stuffiness; ○, slight stuffiness; △, noticeable stuffiness; × (3) How long to be patient in 8 hours or less: 1 hour; × within 2 hours; △ within 4 hours;
○: 4 hours or more; ◎ (4) The degree of waist fatigue when seated in a seat for 4 hours was qualitatively evaluated sensoryly. None; ◎, hardly tired; ○, slightly tired; △, very tired; × (5) Overall evaluation: 4 points of ◎ from (1) to (4), ○
Is 3 points, Δ is 2 points, and × is 1 point, 12 points or more do not contain Δ; very good (◎), 12 points or more include Δ; good (○), 10 points or more are × Was evaluated as poor (x), poor x (x), and poor (x).

【0020】実施例1 ポリエステル系エラストマ−として、ジメチルテレフタ
レ−ト(DMT)又は、ジメチルナフタレ−ト(DM
N)と1・4ブタンジオ−ル(1・4BD)を少量の触
媒と仕込み、常法によりエステル交換後、ポリテトラメ
チレングリコ−ル(PTMG)を添加して昇温減圧しつ
つ重縮合せしめポリエ−テルエステルブロック共重合エ
ラストマ−を生成させ、次いで抗酸化剤を2%添加し、
混合練込み後ペレット化し、50℃48時間真空乾燥し
て得られた熱可塑性弾性樹脂原料の処方を表1に示す。
Example 1 Dimethyl terephthalate (DMT) or dimethyl naphthalate (DM) was used as a polyester elastomer.
N) and 1.4 butanediol (1.4 BD) were charged with a small amount of a catalyst, transesterified by a conventional method, and polytetramethylene glycol (PTMG) was added. -Forming a terester block copolymer elastomer, then adding 2% of an antioxidant,
Table 1 shows the formulation of the thermoplastic elastic resin raw material obtained by mixing, kneading, pelletizing, and vacuum drying at 50 ° C. for 48 hours.

【0021】[0021]

【表1】 [Table 1]

【0022】幅50cm、長さ5cmのノズル有効面に幅方
向の孔間ピッチを10mm、長さ方向の孔間ピッチ5mmの
千鳥配列としたオリフィス形状は外径2mm、内径1.6
mmでトリプルブリッジの中空形成性断面としたノズル
に、得られた熱可塑性弾性樹脂原料(A−1及びA−
2)とを2本の混練機能をもつ押出機にて別々に定量供
給しつつ、難燃剤として既存化学物質番号(3)−37
35を燐含有量10000ppmとなるように添加して
溶融し、A−1とA−2をオリフィス直前でA−1をシ
−ス成分に、A−2をコア成分となるように(シ−ス/
コア:50/50重量比)分配し、溶融温度245℃に
て、単孔吐出量2g/分(A−1:1g/分、A−2:
1g/分)でノズル下方に吐出させ、ノズル面10cm下
に冷却水を配し、幅60cmのステンレス製エンドレスネ
ットを平行に5cm間隔で一対の引取りコンベアを水面上
に一部出るように配して、該溶融状態の吐出線状を曲が
りくねらせル−プを形成して接触部分を融着させつつ3
次元網状構造を形成し、該溶融状態の網状構造体の両面
を引取りコンベア−で挟み込みつつ毎分1mの速度で2
5℃の冷却水中へ引込み固化させて両面を融着フラット
化した後、所定の大きさに切断して得られた燐含有熱可
塑性弾性樹脂からなる網状体は、断面形状がシ−スコア
構造の三角おむすび型中空断面で中空率が38%、繊度
が9000デニ−ルの線条で形成しており、平均の見掛
け密度が0.045g/cm3 、燐含有量が10000p
pm(60A+200=2780ppm)であった。別
途に、常法により公知の複合紡糸機にて、熱可塑性弾性
樹脂A−1をシ−ス成分、相対粘度1.0のポリブチレ
ンテレフタレ−ト(PBT)をコア成分となるように個
々に溶融してオリフィス直前で分配し、各吐出量を50
/50重量比で、単孔当たり1.6g/分孔(0.8g
/分:0.8g/分)として紡糸温度265℃にて、紡
糸速度3500m/分にて得た繊度が4.1デニ−ル、
乾熱160℃での収縮率4%の糸を収束してトウ状でク
リンパ−にて機械巻縮を付与し、64mmに切断してシ−
スコア断面の熱可塑性弾性樹脂からなる短繊維を得た。
母材繊維は、常法により、極限粘度0.63と0.56
のPETを重量比50/50に分配して単孔当たり3.
0g/分孔(1g/分:1g/分)として紡糸温度26
5℃にてC型オリフィスより吐出し、紡糸速度1300
m/分で複合紡糸し、次いで、70℃及び180℃にて
2段延伸して得た延伸糸を64mmに切断し170℃にて
フリ−熱処理して立体捲縮を発現させ、中空断面で中空
率32%のシ−スコア構造の繊度6デニ−ル、初期引張
り抵抗度38g/デニ−ル、捲縮度20%、捲縮数18
個/インチの母材繊維を得た。得られた熱接着繊維と母
材繊維を40/60重量比で混合し、オ−プナ−にて予
備開繊した後カ−ドで開繊して得たウエッブを目付け1
000g/m2 に積層し、該網状体に積層し、見掛け密
度が0.05g/cm3 となるように圧縮し、180℃の
熱風にて5分間熱処理後冷却して両面がフラットな不織
布積層網状体を得た。次いで厚みの10%圧縮して、1
00℃の熱風にて20分疑似結晶化処理して得た本発明
の不織布積層網状体の特性を表2に示す。表2で明らか
なごとく、実施例1は柔らかい弾性樹脂の特性が生かせ
た積層網状体のため耐熱性、常温での耐久性に優れ、座
り心地ともに優れ、難燃性を有し、燃焼ガスの毒性指数
も低い安全性の高いクッション材であった。評価用に作
成した座席も性能が優れていることが判る。
An orifice having a staggered arrangement of a pitch between holes in the width direction of 10 mm and a pitch of holes in the length direction of 5 mm on a nozzle effective surface having a width of 50 cm and a length of 5 cm has an outer diameter of 2 mm and an inner diameter of 1.6.
The resulting thermoplastic elastic resin raw material (A-1 and A-
2) and two extruders having a kneading function separately and quantitatively supplying the same, and as a flame retardant, the existing chemical substance number (3) -37
A-1 and A-2 were added immediately before the orifice, and A-1 was used as a sheath component and A-2 was used as a core component. /
Core: 50/50 weight ratio) at a melting temperature of 245 ° C., and a single hole discharge rate of 2 g / min (A-1: 1 g / min, A-2:
(1 g / min), the cooling water is placed 10 cm below the nozzle surface, cooling water is placed 10 cm below the nozzle surface, and a pair of take-up conveyors with a width of 60 cm are placed in parallel at 5 cm intervals so that a part of the take-up conveyors is placed above the water surface. Then, the discharge line in the molten state is meandered to form a loop, and the contact portion is fused while melting.
A two-dimensional network is formed, and both sides of the molten network are sandwiched between take-up conveyors at a speed of 1 m / min.
After being drawn into a cooling water at 5 ° C. and solidified by fusing and flattening both surfaces, the mesh made of the phosphorus-containing thermoplastic elastic resin obtained by cutting to a predetermined size has a cross-sectional structure of a sheath-core structure. It has a triangular conical hollow section with a hollow ratio of 38% and a fineness of 9000 denier. It has an average apparent density of 0.045 g / cm 3 and a phosphorus content of 10,000p.
pm (60A + 200 = 2780 ppm). Separately, using a known composite spinning machine, a thermoplastic elastic resin A-1 is used as a sheet component, and polybutylene terephthalate (PBT) having a relative viscosity of 1.0 is used as a core component. And dispensed just before the orifice.
/ 50 weight ratio, 1.6 g / hole per hole (0.8 g
/ Min: 0.8 g / min) at a spinning temperature of 265 ° C. and a spinning speed of 3500 m / min and a fineness of 4.1 denier.
A yarn having a shrinkage of 4% at a dry heat of 160 ° C. is converged, mechanically crimped by a crimper in a tow shape, cut into 64 mm and sealed.
Short fibers made of a thermoplastic elastic resin having a score cross section were obtained.
The matrix fiber has an intrinsic viscosity of 0.63 or 0.56 by a conventional method.
Of PET was distributed at a weight ratio of 50/50 to obtain a ratio of 3.
The spinning temperature was 26 g / min (1 g / min: 1 g / min).
Discharge from C-type orifice at 5 ° C, spinning speed 1300
m / min., and then two-stage drawing at 70 ° C and 180 ° C. The drawn yarn was cut into 64 mm, free-heat treated at 170 ° C to develop a three-dimensional crimp, A fineness of 6 denier of a sheath core structure having a hollow ratio of 32%, an initial tensile resistance of 38 g / denier, a degree of crimp of 20%, and a number of crimps of 18
Individual / inch matrix fibers were obtained. The obtained heat-bonded fiber and the base fiber are mixed at a weight ratio of 40/60, preliminarily opened with an opener, and then opened with a card.
2,000 g / m 2 , laminated on the mesh, compressed to an apparent density of 0.05 g / cm 3 , heat-treated with hot air at 180 ° C. for 5 minutes, cooled, and laminated on both sides with flat nonwoven fabric A reticulated body was obtained. Then compress 10% of the thickness
Table 2 shows the characteristics of the nonwoven fabric laminated network of the present invention obtained by performing pseudo crystallization treatment with hot air at 00 ° C. for 20 minutes. As is clear from Table 2, Example 1 has excellent heat resistance, excellent durability at room temperature, excellent sitting comfort, excellent flame retardancy, and excellent combustion gas due to the laminated network utilizing the properties of the soft elastic resin. It was a highly safe cushioning material with a low toxicity index. It can be seen that the seat created for evaluation also has excellent performance.

【0023】[0023]

【表2】 ジメチルイソフタレ−ト(DMI)20モル%とDMT
80モル%及び1・4ブタンジオ−ル(1・4BD)を
少量の触媒と仕込み、実施例1の方法と同様にして得た
ポリエステル系熱可塑性弾性樹脂の処方を表1に示す。
オリフィスの孔形状を孔径φ1mmの丸断面としたノズル
を用い、A−3のみを単成分で用い、燐含有量9000
ppmとなるように難燃剤を添加した以外実施例1と同
様にして得た網状体は中実丸断面で繊度9000デニ−
ルの線条から形成されており、平均の見掛け密度が0.
046g/cm3 、燐含有量9000ppm(60A+2
00=3320ppm)であった。次いで実施例1と同
様にして得た積層網状体の特性を表2に示す。表2で明
らかなごとく、実施例2は耐熱性と常温での耐久性は実
用上使用可能で、座り心地が優れ、難燃性を有し、燃焼
ガスの毒性指数も低い安全性の高いクッション材であ
り、評価用に作成した座席も優れていることが判る。
[Table 2] Dimethyl isophthalate (DMI) 20 mol% and DMT
Table 1 shows the formulation of a polyester-based thermoplastic elastic resin obtained in the same manner as in Example 1 by charging 80 mol% and 1.4 butanediol (1.4 BD) with a small amount of a catalyst.
Using a nozzle having a circular cross section with a hole diameter of φ1 mm in the orifice hole, using only A-3 as a single component, and having a phosphorus content of 9000
The net obtained in the same manner as in Example 1 except that the flame retardant was added so as to become ppm was a solid round cross section and a fineness of 9000 denier.
And an average apparent density of 0.
046 g / cm 3 , phosphorus content 9000 ppm (60A + 2
00 = 3320 ppm). Next, Table 2 shows the characteristics of the laminated net obtained in the same manner as in Example 1. As is clear from Table 2, Example 2 is a highly safe cushion having heat resistance and durability at room temperature that can be used practically, has excellent sitting comfort, has flame retardancy, and has a low toxicity index of combustion gas. It is a material, and it turns out that the seat made for evaluation is also excellent.

【0024】実施例3 ポリウレタン系エラストマ−として、4・4’ジフェニ
ルメタンジイソシアネ−ト(MDI)とPTMG及び鎖
延長剤として1・4BDを添加して重合し次いで抗酸化
剤2%を添加混合練込み後ペレット化し真空乾燥してポ
リエ−テル系ウレタンポリマ−の処方を表3に示す。
Example 3 Polyurethane-based elastomer, 4,4'-diphenylmethane diisocyanate (MDI), PTMG, and 1.4BD as a chain extender were added and polymerized, and 2% of an antioxidant was added and mixed. After kneading, pelletizing and vacuum drying, the formulation of the polyether urethane polymer is shown in Table 3.

【0025】[0025]

【表3】 [Table 3]

【0026】得られた熱可塑性弾性樹脂(シ−ス成分:
B−1、コア成分:B−2)に燐含有量12000pp
mとなるように難燃剤を添加して、溶融温度220℃と
した以外実施例1と同様にして得た網状体の線条のシ−
スコア構造の断面形状が三角おむすび型の中空断面で中
空率40%、繊度が9800デニ−ル、平均の見掛け密
度が0.047g/cm3 、燐含有量12000ppm
(60A+200=3260ppm)であった。他方、
B−1をシ−ス成分に、相対粘度1.0のPBTをコア
成分とし、紡糸温度を265℃とした以外実施例1と同
様にして得た熱接着繊維の特性は、繊度が4.5デニ−
ル、150℃での収縮率が4%であった。母材繊維は実
施例1のものを用い実施例1と同様にして1000g/
2 の積層ウエッブにし、該網状体と積層し、160℃
の熱風にて5分間熱処理後冷却して両面がフラットな積
層構造体を得た。次いで厚みの10%圧縮して、100
℃の熱風にて20分疑似結晶化処理して得た本発明の積
層網状体の特性を表2に示す。実施例3は柔らかいウレ
タンの特性を生かした積層網状体で耐熱性、常温での耐
久性、座り心地ともに優れ、難燃性を有し、燃焼ガスの
毒性指数も低い安全性の高いクッション材であった。評
価用に作成した座席も優れていることが判る。
The obtained thermoplastic elastic resin (seed component:
B-1; core component: B-2) with phosphorus content of 12,000 pp
m and the melting temperature was set to 220 ° C., except that the melting temperature was 220 ° C.
The cross-sectional shape of the score structure is a triangular diaper-shaped hollow cross section with a hollow ratio of 40%, a fineness of 9800 denier, an average apparent density of 0.047 g / cm 3 , and a phosphorus content of 12000 ppm.
(60A + 200 = 3260 ppm). On the other hand,
The properties of the heat-bonded fiber obtained in the same manner as in Example 1 except that B-1 was used as the sheath component, PBT having a relative viscosity of 1.0 as the core component, and the spinning temperature was set at 265 ° C. were as follows. 5 denier
The shrinkage at 150 ° C. was 4%. The matrix fiber was the same as that of Example 1 and 1000 g /
m 2 , and laminated with the net, at 160 ° C.
And then cooled for 5 minutes with hot air to obtain a laminated structure having flat surfaces on both sides. Then compress 10% of the thickness to 100
Table 2 shows the properties of the laminated network of the present invention obtained by performing pseudo-crystallization treatment with hot air of 20 ° C. for 20 minutes. Example 3 is a highly safe cushioning material which is a laminated mesh body utilizing the properties of soft urethane, and which is excellent in heat resistance, durability at room temperature, and sitting comfort, has flame retardancy, and has a low toxicity index of combustion gas. there were. It turns out that the seat made for evaluation is also excellent.

【0027】比較例1 固有粘度0.63のポリエチレンテレフタレ−ト(PE
T)単成分のみを用い、燐含有量5000ppmとなる
ように難燃剤を添加して、溶融温度を280℃とした以
外、実施例2と同様にして得た比較例1に用いる網状体
は、繊度が8800デニ−ル、見掛け密度が0.047
g/cm3 、燐含有量5000ppm(60A+200=
200ppm)であった。次いで、疑似結晶化処理しな
かった以外、実施例2と同様にして得た積層網状体の特
性を表2に示す。比較例1は難燃性を有するが、非弾性
ポリエステルからなる網状体のため耐熱耐久性が悪く、
短繊維不織布を表面層に使用しているにも係わらず、硬
くて座り心地も悪いクッション材である。
Comparative Example 1 Polyethylene terephthalate having an intrinsic viscosity of 0.63 (PE
T) The network used in Comparative Example 1 obtained in the same manner as in Example 2 except that only a single component was used and a flame retardant was added so that the phosphorus content was 5000 ppm, and the melting temperature was 280 ° C, Fineness 8800 denier, apparent density 0.047
g / cm 3 , phosphorus content 5000 ppm (60A + 200 =
200 ppm). Next, Table 2 shows the characteristics of the laminated network obtained in the same manner as in Example 2 except that the pseudo-crystallization treatment was not performed. Comparative Example 1 has flame retardancy, but is inferior in heat resistance and durability because of a mesh made of inelastic polyester.
Despite the use of short fiber non-woven fabric for the surface layer, it is a cushion material that is hard and uncomfortable to sit on.

【0028】比較例2 燐含有量200ppmとなるように難燃剤を添加した以
外、実施例2と同様にして得た網状体は中実丸断面で繊
度9000デニ−ルの線条から形成されており、平均の
見掛け密度が0.046g/cm3 、燐含有量200pp
m(60A+200=3320ppm)であった。次い
で、疑似結晶化処理しなかった以外実施例2と同様にし
て得た積層網状体の特性を表2に示す。比較例2は熱可
塑性弾性樹脂からなるので、座り心地は良いが、耐熱性
や耐久性が劣り、難燃性も不合格になるクッション材の
例である。
Comparative Example 2 A net obtained in the same manner as in Example 2 except that a flame retardant was added so as to have a phosphorus content of 200 ppm was formed from a filament having a solid round section and a fineness of 9000 denier. With an average apparent density of 0.046 g / cm 3 and a phosphorus content of 200 pp
m (60A + 200 = 3320 ppm). Next, Table 2 shows the characteristics of the laminated network obtained in the same manner as in Example 2 except that the pseudo-crystallization treatment was not performed. Comparative Example 2 is an example of a cushioning material that is made of a thermoplastic elastic resin and therefore has good sitting comfort, but is inferior in heat resistance and durability and rejects flame retardancy.

【0029】比較例3 ノズル面60cm下に引取りコンベアネットを配して引き
取ったあと疑似結晶化処理をしなかった以外、実施例2
と同様の方法で得た網状体の特性の一部を表2に示す。
なお、接着状態が不良で不織布とも接着しにくく形態保
持が悪いため、難燃性、見掛け密度、70℃残留歪、繰
返圧縮歪み、及び座り心地の評価はしていない。比較例
3は形態が固定されていないのでクッション材に適さな
い例である。
COMPARATIVE EXAMPLE 3 Example 2 was repeated except that the take-up conveyor net was arranged 60 cm below the nozzle surface and the pseudo-crystallization treatment was not performed after the take-up conveyor net.
Table 2 shows some of the properties of the reticulated body obtained in the same manner as described above.
In addition, the flame retardancy, the apparent density, the residual strain at 70 ° C., the repetitive compressive strain, and the sitting comfort were not evaluated because the adhesion state was poor and the shape retention was poor due to poor adhesion to the nonwoven fabric. Comparative Example 3 is an example that is not suitable for a cushion material because the form is not fixed.

【0030】比較例4 燐含有量を121000ppmとなるように難燃剤を添
加した以外、実施例2と同様にして得た網状体は中実丸
断面で繊度9000デニ−ルの線条から形成されてお
り、平均の見掛け密度が0.046g/cm3 、燐含有量
121000ppm(60A+200=3320pp
m)であった。次いで、疑似結晶化処理しなかった以外
実施例2と同様にして得た積層網状体の特性を表2に示
す。比較例4は燐含有量があまりに多量に添加されてい
るので、難燃性は合格するが熱可塑性弾性樹脂の特性が
劣化して、座り心地がやや劣り、耐熱性や耐久性が著し
く劣るクッション材の例である。
Comparative Example 4 A net obtained in the same manner as in Example 2 except that a flame retardant was added so that the phosphorus content was 121,000 ppm was formed from a filament having a solid round section and a fineness of 9000 denier. With an average apparent density of 0.046 g / cm 3 and a phosphorus content of 121000 ppm (60A + 200 = 3320 pp
m). Next, Table 2 shows the characteristics of the laminated network obtained in the same manner as in Example 2 except that the pseudo-crystallization treatment was not performed. In Comparative Example 4, the phosphorus content was too large, so that the flame retardancy was passed, but the properties of the thermoplastic elastic resin were deteriorated, the sitting comfort was slightly inferior, and the heat resistance and durability were significantly inferior. It is an example of a material.

【0031】比較例5 幅50cm、長さ5cmのノズル有効面に幅方向の孔間ピッ
チ4mm、長さ方向の孔間ピッチ3mmの千鳥配列としたオ
リフィス径φ1mmとしたノズルを用いて単孔当たりの吐
出量0.012g/分にて吐出させて、ノズル面5cm下
に引取りコンベアネットを配して1.5m/分にて引き
取った以外、実施例2と同様にして得た線条の繊度が4
0デニール、見掛け密度が0.008g/cm3 、燐含有
量9000ppm(60A+200=3320ppm)
の網状体を用いて、積層網状体の見掛け密度を0.00
9g/cm3 となるように圧縮した以外、比較例2と同様
にして作成した積層網状体の特性を表2に示す。比較例
5は難燃性は合格するが、線状の繊度が細い緻密な網状
体をクッション層にした場合もで、見掛け密度が低すぎ
て沈み込みが大きくなり床つき感が大きくなり座り心地
のやや劣るクッション材であった。
COMPARATIVE EXAMPLE 5 A single hole was formed by using a nozzle having an orifice diameter of φ1 mm in a staggered arrangement with a pitch between holes in the width direction of 4 mm and a pitch between holes in the length direction of 3 mm on an effective surface of a nozzle having a width of 50 cm and a length of 5 cm. Was discharged at a discharge rate of 0.012 g / min, and a take-up conveyor net was placed 5 cm below the nozzle surface and pulled at 1.5 m / min. Fineness is 4
0 denier, apparent density 0.008 g / cm 3 , phosphorus content 9000 ppm (60A + 200 = 3320 ppm)
The net density of the laminated net is 0.00
Table 2 shows the characteristics of the laminated net formed in the same manner as in Comparative Example 2 except that the pressure was reduced to 9 g / cm 3 . Comparative Example 5 passed the flame retardancy, but the case where the cushion layer was made of a fine mesh with a fine linear fineness was too low in apparent density, the sinking became large, the feeling of flooring became large, and the sitting comfort was increased. It was a slightly inferior cushioning material.

【0032】比較例6 単孔当たりの吐出量3g/分にて吐出させ、引取りコン
ベアネットの速度を0.3m/分とし、疑似結晶化処理
しなかった以外実施例2と同様して得た線条繊度が13
000デニ−ルで、網状体の平均見掛け密度が0.21
g/cm3 、燐含有量9000ppm(60A+200=
3320ppm)の網状体を用い、疑似結晶化処理しな
い以外実施例2と同様にして作成した積層網状体の特性
を表2に示す。比較例6は見掛け密度が高いため、タッ
チは良好だが座り心地がやや劣り、耐熱性、耐久性が不
充分なクッション材であった。
Comparative Example 6 Discharge was performed at a discharge rate of 3 g / min per single hole, the speed of the take-off conveyor net was set to 0.3 m / min, and the same procedure as in Example 2 was performed except that the pseudo-crystallization treatment was not performed. 13 filament fineness
000 denier, the average apparent density of the net is 0.21
g / cm 3 , phosphorus content 9000 ppm (60A + 200 =
Table 2 shows the characteristics of the laminated network produced in the same manner as in Example 2 except that the pseudo-crystallization treatment was not performed using the network of 3320 ppm). Comparative Example 6 had a high apparent density, so that the cushioning material was good in touch but slightly inferior in sitting comfort and insufficient in heat resistance and durability.

【0033】比較例7 幅50cm、長さ5cmのノズル有効面に幅方向の孔間ピッ
チ10mm、長さ方向の孔間ピッチ20mmの千鳥配列とし
たオリフィス径φ2mmとしたノズルを用いて、単孔当た
りの吐出量25g/分にて吐出させて、ノズル面30cm
下に引取りコンベアネットを配して1m/分にて引き取
った以外、実施例2と同様にして得た線条の繊度は11
3000デニ−ルで、平均の見掛け密度は0.154g
/cm3 、燐含有量9000ppm(60A+200=3
320ppm)の網状体を用い、疑似結晶化処理しない
以外実施例2と同様にして作成した積層網状体の特性を
表2に示す。比較例5は繊度が著しく太く密度斑のある
積層網状体のため、難燃性は合格するが、耐熱耐久性が
悪くなり、座り心地もやや悪くなるクッション材であっ
た。
COMPARATIVE EXAMPLE 7 A single-hole nozzle having an orifice diameter of 2 mm in a staggered arrangement with a pitch of 10 mm in the width direction and a pitch of 20 mm in the length direction was formed on the effective surface of a nozzle having a width of 50 cm and a length of 5 cm. Discharge at a discharge rate of 25 g / min.
The fineness of the filament obtained in the same manner as in Example 2 except that the take-up conveyor net was arranged below and taken up at 1 m / min was 11
3000 denier, average apparent density 0.154g
/ Cm 3 , phosphorus content 9000 ppm (60A + 200 = 3
Table 2 shows the characteristics of the laminated network produced in the same manner as in Example 2 except that the pseudo-crystallization treatment was performed using the network of 320 ppm). Comparative Example 5 was a cushioning material having a very fine fineness and a density of uneven density, and thus passed the flame retardancy, but had poor heat resistance and durability, and had a slightly worse sitting comfort.

【0034】比較例8 疑似結晶化処理しない以外、実施例2と同様にして得た
線条は繊度9100デニ−ル、平均の見掛け密度は0.
045g/cm3 、燐含有量9000ppm(60A+2
00=3320ppm)の網状体と、熱接着繊維に東洋
紡績社製4−44−EE7を用いて疑似結晶化処理しな
い以外、実施例2と同様にして作成した熱接着繊維が熱
可塑性非弾性樹脂からなる短繊維で構成した短繊維不織
布を表面層に積層し、接合一体化した積層網状体の特性
を表2に示す。比較例8はクッション層が熱可塑性弾性
樹脂で構成されているので座り心地は良いが、耐熱性と
耐久性が不良なクッション材であった。
Comparative Example 8 The filaments obtained in the same manner as in Example 2 except that the pseudo-crystallization treatment was not performed, the fineness was 9100 denier, and the average apparent density was 0.1%.
045 g / cm 3 , phosphorus content 9000 ppm (60A + 2
(00 = 3320 ppm) and a thermo-adhesive fiber produced in the same manner as in Example 2 except that pseudo-crystallization treatment was not performed using 4-44-EE7 manufactured by Toyobo Co., Ltd. Table 2 shows the properties of the laminated network formed by laminating a short fiber nonwoven fabric composed of short fibers composed of the following components on the surface layer and joining and integrating the same. Comparative Example 8 was a cushion material having good sitting comfort because the cushion layer was made of a thermoplastic elastic resin, but having poor heat resistance and durability.

【0035】比較例9 引取りコンベアネットの間隔(開口幅)を15cmとした
以外、実施例2と同様にして得た線条繊度が9000デ
ニ−ルで、網状体の平均見掛け密度が0.043g/cm
3 、燐含有量9000ppm(60A+200=332
0ppm)の表面が実質的にフラット化されていない網
状体を用い、疑似結晶化処理しない以外実施例2と同様
にして作成した積層構造体の特性を表2に示す。比較例
9は網状体の表面が凹凸になっているため、見掛け密度
が低いのに耐久性が劣り、熱接着が不充分になり、少し
異物感を感じる座り心地のやや劣るクッション材であっ
た。
Comparative Example 9 The filament fineness was 9000 denier obtained in the same manner as in Example 2 except that the interval (opening width) of the take-off conveyor net was set to 15 cm. 043 g / cm
3, the phosphorus content 9000ppm (60A + 200 = 332
Table 2 shows the characteristics of the laminated structure produced in the same manner as in Example 2 except that a network (0 ppm) whose surface was not substantially flattened and the pseudo-crystallization treatment was not performed. In Comparative Example 9, since the surface of the mesh body was uneven, the apparent density was low, but the durability was poor, the thermal bonding was insufficient, and the cushioning material was slightly inferior in sitting comfort to feel a little foreign substance. .

【0036】実施例4 実施例1で得た不織布積層網状体を長さ120cmに切断
して、厚み5cm、幅120cm、長さ50cm毎にキルティ
ングした幅120cm、長さ200cmの側地に入れマット
レスを作成した。このマットレスをベッドに設置し、2
5℃RH65%室内にてパネラ−4人に7時間使用させ
て寝心地を官能評価した。なお、ベットにはシ−ツを掛
け、掛け布団は1.8kgのダウン/フェザ−:90/1
0を中綿にしたもの、枕はパネラ−が毎日使用している
ものを着用させた。評価結果は、床つき感がなく、沈み
込みが適度で、蒸れを感じない快適な寝心地のベットで
あった。比較のため、密度0.04g/cm3 で厚み10
cmの発泡ウレタン板状体で同様のマットレスを作成し、
ベットに設置して寝心地を評価した結果、床つき感は少
ないが沈み込みが大きくやや蒸れを感じる寝心地の悪い
ベットであった。
Example 4 The nonwoven laminated net obtained in Example 1 was cut into a piece having a length of 120 cm, quilted every 5 cm in thickness, 120 cm in width and 50 cm in length and placed in a side place having a width of 120 cm and a length of 200 cm and mattressed. It was created. Place this mattress on the bed,
The panel feeling was evaluated organoleptically by allowing 4 panelers to use the apparatus in a room at 5 ° C. RH 65% for 7 hours. In addition, a sheet is hung on the bed, and the comforter is 1.8 kg of down / feather: 90/1.
0 was filled with batting, and the pillow was worn by the paneler every day. The evaluation result was a bed with a comfortable sleeping feeling without feeling of flooring, moderate sinking, and no stuffiness. For comparison, a density of 0.04 g / cm 3 and a thickness of 10
Create a similar mattress with a cm urethane foam plate,
The bed was placed on a bed and evaluated for comfort. As a result, it was found that the bed had a little feeling of flooring but had a large sink and was slightly stuffy and had an uncomfortable bed.

【0037】実施例5 実施例1で得た不織布積層網状体を幅38cm、長さ40
cmでコ−ナ−をア−ル10cmとした形状に切断し、座り
心地評価用に用いたポリエステルモケットを側地にして
事務椅子フレ−ムに設置し、市販のポリウレタンをクッ
ションに使用した事務椅子と対比させて、座り心地を4
時間座らせ評価した結果、蒸れ感、床つき感、座ったま
ま我慢できる時間は、本発明の不織布積層網状体を用い
たものが著しく優れていた。
Example 5 The nonwoven laminated net obtained in Example 1 was 38 cm wide and 40 cm long.
The product was cut into a 10 cm corner with a 10 cm corner, placed on the office chair frame with the polyester moquette used for the evaluation of sitting comfort on the side, and a commercially available polyurethane cushion was used. Compared with a chair, the sitting comfort is 4
As a result of evaluation by sitting for a time, the feeling of stuffiness, feeling of flooring, and the time of standing while sitting were remarkably excellent in the case of using the nonwoven fabric network of the present invention.

【0038】[0038]

【発明の効果】振動や応力吸収性の良い燐含有熱可塑性
弾性樹脂から成る線条が3次元立体構造を形成し融着一
体化した表面が実質的にフラット化された網状体をクッ
ション層とし、熱接着成分を熱可塑性弾性樹脂とした熱
接着繊維と熱可塑性非弾性樹脂からなる母材繊維で構成
する短繊維不織布を表面層として接合一体化した本発明
の不織布積層構造体は、振動遮断性、耐熱耐久性、嵩高
性、座り心地の良く蒸れにくい、且つ難燃性で燃焼ガス
の毒性指数が低い安全性の高いクッション材であり、そ
のまま側地を被せて又は、他の素材との併用して、上記
の好ましい特性を付与した車両用座席、船舶用座席、車
両用、船舶用、病院やホテル等の業務用ベット、家具用
クッション、寝装用品等の製品を提供できる。更には、
車両用や建築資材としての内装材や断熱材等にも有用な
ものである。
According to the present invention, a cushion made of a net-like body having a three-dimensional three-dimensional structure formed by a filament made of a phosphorus-containing thermoplastic elastic resin having good vibration and stress absorption properties and having a substantially flattened fusion-bonded surface. The nonwoven fabric laminated structure of the present invention, in which a short-fiber nonwoven fabric composed of a thermoadhesive fiber having a thermoplastic adhesive resin as a thermal adhesive component and a base fiber made of a thermoplastic inelastic resin is joined and integrated as a surface layer, the vibration isolation It is a highly safe cushioning material that has good heat resistance, heat resistance, bulkiness, good seating comfort, low flammability, low flame index and low combustion gas toxicity index. In addition, products such as vehicle seats, boat seats, vehicles, boats, commercial beds for hospitals and hotels, furniture cushions, bedding products, and the like having the above-mentioned preferable characteristics can be provided. Furthermore,
It is also useful for interior materials and heat insulating materials for vehicles and building materials.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI D01F 6/92 304 D01F 6/92 304H D04H 3/16 D04H 3/16 (58)調査した分野(Int.Cl.7,DB名) D04H 1/00 - 18/00 B32B 1/00 - 35/00 B68G 1/00 - 15/00 D01F 1/00 - 13/04 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 identification code FI D01F 6/92 304 D01F 6/92 304H D04H 3/16 D04H 3/16 (58) Investigated field (Int.Cl. 7 , DB Name) D04H 1/00-18/00 B32B 1/00-35/00 B68G 1/00-15/00 D01F 1/00-13/04

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ソフトセグメント量(A重量%)と燐含
有量(Bppm)が60A+200≦B≦100000
の関係を満足する熱可塑性弾性樹脂からなる繊度が10
0000デニ−ル以下の連続した線条を曲がりくねらせ
互いに接触させて該接触部の大部分を融着した3次元立
体構造体を形成し、その両面が実質的にフラット化され
た網状体の片面又は両面に熱可塑性弾性樹脂と熱可塑性
非弾性樹脂からなる熱接着性短繊維と熱可塑性非弾性樹
脂からなる短繊維が三次元構造を形成して融着一体化し
た層が積層接合されている見掛け密度が0.01g/cm
3 から0.2g/cm3 の不織布積層網状体。
1. The amount of soft segment (A weight%) and phosphorus content
Amount (Bppm) is 60A + 200 ≦ B ≦ 100000
The fineness of the thermoplastic elastic resin satisfying the relationship of 10 is 10
Wind continuous filaments of 0000 denier or less
A three-dimensional stand which is brought into contact with one another to fuse most of the contact portion
Form a body structure, both sides of which are substantially flattened
Thermoplastic resin on one or both sides of the reticulated body
Thermoadhesive short fibers made of inelastic resin and thermoplastic inelastic tree
Short fibers made of fat form a three-dimensional structure and are fused and integrated.
The apparent density at which the layers are laminated and joined is 0.01 g / cm
ThreeTo 0.2g / cmThreeNonwoven laminated net.
【請求項2】 連続した線条の断面形状が中空断面又は
及び異形断面である請求項1記載の不織布積層網状体。
2. The nonwoven fabric laminate network according to claim 1, wherein the continuous filament has a hollow cross section or a modified cross section.
【請求項3】 連続した線条を構成する熱可塑性弾性樹
脂が示差走査型熱量計で測定した融解曲線に室温以上融
点以下の温度に吸熱ピークを有する請求項1記載の不織
布積層網状体。
3. The nonwoven fabric laminate according to claim 1, wherein the thermoplastic elastic resin constituting the continuous filament has an endothermic peak at a temperature from room temperature to a melting point in a melting curve measured by a differential scanning calorimeter.
【請求項4】 複数のオリフィスを持つ多列ノズルより
ソフトセグメント量(A重量%)と燐含有量(Bpp
m)が60A+200≦B≦100000の関係を満足
する熱可塑性弾性樹脂を各ノズルオリフィスに分配し、
該熱可塑性樹脂の融点より10〜80℃高い溶融温度
で、該ノズルより下方に向けて吐出させ、溶融状態で互
いに接触させて融着させ3次元構造を形成しつつ、引取
り装置で挟み込み冷却槽で冷却せしめた後、片面又は両
面に熱可塑性弾性樹脂と熱可塑性非弾性樹脂からなる熱
接着性短繊維と熱可塑性非弾性樹脂からなる短繊維とを
混合開繊して三次元化したウエッブを積層し、圧縮しつ
つ熱成形する不織布積層網状体の製法。
4. A multi-segment nozzle having a plurality of orifices has a soft segment amount (A weight%) and a phosphorus content (Bpp).
m) distributes a thermoplastic elastic resin satisfying the relationship of 60A + 200 ≦ B ≦ 100000 to each nozzle orifice,
At a melting temperature of 10 to 80 ° C. higher than the melting point of the thermoplastic resin, the resin is discharged downward from the nozzle and brought into contact with each other in a molten state to be fused to form a three-dimensional structure, sandwiched by a take-off device and cooled. After being cooled in a bath, a three-dimensional web is formed by mixing and opening one or both surfaces of a thermoplastic adhesive resin and a thermoplastic adhesive non-elastic resin and a thermo-adhesive short fiber and a thermoplastic non-elastic resin short fiber. A method for producing a laminated nonwoven fabric network by laminating and compressing and thermoforming.
【請求項5】 冷却後から一体成形して製品化に至る工
程で熱可塑性弾性樹脂の融点より少なくとも10℃以下
の温度でアニ−リングすることを特徴とする請求項4に
記載の不織布積層網状体の製法。
5. The nonwoven laminated net structure according to claim 4, wherein annealing is performed at a temperature of at least 10 ° C. lower than a melting point of the thermoplastic elastic resin in a process from cooling to integral molding and commercialization. Body making.
【請求項6】 請求項1に記載の不織布積層網状体を用
いた車両用座席、船舶用座席、車両用、船舶用、病院用
等の業務用及び家庭用ベット、家具用椅子、事務用椅子
および布団のいずれかに記載の製品。
6. A vehicle seat, a marine seat, a commercial or household bed, a furniture chair, an office chair, etc., using the nonwoven laminated net according to claim 1. And futons.
JP8975794A 1994-04-27 1994-04-27 Nonwoven laminated net, manufacturing method and product using the same Expired - Fee Related JP3351489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8975794A JP3351489B2 (en) 1994-04-27 1994-04-27 Nonwoven laminated net, manufacturing method and product using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8975794A JP3351489B2 (en) 1994-04-27 1994-04-27 Nonwoven laminated net, manufacturing method and product using the same

Publications (2)

Publication Number Publication Date
JPH07300761A JPH07300761A (en) 1995-11-14
JP3351489B2 true JP3351489B2 (en) 2002-11-25

Family

ID=13979603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8975794A Expired - Fee Related JP3351489B2 (en) 1994-04-27 1994-04-27 Nonwoven laminated net, manufacturing method and product using the same

Country Status (1)

Country Link
JP (1) JP3351489B2 (en)

Also Published As

Publication number Publication date
JPH07300761A (en) 1995-11-14

Similar Documents

Publication Publication Date Title
JP2921638B2 (en) Cushion net structure and manufacturing method
JP3473710B2 (en) Mixed fineness reticulated body, manufacturing method and products using it
JP3431097B2 (en) Multilayer laminated net, manufacturing method and product using the same
JP3430444B2 (en) Netting structure for cushion, manufacturing method thereof and cushion product
JP3351488B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3351489B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3351490B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3444375B2 (en) Multilayer net, manufacturing method and products using the same
JP3351491B2 (en) Flame-retardant laminated net, manufacturing method and product using the same
JP3431096B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP2001061605A (en) Seat for vehicle
JP3431098B2 (en) Flame-retardant reinforced mesh, manufacturing method and products using the same
JP3444368B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3454375B2 (en) Nonwoven laminated structure, manufacturing method and product using the same
JP3346506B2 (en) Flame-retardant composite network structure, manufacturing method and product using the same
JP3444374B2 (en) Multilayer laminated net, manufacturing method and product using the same
JP3346507B2 (en) Flame-retardant reticulated body, manufacturing method and products using the same
JP3430447B2 (en) Laminated elastic structure, manufacturing method and product using the same
JP3430448B2 (en) Laminated structure, manufacturing method and products using the same
JP3431090B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3431092B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3444372B2 (en) Multilayer laminated net, manufacturing method and product using the same
JP3431091B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3444370B2 (en) Multilayer laminated net, manufacturing method and product using the same
JP3444371B2 (en) Multilayer laminated net, manufacturing method and product using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070920

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20080920

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20080920

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090920

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090920

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20100920

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100920

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20110920

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20120920

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130920

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees