JP3346506B2 - Flame-retardant composite network structure, manufacturing method and product using the same - Google Patents

Flame-retardant composite network structure, manufacturing method and product using the same

Info

Publication number
JP3346506B2
JP3346506B2 JP3120494A JP3120494A JP3346506B2 JP 3346506 B2 JP3346506 B2 JP 3346506B2 JP 3120494 A JP3120494 A JP 3120494A JP 3120494 A JP3120494 A JP 3120494A JP 3346506 B2 JP3346506 B2 JP 3346506B2
Authority
JP
Japan
Prior art keywords
flame
network structure
retardant
melting point
retardant composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3120494A
Other languages
Japanese (ja)
Other versions
JPH07243161A (en
Inventor
靖司 山田
英夫 磯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP3120494A priority Critical patent/JP3346506B2/en
Publication of JPH07243161A publication Critical patent/JPH07243161A/en
Application granted granted Critical
Publication of JP3346506B2 publication Critical patent/JP3346506B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、難燃性で燃焼時に有毒
ガスの発生が少なく、かつ優れたクッション性を有する
難燃性複合網状構造体及び、その製法と難燃性複合網状
構造体を用いた製品に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flame-retardant composite net structure having flame retardancy, generating little toxic gas during combustion, and having excellent cushioning properties, a method for producing the same, and a flame retardant composite net structure. Related to products using

【0002】[0002]

【従来の技術】現在、布団、家具、ベット、鉄道、自動
車等のクッション材で、発泡ウレタン、非弾性捲縮繊維
詰綿、及び非弾性捲縮繊維を接着した樹脂綿や硬綿など
が使用されている。
2. Description of the Related Art At present, urethane foam, non-elastic crimped fiber-filled cotton, and resin cotton and hard cotton to which non-elastic crimped fibers are bonded are used as cushioning materials for futons, furniture, beds, railways, automobiles, and the like. Have been.

【0003】しかしながら、発泡−架橋型ウレタンはク
ッション材としての耐久性は良好だが、透湿透水性に劣
り蓄熱性があるため蒸れやすく、かつ、熱可塑性ではな
いためリサイクルが困難となり焼却される場合、焼却炉
の損傷が大きく、かつ、有毒ガス除去に経費が掛かる。
このため埋め立てされることが多くなったが、地盤の安
定化が困難なため埋め立て場所が限定され経費も高くな
っていく問題がある。また、加工性は優れるが製造中に
使用される薬品の公害問題などもある。また、熱可塑性
ポリエステル詰綿では繊維間が固定されていないため、
使用時形態が崩れたり、繊維が移動して、かつ、捲縮の
へたりで嵩高性の低下や弾性力の低下が問題になる。
[0003] However, foamed-crosslinked urethane has good durability as a cushioning material, but is inferior in moisture permeation and water permeability and has heat storage properties, so that it is easy to humid. In addition, the damage to the incinerator is large, and the cost for removing toxic gas is high.
For this reason, landfills have been increased, but there is a problem in that it is difficult to stabilize the ground, so that landfill locations are limited and costs increase. Further, although the processability is excellent, there is a problem of pollution of chemicals used during the production. In addition, since the fiber between the thermoplastic polyester cotton is not fixed,
When used, the form is collapsed, the fibers are moved, and the crimp is set, so that the bulkiness and the elastic force are reduced.

【0004】ポリエステル繊維を接着剤で接着した樹脂
綿、例えば接着剤にゴム系を用いたものとして特開昭6
0−11352号公報、特開昭61−141388号公
報、特開昭61−141392号公報等がある。また、
架橋ウレタンを用いたものとして特開昭61−1377
32号公報等がある。これらのクッション材は耐久性に
劣り、かつ、熱可塑性でなく、単一組成でもないためリ
サイクルも出来ない等の問題、及び加工性の煩雑さや製
造中に使用される薬品の公害問題などもある。
Japanese Patent Application Laid-Open Publication No. Sho 6 (1994) discloses a resin cotton in which polyester fibers are bonded with an adhesive, for example, a rubber using an adhesive as a rubber.
Nos. 0-11352, JP-A-61-141388 and JP-A-61-141392. Also,
JP-A-61-1377 discloses a method using a crosslinked urethane.
No. 32 publication. These cushioning materials are inferior in durability, are not thermoplastic, cannot be recycled because they are not a single composition, and have problems such as complicated workability and pollution of chemicals used during production. .

【0005】ポリエステル硬綿、例えば特開昭58−3
1150号公報、特開平2−154050号公報、特開
平3−220354号公報等があるが、用いている熱接
着繊維の接着成分が脆い非晶性のポリマーを用いるため
(例えば特開昭58−136828号公報、特開平3−
249213号公報等)接着部分が脆く、使用中に接着
部分が簡単に破壊されて形態や弾力性が低下するなど耐
久性に劣る問題がある。改良法として、交絡処理する方
法が特開平4−245965号公報等で提案されている
が、接着部分の脆さは解決されず弾力性の低下が大きい
問題があり、また、加工時の煩雑さもある。さらには接
着部分が変形しにくくソフトなクッション性を付与しに
くい問題もある。このため、接着部分を柔らかく、かつ
ある程度変形しても回復するポリエステルエラストマー
を用い、芯成分に非弾性ポリエステルを用いた熱接着繊
維が特開平4−240219号公報で、同繊維を用いた
クッション材がWO−91/19032号公報、特開平
5−156561号公報、特開平5−163654号公
報等で提案されている。この繊維構造物に使用される接
着成分がポリエステルエラストマーのソフトセグメント
としてはポリアルキレングリコールの含有量が30〜5
0重量%、ハードセグメントの酸成分にテレフタル酸を
50〜80モル%含有し、他の酸成分組成としてイソフ
タル酸を含有して非晶性が増すことになり、融点も18
0℃以下となり低溶融粘度として熱接着部分の形成を良
くしてアメーバー状の接着部を形成しているが塑性変形
しやすいため、及び芯成分が非弾性ポリエステルのた
め、特に加熱下での塑性変形が著しくなり、耐熱抗圧縮
性が低下する問題がある。なお、この繊維は特公昭60
−14−4号公報に記載された繊維と同じなので従来技
術が改良されていない。
[0005] Polyester hard cotton, for example, JP-A-58-3
JP-A No. 1150, JP-A-2-154050, JP-A-3-220354, etc., are disclosed in Japanese Patent Application Laid-Open No. Sho 58-58, since the adhesive component of the heat-bonding fiber used is a brittle amorphous polymer. 136828, JP-A-3-
There is a problem in that the adhesive portion is brittle, and the adhesive portion is easily broken during use, and the durability and the like are deteriorated, for example, the form and elasticity are reduced. As an improved method, a method of performing confounding treatment is proposed in Japanese Patent Application Laid-Open No. 4-245965 or the like, but there is a problem that the brittleness of the bonded portion is not solved and the elasticity is greatly reduced. is there. Further, there is a problem that the bonded portion is not easily deformed and it is difficult to provide a soft cushioning property. For this reason, a heat-bonding fiber using a polyester elastomer which is soft and recovers even if deformed to some extent and uses an inelastic polyester as a core component is disclosed in Japanese Patent Application Laid-Open No. Hei 4-240219. Have been proposed in WO-91 / 19032, JP-A-5-156561, JP-A-5-163654 and the like. When the adhesive component used in the fiber structure is a soft segment of a polyester elastomer, the content of polyalkylene glycol is 30 to 5%.
0% by weight, 50-80 mol% of terephthalic acid in the acid component of the hard segment, and isophthalic acid as the other acid component composition to increase the amorphousness, and the melting point is 18
It has a low melt viscosity of 0 ° C or less and improves the formation of the heat-bonded part to form an amoeboid-shaped bonded part. However, since plastic deformation is easy and the core component is inelastic polyester, plasticity under heating is particularly high. There is a problem that the deformation becomes remarkable and the heat resistance and the compression resistance are reduced. In addition, this fiber is
The prior art is not improved because it is the same as the fiber described in JP-A-14-4.

【0006】土木工事用に使用する熱可塑性のオレフィ
ン網状構造体が特開昭47−44839号公報に開示さ
れているが、細い繊維から構成したクッション材とは異
なり表面が凸凹でタッチが悪く、素材がオレフィンのた
め耐熱耐久性が著しく劣りクッション材には使用できな
いものである。また、特公平3−17666号公報には
繊度の異なる吐出糸条を互いに融着してモール状物を作
る方法があるがクッション材には適さない網状構造体で
ある。特公平3−55583号公報には、ごく表面のみ
冷却前に回転体等の細化装置で細くする方法が記載され
ている。この方法では表面をフラット化できず、厚みの
ある細い線条層を作ることは出来ない。したがって、座
り心地の良好なクッション材にはならない。特開平1−
207462号公報では、塩化ビニール製のフロアマッ
トの開示があるが、室温での圧縮回復性が悪く、かつ、
燃えにくい素材だが一旦燃え出すと燃焼時の有毒ガス発
生問題があり、耐熱性が悪いのでクッション材としては
好ましくないものである。
A thermoplastic olefin network used for civil engineering is disclosed in Japanese Patent Application Laid-Open No. 47-44839. However, unlike a cushion material composed of fine fibers, the surface is uneven and the touch is poor. Since the material is an olefin, it has extremely poor heat resistance and cannot be used as a cushion material. Further, Japanese Patent Publication No. 3-17666 discloses a method in which discharge yarns having different finenesses are fused to each other to form a molding, but a net-like structure not suitable for a cushion material. Japanese Patent Publication No. 3-55583 discloses a method in which only a very small surface is thinned by a thinning device such as a rotating body before cooling. In this method, the surface cannot be flattened, and a thick and thin linear layer cannot be formed. Therefore, it does not become a cushion material with good sitting comfort. JP 1
JP207462 discloses a floor mat made of vinyl chloride, but has poor compression recovery at room temperature, and
Although it is a material that is difficult to burn, once it burns out, it has a problem of generating toxic gas at the time of burning, and is not preferable as a cushioning material because of its poor heat resistance.

【0007】[0007]

【発明が解決しようとする課題】上記問題点を解決し、
難燃性で燃焼時に有毒ガスの発生が少なく、リサイクル
が可能で、かつ、形態保持性、クッション性にも優れた
蒸れ難いクッション材に適した難燃性複合網状構造体及
び製法と難燃性複合網状構造体を用いた製品を提供する
ことを目的とする。
SUMMARY OF THE INVENTION In order to solve the above problems,
Flame-retardant composite reticulated structure with flame-retardant properties that generate less toxic gas during combustion, is recyclable, and has excellent shape retention and cushioning properties, and is suitable for non-steaming cushioning materials. An object is to provide a product using the composite network structure.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
の手段、即ち本発明は、熱可塑性樹脂からなる繊度が1
00〜100000デニールの複合化線条であり、少な
くとも一種類は熱可塑性弾性樹脂であり、少なくとも一
種類は燐含有エステル形成性化合物を共重合または燐含
有難燃剤を含有してなる難燃性ポリエステルからなる複
合構造化された連続した線条を、曲がりくねらせ互いに
接触させて該接触部の大部分を融着せしめて3次元網状
構造を形成した見掛け密度が0.005g/cm3 以上
0.20g/cm3 以下の難燃性複合網状構造体、熱可塑
性弾性樹脂と難燃性ポリエステルを複合化できるように
各ノズルオリフィス前で分配し該熱可塑性樹脂の高融点
成分の融点より10℃以上高く、且つ低融点成分の融点
より125℃高い温度を越えない温度範囲の溶融温度で
該ノズルをより下方に向けて吐出させ、溶融状態で互い
に接触させて融着させ3次元構造を形成しつつ、引き取
り装置で挟み込み冷却槽で冷却せしめ網状構造を形成す
ることを特徴とする難燃性複合網状構造体の製法および
前記難燃性網状構造体を用いた製品である。
Means for solving the above-mentioned problem, ie, the present invention is directed to a method for producing a thermoplastic resin having a fineness of 1%.
A flame-retardant polyester comprising 100 to 100,000 denier composite filaments, at least one of which is a thermoplastic elastic resin, and at least one of which is a copolymer of a phosphorus-containing ester-forming compound or contains a phosphorus-containing flame retardant; The composite structured continuous filaments are meandered and brought into contact with each other to form a three-dimensional network structure by fusing most of the contact portions, and have an apparent density of 0.005 g / cm 3 or more. Flame-retardant composite network structure of 20 g / cm 3 or less, distributed before each nozzle orifice so that thermoplastic elastic resin and flame-retardant polyester can be composited, at least 10 ° C. higher than the melting point of the high melting point component of the thermoplastic resin The nozzles are ejected downward at a melting temperature in a temperature range not higher than 125 ° C. higher than the melting point of the low melting point component and brought into contact with each other in a molten state to be fused. While forming a dimensional structures, a product using the method and the flame retardant network structure of the flame retardant composite network structure and forming a network structure allowed to cool in a cooling bath sandwiched between withdrawal device.

【0009】本発明における熱可塑性弾性樹脂とは、ソ
フトセグメントとして分子量300〜5000のポリエ
ーテル系グリコール、ポリエステル系グリコール、ポリ
カーボネート系グリコール等をブロック共重合したポリ
エステル系エラストマー、ポリアミド系エラストマー、
ポリウレタン系エラストマー等が挙げられる。熱可塑性
弾性樹脂とすることで、再溶融により再生が可能となる
ため、リサイクルが容易となる。例えば、ポリエステル
系エラストマーとしては、熱可塑性ポリエステルをハー
ドセグメントとし、ポリアルキレンジオールをソフトセ
グメントとするポリエーテルエステルブロック共重合
体、、または、脂肪族ポリエステルをソフトセグメント
とするポリエステルエステルブロック共重合体が例示で
きる。ポリエステルエーテルブロック共重合体のより具
体的な事例としては、テレフタル酸、イソフタル酸、ナ
フタレン2・6ジカルボン酸、ナフタレン2・7ジカル
ボン酸、ジフェニル4・4’ジカルボン酸等の芳香族ジ
カルボン酸、1・4シクロヘキサンジカルボン酸等の脂
環族ジカルボン酸、琥珀酸、アジピン酸、セバチン酸、
ダイマー酸等の脂肪族ジカルボン酸または、これらのエ
ステル形成性誘導体などから選ばれたジカルボン酸の少
なくとも1種と、1・4ブタンジオール、エチレングリ
コール、トリメチレングリコール、テトラメチレングリ
コール、ペンタメチレングリコール、ヘキサメチレング
リコール等の脂肪族ジオール、1・1シクロヘキサンジ
メタノール、1・4シクロヘキサンジメタノール等の脂
環族ジオール、またはこれらのエステル形成性誘導体な
どから選ばれたジオール成分の少なくとも1種、及び平
均分子量が約300〜5000のポリエチレングリコー
ル、ポリプロピレングリコール、ポリテトラメチレング
リコール、エチレンオキシド−プロピレンオキシド共重
合体等のポリアルキレンジオールの内少なくとも1種か
ら構成される3元ブロック共重合体である。ポリエステ
ルエステルブロック共重合体としては、上記ジカルボン
酸とジオール及び平均分子量が約300〜5000のポ
リラクトン等のポリエステルジオールの内少なくとも各
1種から構成される3元ブロック共重合体である。熱接
着性、耐加水分解性、伸縮性、耐熱性等を考慮すると、
ジカルボン酸としてはテレフタル酸、または、及びナフ
タレン2・6ジカルボン酸、ジオール成分としては1・
4ブタンジオール、ポリアルキレンジオールとしてはポ
リテトラメチレングリコールの3元ブロック共重合体、
または、ポリエステルジオールとしてポリラクトンの3
元ブロック共重合体が特に好ましい。特殊な例では、ポ
リシロキサン系のソフトセグメントを導入したものも使
うことが出来る。また、上記エラストマーに非エラスト
マー成分をブレンドされたもの、共重合したもの等も本
発明の熱可塑性弾性樹脂に包含される。ポリアミド系エ
ラストマーとしては、ハードセグメントにナイロン6、
ナイロン66、ナイロン610、ナイロン612、ナイ
ロン11、ナイロン12等及びそれらの共重合ナイロン
を骨格とし、ソフトセグメントには、平均分子量が約3
00〜5000のポリエチレングリコール、ポリプロピ
レングリコール、ポリテトラメチレングリコール、エチ
レンオキシド−プロピレンオキシド共重合体等のポリア
ルキレンジオールの内少なくとも1種から構成されるブ
ロック共重合体を単独または2種類以上混合して用いて
もよい。さらには、非エラストマー成分をブレンドされ
たもの、共重合したもの等も本発明に使用できる。ポリ
ウレタン系エラストマーとしては、通常の溶媒(ジメチ
ルホルムアミド、ジメチルアセトアミド等)の存在また
は不存在下に、(A)数平均分子量1000〜6000
の末端に水酸基を有するポリエーテル及びまたはポリエ
ステルと(B)有機ジイソシアネートを主成分とするポ
リイソシアネートを反応させた両末端がイソシアネート
基であるプレポリマーに、(C)ジアミンを主成分とす
るポリアミンにより鎖延長したポリウレタンエラストマ
ーを代表例として例示できる。(A)のポリエステル、
ポリエーテル類としては、平均分子量が約1000〜6
000、好ましくは1300〜5000のポリブチレン
アジペート共重合ポリエステルやポリエチレングリコー
ル、ポリプロピレングリコール、ポリテトラメチレング
リコール、エチレンオキシド−プロピレンオキシド共重
合体等のポリアルキレンジオールが好ましく、(B)の
ポリイソシアネートとしては、従来公知のポリイソシア
ネートを用いることが出来るが、ジフェニルメタン4・
4’ジイソシアネートを主体としたイソシアネートを用
い、必要に応じ従来公知のトリイソシアネート等を微量
添加使用してもよい。(C)のポリアミンとしては、エ
チレンジアミン、1・2プロピレンジアミン等公知のジ
アミンを主体とし、必要に応じて微量のトリアミン、テ
トラアミンを併用してもよい。これらのポリウレタン系
エラストマーは単独または2種類以上混合して用いても
よい。なお、本発明の熱可塑性弾性樹脂の融点は耐熱耐
久性が保持できる140℃以上が好ましく、160℃以
上のものを用いると耐熱耐久性が向上するのでより好ま
しい。なお、必要に応じ、抗酸化剤や耐光剤等を添加し
て耐久性を向上させることが出来る。
The thermoplastic elastic resin in the present invention includes polyester elastomers, polyamide elastomers obtained by block copolymerization of polyether glycol, polyester glycol, polycarbonate glycol or the like having a molecular weight of 300 to 5000 as a soft segment.
Polyurethane elastomers and the like can be mentioned. By using a thermoplastic elastic resin, regeneration becomes possible by re-melting, so that recycling becomes easy. For example, as the polyester-based elastomer, a thermoplastic polyester as a hard segment, a polyetherester block copolymer having a polyalkylenediol as a soft segment, or a polyester ester block copolymer having an aliphatic polyester as a soft segment is used. Can be illustrated. More specific examples of the polyester ether block copolymer include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, naphthalene 2.6 dicarboxylic acid, naphthalene 2.7 dicarboxylic acid, and diphenyl 4.4 4 'dicarboxylic acid. Alicyclic dicarboxylic acids such as 4-cyclohexanedicarboxylic acid, succinic acid, adipic acid, sebacic acid,
Aliphatic dicarboxylic acids such as dimer acid or at least one dicarboxylic acid selected from ester-forming derivatives thereof and the like, and 1,4-butanediol, ethylene glycol, trimethylene glycol, tetramethylene glycol, pentamethylene glycol, At least one diol component selected from aliphatic diols such as hexamethylene glycol, alicyclic diols such as 1.1 cyclohexane dimethanol, 1.4 cyclohexane dimethanol, and ester-forming derivatives thereof; A ternary polymer composed of at least one of polyalkylene diols having a molecular weight of about 300 to 5000, such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and ethylene oxide-propylene oxide copolymer. It is a lock copolymer. The polyester ester block copolymer is a ternary block copolymer composed of at least one of the above dicarboxylic acids and diols and at least one of polyester diols such as polylactone having an average molecular weight of about 300 to 5,000. Considering thermal adhesion, hydrolysis resistance, elasticity, heat resistance, etc.,
Terephthalic acid or naphthalene 2.6 dicarboxylic acid as a dicarboxylic acid, and 1.
4-butanediol, a polyalkylene diol as a polytetramethylene glycol ternary block copolymer,
Or 3 of polylactone as a polyester diol
Original block copolymers are particularly preferred. In a special case, a material into which a soft segment based on polysiloxane is introduced can also be used. The thermoplastic elastomer resin of the present invention also includes those obtained by blending a non-elastomeric component with the above-mentioned elastomer and copolymerized. Nylon 6 in the hard segment as a polyamide elastomer,
Nylon 66, Nylon 610, Nylon 612, Nylon 11, Nylon 12, etc. and their copolymerized nylon have a skeleton, and the soft segment has an average molecular weight of about 3
A block copolymer composed of at least one of polyalkylene diols such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol, ethylene oxide-propylene oxide copolymer of 00 to 5000 is used alone or in combination of two or more. You may. Further, those obtained by blending or copolymerizing non-elastomeric components can be used in the present invention. As the polyurethane elastomer, (A) a number average molecular weight of 1,000 to 6,000 in the presence or absence of a usual solvent (dimethylformamide, dimethylacetamide, etc.)
Is reacted with a polyether and / or polyester having a hydroxyl group at a terminal thereof and (B) a polyisocyanate having an organic diisocyanate as a main component. A chain-extended polyurethane elastomer can be exemplified as a typical example. (A) polyester,
As polyethers, the average molecular weight is about 1000-6.
000, preferably 1300 to 5000 polybutylene adipate copolymerized polyester or polyalkylene diol such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol, ethylene oxide-propylene oxide copolymer is preferable, and as the polyisocyanate (B), Conventionally known polyisocyanates can be used, but diphenylmethane 4.
It is possible to use an isocyanate mainly composed of 4 ′ diisocyanate and to add a conventionally known triisocyanate or the like in a small amount, if necessary. As the polyamine (C), known diamines such as ethylenediamine and 1.2-propylenediamine are mainly used, and trace amounts of triamine and tetraamine may be used in combination as needed. These polyurethane elastomers may be used alone or in combination of two or more. In addition, the melting point of the thermoplastic elastic resin of the present invention is preferably 140 ° C. or higher, which can maintain the heat resistance, and the use of 160 ° C. or higher is more preferable because the heat resistance is improved. In addition, the durability can be improved by adding an antioxidant, a light stabilizer, or the like, if necessary.

【0010】本発明の構造体を構成する線条の熱可塑性
弾性樹脂からなる部分は、示差走査型熱量計にて測定し
た融解曲線において、融点以下に吸熱ピークを有するの
が好ましい。融点以下に吸熱ピークを有するものは、耐
熱耐へたり性が吸熱ピークを有しないものより著しく向
上する。例えば、本発明の好ましいポリエステル系熱可
塑性樹脂として、ハードセグメントの酸成分に剛直性の
あるテレフタル酸やナフタレン2・6ジカルボン酸など
を90モル%以上含有するもの、より好ましくはテレフ
タル酸やナフタレン2・6ジカルボン酸の含有量は95
モル%以上、特に好ましくは100モル%含有するもの
とグリコール成分をエステル交換後、必要な重合度まで
重合し、ついで、ポリアルキレンジオールとして、好ま
しくは平均分子量が500〜5000、より好ましくは
1000〜3000のポリテトラメチレングリコールを
10〜70重量%、より好ましくは20〜60重量%共
重合させた場合、ハードセグメントの酸成分に剛直性の
あるテレフタル酸やナフタレン2・6ジカルボン酸の含
有量が多いためハードセグメントの結晶性が向上し、塑
性変形しにくく、かつ、耐熱抗へたり性が向上するが、
溶融熱接着後さらに融点よりも少なくとも10℃以上低
い温度でアニーリング処理するとより耐熱抗へたり性が
向上する。さらに圧縮歪みを付与してからアニーリング
処理するとより耐熱抗へたり性が向上する。このような
処理をした網状構造体の線条を示差走査型熱量計(DS
C)で測定した融解曲線は室温以上融点以下の温度で吸
熱ピークをより明確に発現する。なおアニーリングしな
い場合は融解曲線に室温以上融点以下の吸熱ピークを発
現しない。このことから類推するに、アニーリングによ
りハードセグメントが再配列され、疑似結晶化様の架橋
点が形成され、耐熱抗へたり性が向上しているのではな
いかと考えられる。(この処理を疑似結晶化処理と定義
する)この疑似結晶化処理効果は、ポリアミド系弾性樹
脂やポリウレタン系弾性樹脂にも有効である。
[0010] It is preferable that the portion of the filaments constituting the structure of the present invention, which is formed of the thermoplastic elastic resin, has an endothermic peak below the melting point in a melting curve measured by a differential scanning calorimeter. Those having an endothermic peak below the melting point have remarkably improved heat resistance and sag resistance than those having no endothermic peak. For example, preferred polyester-based thermoplastic resins of the present invention include those containing 90 mol% or more of rigid terephthalic acid or naphthalene 2,6-dicarboxylic acid in the acid component of the hard segment, more preferably terephthalic acid or naphthalene 2 The content of 6 dicarboxylic acids is 95
After transesterification of the glycol component with a component containing at least 100 mol%, particularly preferably 100 mol%, the polymerization is carried out to the required degree of polymerization, and then the polyalkylene diol preferably has an average molecular weight of 500 to 5,000, more preferably 1,000 to 5,000. When 3,000 polytetramethylene glycol is copolymerized by 10 to 70% by weight, more preferably 20 to 60% by weight, the content of terephthalic acid or naphthalene 2.6 dicarboxylic acid having rigidity in the acid component of the hard segment is reduced. Because there are many, the crystallinity of the hard segment is improved, plastic deformation is difficult, and heat resistance resistance is improved,
If the annealing treatment is performed at a temperature lower by at least 10 ° C. than the melting point after the fusion heat bonding, the heat resistance and set resistance are further improved. Further, when an annealing treatment is performed after imparting a compressive strain, heat resistance and sag resistance are further improved. The line of the net-like structure treated in this way is identified by a differential scanning calorimeter (DS).
The melting curve measured in C) more clearly shows an endothermic peak at a temperature from room temperature to the melting point. When annealing is not performed, an endothermic peak at room temperature or higher and a melting point or lower is not exhibited in the melting curve. By analogy with this, it is considered that the hard segments are rearranged by annealing, pseudo-crystallization-like cross-linking points are formed, and heat resistance is improved. (This process is defined as a pseudo-crystallization process.) This pseudo-crystallization effect is also effective for polyamide-based elastic resins and polyurethane-based elastic resins.

【0011】本発明における燐含有エステル形成性化合
物を共重合または燐含有難燃剤を含有してなる難燃性ポ
リエステル(以下難燃性ポリエステルと略す)とは、ポ
リエチレンテレフタレート(PETと略す)、ポリブチ
レンテレフタレート(PBTと略す)、ポリシクロへキ
シレンジメチレンテレフタレート(PCHDTと略
す)、ポリエチレンナフタレート(PENと略す)、ポ
リブチレンナフタレート(PBNと略す)及びそれらの
共重合ポリエステル、例えばポリエチレンイソフタレー
ト(PEIと略す)とPET等を主たる繰り返し単位と
するポリエステルに燐を含有する難燃剤を重縮合、混合
成形により導入または、付与して得られたポリエステル
である。しかして、燐含有エステル形成性化合物を共重
合させたものが好ましく、例えば、特開昭51−823
92号公報、特開昭55−7888号公報、特公昭55
−41610号公報等に例示されたものが挙げられる。
しかし、下記の化1で示されるカルボン酸を酸成分の一
部として共重合したポリエステルが特に好ましい。
The flame-retardant polyester (hereinafter abbreviated as flame-retardant polyester) obtained by copolymerizing a phosphorus-containing ester-forming compound or containing a phosphorus-containing flame retardant in the present invention includes polyethylene terephthalate (PET) and poly (ethylene terephthalate). Butylene terephthalate (abbreviated as PBT), polycyclohexylene dimethylene terephthalate (abbreviated as PCHDT), polyethylene naphthalate (abbreviated as PEN), polybutylene naphthalate (abbreviated as PBN), and a copolymerized polyester thereof such as polyethylene isophthalate ( A polyester obtained by introducing or imparting a phosphorus-containing flame retardant to a polyester having a main repeating unit of PEI or the like and PET or the like by polycondensation or mixture molding. Thus, those obtained by copolymerizing a phosphorus-containing ester-forming compound are preferable.
No. 92, JP-A-55-7888, JP-B-55
No. 41610 and the like.
However, a polyester obtained by copolymerizing a carboxylic acid represented by the following formula 1 as a part of the acid component is particularly preferable.

【0012】[0012]

【化1】 Embedded image

【0013】なお、化1において、R1 、R2 は同じか
または、相異なる基で水素原子(必要に応じてハロゲン
原子)または炭素数6以下の炭化水素基、R3 、R4
同じかまたは相異なる基で水素原子、炭素数7以下の炭
化水素基または−(R5 O)r Hで示される基を示す。
5 はエチレン、プロピレン、またはブチレン基を、r
は1〜10の整数、l 、m は0または1〜4の整数、n
は0、1または2である。その他、ポリエステルの製造
時に使用して難燃性を改質するための燐含有難燃剤とし
ては、例えば各種燐酸エステル、亜燐酸エステル、ホス
ホン酸エステル(必要に応じハロゲン元素を有する上記
燐酸エステル類)、もしくはこれら燐化合物から誘導さ
れる重合物、または下記の化2に示される化合物をジオ
ール成分の全部または一部とする重合度6以上のポリア
リールフォスフォネート等が挙げられる。ここで、
6 、R7 は水素または低級アルキル基、p 、q は0〜
4の整数である。
In the chemical formula 1, R 1 and R 2 are the same or different and each is a hydrogen atom (optionally a halogen atom) or a hydrocarbon group having 6 or less carbon atoms, and R 3 and R 4 are the same. Kamata hydrogen atom at different group, having 7 or less of the hydrocarbon group or a carbon - shows the (R 5 O) groups represented by r H.
R 5 represents an ethylene, propylene or butylene group;
Is an integer of 1 to 10, l and m are 0 or an integer of 1 to 4, n
Is 0, 1 or 2. In addition, examples of the phosphorus-containing flame retardant used in the production of polyester to modify the flame retardancy include various phosphoric esters, phosphites, and phosphonates (the above phosphoric esters having a halogen element as necessary). Or a polymer derived from these phosphorus compounds, or a polyarylphosphonate having a degree of polymerization of 6 or more, in which the compound shown in the following Chemical Formula 2 is entirely or partially contained in the diol component. here,
R 6 and R 7 are hydrogen or a lower alkyl group;
4 is an integer.

【0014】[0014]

【化2】 Embedded image

【0015】本発明の難燃性ポリエステル中の燐原子含
有量は、難燃性の効果が顕著になる500ppm以上、
物性低下の少ない10000ppm以下が好ましく、よ
り好ましくは1000〜5000ppmである。なお、
各種改質剤、添加剤、着色剤等を必要に応じ添加でき
る。本発明の難燃性複合網状構造体は燐を含有する難燃
性ポリエステルを構成成分の一部に使用する。この理由
は、安全性の観点から、火災時に発生するシアンガス、
ハロゲンガス等の致死量の少ない有毒なガスを出来るだ
け少なくすることにある。このため本発明の難燃性複合
網状構造体の燃焼ガスの毒性指数は6以下が好ましく、
より好ましくは5以下である。また、側地及びワディン
グ層にポリエステル繊維を使用した場合はそのまま分別
せず再生リサイクルできるし、他の素材と組み合わせて
使用された場合は処分の際、焼却し易いものであること
を考慮したものである。
[0015] The content of phosphorus atoms in the flame-retardant polyester of the present invention is at least 500 ppm, at which the effect of flame retardancy is remarkable.
It is preferably 10,000 ppm or less, and more preferably 1,000 to 5,000 ppm, which causes little deterioration in physical properties. In addition,
Various modifiers, additives, coloring agents and the like can be added as needed. The flame-retardant composite network structure of the present invention uses a flame-retardant polyester containing phosphorus as a component. The reason for this is, from the viewpoint of safety, cyan gas generated during a fire,
It is an object of the present invention to minimize the amount of toxic gas having a small lethal amount such as halogen gas. For this reason, the toxicity index of the combustion gas of the flame-retardant composite network structure of the present invention is preferably 6 or less,
More preferably, it is 5 or less. In addition, when polyester fiber is used for the side layer and wadding layer, it can be recycled and recycled without separation, and when used in combination with other materials, it is easy to incinerate at the time of disposal. It is.

【0016】本発明の網状構造体は、熱可塑性弾性樹脂
と難燃性ポリエステルとが複合構造化された繊度が10
0〜100000デニールの連続した線条を曲がりくね
らせ該線条同士を接触させ、接触部を融着して3次元網
状構造体を形成している。このことで大きい応力で変形
を与えても、難燃性ポリエステルが抗圧縮性を示しつつ
弾性限界を越えない変形を生じ、熱可塑性弾性樹脂は難
燃性ポリエステルが弾性回復限界を越えない応力におい
て部分的に大変形しつつ連続した線条が融着一体化した
3次元網状構造体全体が変形して応力を吸収し、応力が
解除されると難燃性ポリエステルは弾性回復し、熱可塑
性弾性樹脂もゴム弾性を発現して、構造体は元の形態に
回復することが出来る。このことで、圧縮時の応力−歪
み曲線(SS曲線)が応力に対しての変形歪みが直線的
に変化し、座った時の沈み込みが適度で、振動を受けた
ときの上下運動による応力変化を床つき感なく適度に沈
み込み臀部を低い反発力で支える好ましいショックアブ
ソーバーの働きを発現できるクッション材としては好ま
しい特性を付与できる。さらには、良好な耐へたり性も
保持できる。熱可塑性弾性樹脂のみからなる網状構造体
では、柔らかいため座った時及び振動による上下運動で
の沈み込みを大きくし易い欠点を本発明では解決し、体
型保持性が向上できる。公知の非弾性樹脂のみからなる
線条で構成したクッション材では、著しい反発力を示し
床つき感が大きくなり、圧縮変形による塑性変形も生じ
て回復性が不十分となり耐熱耐久性も劣る。なお、線条
が連続していない場合は、接着点が応力の伝達点となる
ため接着点に著しい応力集中が起こり構造破壊を生じ前
記従来技術にも例示した特開昭60−11352号公
報、特開昭61−137732号公報、WO91−19
032号公報の如く耐熱耐久性が劣り好ましくない。融
着していない場合は、形態保持が出来ず、構造体が一体
で変形しないため、応力集中による疲労現象が起こり耐
久性が劣ると同時に、形態が変形してしまうので好まし
くない。本発明のより好ましい融着の程度は、線条が接
触している部分の大半が融着した状態であり、特に好ま
しくは接触部分が全て融着した状態である。なお、本発
明の構造体を形成する線条の繊度は100デニール以下
では抗圧縮強力が低くなり反発力が低下するので好まし
くない。100000デニール以上では網状体の個々の
抗圧縮性は大きいが構成本数が少なくなり力の分散が悪
くなり100Kg/cm2 以上の著しく大きい圧縮力を受
けた場合応力集中によるへたりが発生するので使用部分
が制限される場合がある。好ましくは300〜5000
0デニール、より好ましくは500〜30000デニー
ルである。なお、本発明においては繊度が異なる線条を
見掛け密度との組み合わせで最適な構成とする方法も好
ましい構成として選択できる。本発明の熱可塑性弾性樹
脂と難燃性ポリエステルからなる構造体は複合線条化す
ることで上記性能を発現させることでクッション性能を
保持し、かつ、難燃性を付与できるものとなる。
The reticulated structure of the present invention has a fineness of 10 in which a thermoplastic elastic resin and a flame-retardant polyester are formed into a composite structure.
A continuous filament of 0 to 100,000 denier is meandered, the filaments are brought into contact with each other, and the contact portion is fused to form a three-dimensional network structure. Due to this, even if a deformation is given by a large stress, the flame-retardant polyester undergoes deformation not exceeding the elastic limit while exhibiting compression resistance, and the thermoplastic elastic resin is subjected to a stress at which the flame-retardant polyester does not exceed the elastic recovery limit. The entire three-dimensional network structure in which continuous filaments are fused and integrated while undergoing large deformation partially deforms to absorb the stress, and when the stress is released, the flame-retardant polyester recovers elasticity and thermoplastic elasticity The resin also exhibits rubber elasticity, and the structure can be restored to its original form. As a result, the stress-strain curve (SS curve) at the time of compression changes the deformation strain with respect to the stress linearly, the sinking when sitting is moderate, and the stress due to the vertical movement when receiving vibration. Preferred characteristics can be imparted as a cushioning material capable of exhibiting the function of a preferred shock absorber that sinks the change moderately without feeling flat and supports the buttocks with low repulsion. Further, good sag resistance can be maintained. The present invention solves the disadvantage that the net-like structure made of only the thermoplastic elastic resin is soft and easily sinks when sitting down and in vertical movement due to vibration, and the body shape retention can be improved. A known cushion material made of a filament made of only an inelastic resin exhibits a remarkable repulsive force, increases the feeling of flooring, and causes plastic deformation due to compression deformation, resulting in insufficient recovery and poor heat resistance and durability. In the case where the filaments are not continuous, remarkable stress concentration occurs at the bonding point because the bonding point becomes a stress transmission point, causing structural destruction, and Japanese Unexamined Patent Publication No. 60-11352, which is also exemplified in the prior art, JP-A-61-137732, WO91-19
No. 032, the heat resistance and durability are inferior. If not fused, the shape cannot be maintained, and the structure does not deform integrally, so that fatigue phenomena occur due to stress concentration and the durability is deteriorated, and the shape is undesirably deformed. A more preferable degree of fusion according to the present invention is a state where most of the portions where the filaments are in contact are fused, and particularly preferably a state where all the contact portions are fused. In addition, when the fineness of the filament forming the structure of the present invention is 100 denier or less, the anti-compression strength is reduced and the repulsion is reduced, which is not preferable. If the denier is 100,000 denier or more, the individual compressive properties of the net are large, but the number of constituents is reduced, the dispersion of the force is deteriorated, and when a remarkably large compressive force of 100 kg / cm 2 or more is applied, settling due to stress concentration occurs. Parts may be restricted. Preferably 300-5000
It is 0 denier, more preferably 500 to 30,000 denier. In addition, in the present invention, a method of obtaining an optimal configuration by combining the filaments having different fineness with the apparent density can also be selected as a preferable configuration. The structure comprising the thermoplastic elastic resin and the flame-retardant polyester of the present invention can exhibit cushioning performance by imparting the above-mentioned performance by forming a composite filament, and can impart flame retardancy.

【0017】本発明の網状構造体を構成する線条の好ま
しい複合化形態としては、シース・コア構造またはサイ
ドバイサイド構造及びそれらの組み合わせ構造等が挙げ
られる。しかし、特に熱接着部分が大変形しても回復で
きる3次元構造となるためには線条の表面の50%以上
を熱可塑性弾性樹脂が占めるシース・コア構造またはサ
イドバイサイド構造及びそれらの組み合わせ構造などが
挙げられる。すなわち、シース・コア構造ではシース成
分が熱可塑性弾性樹脂であり、サイドバイサイド構造で
は熱可塑性弾性樹脂の溶融粘度を難燃性ポリエステルの
溶融粘度より低くして線条の表面を占める熱可塑性弾性
樹脂の割合を多くした構造(比喩的には偏芯シース・コ
ア構造のシースに熱可塑性弾性樹脂を配した様な構造)
として線条の表面を占める熱可塑性弾性樹脂の割合を8
0%以上としたものが好ましい。より好ましくは線条の
表面を占める熱可塑性弾性樹脂の割合を100%とした
シース・コア構造である。断面形状は特には限定されな
いが、中空断面や異形断面にすることで、抗圧縮性や嵩
高性を付与できるので低繊度化したい場合には特に好ま
しい。抗圧縮性は用いる素材のモジュラスにより調整し
て、柔らかい素材では中空率や異形度を高くし初期圧縮
応力の勾配を調整できるし、ややモジュラスの高い素材
では中空率や異形度を低くして座り心地が良好な抗圧縮
性を付与する。中空断面や異形断面の他の効果として中
空率や異形度を高くすることで、同一の抗圧縮性を付与
した場合、より軽量化が可能となり、自動車等の座席に
用いると省エネルギー化ができ、布団等の場合は、上げ
下ろしの時の取り扱い性が向上する。
Preferred forms of compounding of the filaments constituting the network structure of the present invention include a sheath core structure or a side-by-side structure, and a combination thereof. However, in order to obtain a three-dimensional structure that can recover even if the heat-bonded portion is greatly deformed, a sheath-core structure or a side-by-side structure occupying 50% or more of the surface of the filament with a thermoplastic elastic resin, and a combination structure thereof. Is mentioned. That is, in the sheath-core structure, the sheath component is a thermoplastic elastic resin, and in the side-by-side structure, the melt viscosity of the thermoplastic elastic resin is lower than the melt viscosity of the flame-retardant polyester, so that the thermoplastic elastic resin occupying the surface of the filaments is Structure with a high ratio (metamorphically, a structure with an eccentric sheath / core structure and a thermoplastic elastic resin placed on the sheath)
Assuming that the ratio of the thermoplastic elastic resin occupying the surface of the filament is 8
Those having 0% or more are preferable. More preferably, it has a sheath-core structure in which the proportion of the thermoplastic elastic resin occupying the surface of the filament is 100%. The cross-sectional shape is not particularly limited, but a hollow cross-section or a modified cross-section can impart compression resistance and bulkiness, and is particularly preferable when it is desired to reduce the fineness. The compression resistance is adjusted by the modulus of the material used, and the gradient of the initial compressive stress can be adjusted by increasing the hollow ratio and irregularity for soft materials, and the hollow ratio and irregularity can be decreased for materials with slightly higher modulus. Provides good anti-compression properties. As another effect of the hollow cross section and the irregular cross section, by increasing the hollow ratio and the degree of irregularity, when the same anti-compression property is imparted, it becomes possible to reduce the weight, and when used for seats of automobiles and the like, it is possible to save energy, In the case of a futon or the like, handleability at the time of raising and lowering is improved.

【0018】本発明の網状構造体の平均見掛け密度はク
ッション材としての機能が発現出来る0.005g/cm
3 〜0.02g/cm3 が好ましい。0.005g/cm3
未満では反発力が失われるのでクッション材には不適当
であり、0.20g/cm3 を越えると反発力が高すぎて
座り心地が悪くなり好ましくない。本発明のより好まし
い見掛け密度は0.01〜0.10g/cm3 であり、特
に好ましくは0.03〜0.06g/cm3 である。しか
して、本発明の網状構造体は、繊度の異なる線条からな
る各層の見掛け密度を変え好ましい特性を付与すること
が出来る。例えば、繊度の細い表面層と繊度の太い基本
層からなる場合、繊度の細い表面層の密度はやや高くし
て構成本数を多くし線条の一本が受ける応力を少なくし
て応力の分散を良くし、かつ、臀部を支えるクッション
性も向上させることで座り心地を向上させ、また、繊度
の太い基本層はそのなかでも繊度の太くして少し硬く
し、振動吸収と体型保持を受け持つ層とフレームが接す
る面はより緻密な構造とするためにやや繊度を補足して
高密度とすることによりフレーム面から受ける振動や反
発応力をクッション層に均一に伝達し、クッション層全
体がエネルギー変換できるようにし、座り心地を良くす
るとともにクッションの耐久性も向上させることもでき
る。また、座席のサイドの厚みと張りを付与させるため
に部分的に繊度をやや細くして高密度化することもでき
る。このように各層はその目的に応じ好ましい密度と繊
度を任意に選択できる。なお、網状構造体の各層の厚み
は、特に限定されないが、クッション体としての機能が
発現されやすい3mm以上とするのが好ましく5mm以上と
するのがより好ましい。
The average apparent density of the reticulated structure of the present invention is 0.005 g / cm which can exhibit the function as a cushion material.
3 ~0.02g / cm 3 is preferable. 0.005 g / cm 3
If it is less than 0.20 g / cm 3 , the resilience is unsuitable because the resilience will be lost, and if it exceeds 0.20 g / cm 3 , the resilience will be too high and the sitting comfort will be poor. The more preferable apparent density of the present invention is 0.01 to 0.10 g / cm 3 , particularly preferably 0.03 to 0.06 g / cm 3 . Thus, the reticulated structure of the present invention can change the apparent density of each layer composed of the filaments having different fineness to give preferable characteristics. For example, in the case of a surface layer with a small fineness and a basic layer with a large fineness, the density of the surface layer with a fineness is slightly increased to increase the number of components, reduce the stress applied to one filament, and reduce the dispersion of stress. By improving the cushioning that supports the buttocks, it improves sitting comfort, and the basic layer with a large fineness is made thicker and slightly harder among them, with a layer that absorbs vibration and maintains body shape In order to make the surface in contact with the frame a more dense structure, the fineness is supplemented slightly to increase the density, so that the vibration and repulsive stress received from the frame surface are transmitted uniformly to the cushion layer, so that the entire cushion layer can convert energy. In addition, the sitting comfort can be improved and the durability of the cushion can be improved. In addition, in order to increase the thickness and tension of the side of the seat, the fineness can be made slightly thinner partially to increase the density. As described above, the density and fineness of each layer can be arbitrarily selected according to the purpose. In addition, the thickness of each layer of the network structure is not particularly limited, but is preferably 3 mm or more, and more preferably 5 mm or more, in which the function as the cushion body is easily exhibited.

【0019】本発明においては構造体面は曲がりくねら
せた線条が途中で30゜以上曲げられ実質的に面がフラ
ット化されて接触部の大部分が融着している表層部を有
することが好ましい。このことで、網状構造体面の該線
条の接触点が大幅に増加して接着点を形成するため、座
った時の臀部の局部的な外力も臀部に異物感を与えずに
構造面で受け止められ面構造が全体で変形して内部の構
造体全体も変形して応力を吸収し、応力が解除されると
弾性樹脂のゴム弾性が発現して、構造体は元の形態に回
復することが出来る。実質的にフラット化されていない
場合、臀部に異物感を与え、表面に局部的な外力が掛か
り、表面の線条及び接着点部分までに選択的に応力集中
が発生する場合があり、このような外力に対しては熱可
塑性弾性樹脂と難燃性ポリエステルが複合化された線条
では応力集中による疲労が発生して耐へたり性が低下す
る場合がある。表面がフラット化された場合、ワディン
グ層を使用しないで、または非常に薄いワディング層を
積層し、側地で表面を覆い自動車用、鉄道用等の座席や
椅子またはベット用、ソファー用、布団用等のクッショ
ンマットにすることが出来る。しかし、表面がフラット
化されていない場合は、網状構造体の表面に比較的厚め
(好ましくは10mm以上)のワディング層を積層して側
地で覆って座席やクッションマットを形成する必要があ
る。必要に応じてワディング層との接着または側地との
接着は表面がフラットな場合は容易であるが、フラット
化されていない場合は凸凹のため接着が不完全になる。
In the present invention, the surface of the structure may have a surface layer in which a meandering line is bent at least 30 ° in the middle, the surface is substantially flattened, and most of the contact portions are fused. preferable. As a result, the contact points of the filaments on the surface of the mesh structure are greatly increased to form an adhesion point, so that the local external force of the buttocks when sitting can be received by the structure without giving a foreign body feeling to the buttocks. The surface structure is deformed as a whole and the entire internal structure is also deformed to absorb the stress, and when the stress is released, the rubber elasticity of the elastic resin is developed and the structure can recover to its original form I can do it. If it is not substantially flattened, it may give a foreign body sensation to the buttocks, apply a local external force to the surface, and selectively cause stress concentration up to the striated and adhesive points on the surface. In the case of an external force, a filament formed by combining a thermoplastic elastic resin and a flame-retardant polyester may cause fatigue due to stress concentration and reduce sag resistance. When the surface is flattened, no wadding layer is used, or a very thin wadding layer is laminated, and the surface is covered with side lands, for seats or chairs or beds for automobiles, railways, etc., for sofas, and for futons. Can be used as a cushion mat. However, when the surface is not flattened, it is necessary to form a seat or a cushion mat by laminating a relatively thick (preferably 10 mm or more) wadding layer on the surface of the net-like structure and covering the wadding layer with side lands. If necessary, adhesion to the wadding layer or adhesion to the side layer is easy when the surface is flat, but when the surface is not flattened, the adhesion is incomplete due to unevenness.

【0020】次に本発明の製法について述べる。本発明
網状構造体は、熱可塑性弾性樹脂と難燃性ポリエステル
を複合化できるように、各ノズルオリフィス前で分配
し、該熱可塑性樹脂の低融点成分の融点より125℃以
下で高く、高融点成分の融点より10℃以上高い溶融温
度で該ノズルより下方に向けて吐出させ、溶融状態の複
合化した吐出線条を曲がりくねらせて互いに接触させて
大部分の接触部を融着させ3次元構造を形成しつつ、引
き取り装置で挟み込み、ついで冷却槽で冷却せしめて網
状構造体を形成する難燃性複合網状構造体の製法であ
る。熱可塑性弾性樹脂と難燃性ポリエステルは一般的な
溶融押出機を用いて別々に溶融し、一般的な複合紡糸の
方法と同様にオリフィス直前で複合化するように分配合
流させ吐出する。シース・コアではコア成分を中心から
供給し、その回りからシース成分を吐出する。サイドバ
イサイドでは左右または前後から各成分を合流させて吐
出する。このときの溶融温度は、低融点成分の融点より
125℃以内の範囲で高い温度で溶融させないと熱分解
が著しくなり熱可塑性樹脂の特性が悪くなるので好まし
くない。また、高融点成分の融点より10℃以上高い溶
融温度にしないとメルトフラクチャーが発生し正常な線
条形成が出来なくなる。また、サイドバイサイドの場合
は線条の接着が不良になる場合がある。好ましい溶融温
度は低融点成分の融点より20℃〜100℃高く、より
好ましくは30℃〜80℃高く、かつ、高融点成分の融
点より10℃〜40℃高く、より好ましくは20℃〜3
0℃高い範囲となる同一溶融温度で合流させ吐出させ
る。合流直前の溶融温度差は10℃以下にしないと異常
流動を発生し複合化形態の形成が損なわれる場合があ
る。オリフィス形状は特に限定されないが、異形断面
(例えば三角形、Y型、星型等の断面2次モーメントが
高くなる形状)や中空断面(例えば三角中空、丸型中
空、突起つきの中空等の形状)とすることで溶融状態の
吐出線条が形成する3次元構造が流動緩和し難くし、逆
に接触点での流動時間を長く保持して接着点を強固にで
きるので特に好ましい。特開平1−2075号公報に記
載の接着のための加熱をする場合、3次元構造が緩和し
易くなり平面的構造化し、3次元立体構造化が困難とな
るので好ましくない。構造体の特性向上効果としては、
見掛けの嵩を高くでき軽量化になり、また抗圧縮性が向
上し、弾発性も改良できへたり難くなる。中空断面では
中空率が80%を越えると断面が潰れ易くなるので、好
ましくは軽量化の発現が出来る10%以上70%以下、
より好ましくは20%以上60%以下である。オリフィ
スの孔間ピッチは線条が形成するループが充分接触出来
るピッチとする必要がある。緻密な構造にするには孔間
ピッチを短くし、粗密な構造にするには孔間ピッチを長
くする。本発明の孔間ピッチは好ましくは3mm〜20m
m、より好ましくは5mm〜10mmである。本発明では所
望に応じ異密度化や異繊度化もできる。列間のピッチま
たは孔間のピッチも変えた構成、及び列間と孔間の両方
のピッチも変える方法等で異密度層を形成できる。ま
た、オリフィスの断面積を変えて吐出時の圧力損失差を
付与すると、溶融した熱可塑性弾性樹脂を同一ノズルか
ら一定の圧力で押し出される吐出量が圧力損失の大きい
オリフィスほど少なくなる原理を用いて異繊度化出来
る。ついで、引き取りネットで溶融状態の3次元立体構
造体両面を挟み込み、両面の溶融状態の曲がりくねった
吐出線条を30゜以上折り曲げて変形させて表面をフラ
ット化すると同時に曲げられていない吐出線条との接触
点を接着して構造を形成後、連続して冷却媒体(通常は
室温の水を用いるのが冷却速度を速くでき、コスト面で
も安くなるので好ましい)で急冷して本発明の3次元立
体網状構造体を得る。ついで、水切り乾燥するが冷却媒
体中に界面活性剤等を添加すると、水切りや乾燥がし難
くなったり、熱可塑性弾性樹脂が膨潤することもあり好
ましくない。本発明の好ましい方法としては、一旦冷却
後、疑似結晶化処理を行う。疑似結晶化処理温度は、少
なくとも融点(Tm)より10℃以上低く、Tanδの
α分散立ち上がり温度(Tαcr)以上で行う。この処
理で融点以下に吸熱ピークを持ち、疑似結晶化しないも
の(吸熱ピークを有しないもの)より耐熱耐へたり性が
著しく向上する。本発明の好ましい疑似結晶化処理温度
は(Tαcr+10℃)から(Tm−20℃)である。
単なる熱処理により疑似結晶化させても耐熱耐へたり性
が向上するが、さらには、一旦冷却後、10%以上の圧
縮変形を付与してアニーリングすることで耐熱耐へたり
性が著しく向上するのでより好ましい。また、一旦冷却
後、乾燥工程を経る場合、乾燥温度をアニーリング温度
とすることで同時に疑似結晶化処理を行うことが出来
る。また、別途疑似結晶化処理を行うこともできる。つ
いで、所望の長さまたは形状に切断してクッション材に
用いる。なお、ノズル面と樹脂を固化させる冷却媒体上
に設置した引き取りコンベアと距離、樹脂の溶融粘度、
オリフィスの孔径と吐出量などにより所望のループ径や
繊径を決められる。冷却媒体上に設置した間隔が調整可
能な一対の引き取りコンベアで溶融状態の吐出線条を挟
み込み停留させることで互いに接触した部分を融着さ
せ、連続して冷却媒体中に引き込み固化させ網状構造体
を形成する時、上記コンベアの間隔を調整することで、
融着した網状体が溶融状態である間に厚み調節が可能と
なり所望の厚みのものが得られる。引き取りコンベアと
ノズル面の距離は好ましくは30cm以内であり、長過ぎ
ると溶融線条が冷却されて接触部が融着しなくなるので
好ましくない。コンベア速度も速すぎると、接触点の形
成が不十分になったり、融着点が充分に形成されるまで
に冷却され、接触部の融着が不十分になる場合がある。
また、速度が遅すぎると溶融物が滞留しすぎ、密度が高
くなるので、所望の見掛け密度に適したコンベア速度を
設定する必要がある。
Next, the production method of the present invention will be described. The network structure of the present invention is distributed before each nozzle orifice so that the thermoplastic elastic resin and the flame-retardant polyester can be compounded, and is higher than the melting point of the low melting point component of the thermoplastic resin by 125 ° C. or less, Discharges downward from the nozzle at a melting temperature higher than the melting point of the component by 10 ° C. or more, and the composite discharge lines in a molten state are meandered and brought into contact with each other to fuse most of the contact portions to three-dimensionally. This is a method for producing a flame-retardant composite network structure in which the structure is formed, sandwiched by a take-off device, and then cooled in a cooling tank to form a network structure. The thermoplastic elastic resin and the flame-retardant polyester are separately melted by using a general melt extruder, and are mixed and discharged so as to be compounded immediately before the orifice in the same manner as in a general compound spinning method. In the sheath core, the core component is supplied from the center, and the sheath component is discharged from around the core component. In side-by-side, the components are combined and discharged from the left, right, front and rear. The melting temperature at this time is not preferable unless it is melted at a high temperature within 125 ° C. from the melting point of the low melting point component, because thermal decomposition becomes remarkable and the properties of the thermoplastic resin deteriorate. If the melting temperature is not higher than the melting point of the high melting point component by 10 ° C. or more, melt fracture occurs and normal filament formation cannot be performed. In the case of side-by-side, the adhesion of the filaments may be poor. A preferred melting temperature is 20 ° C to 100 ° C higher than the melting point of the low melting point component, more preferably 30 ° C to 80 ° C, and 10 ° C to 40 ° C higher than the melting point of the high melting point component, more preferably 20 ° C to 3 ° C.
Merge and discharge at the same melting temperature, which is higher by 0 ° C. Unless the melting temperature difference immediately before merging is set to 10 ° C. or less, abnormal flow may occur and the formation of a composite form may be impaired. The shape of the orifice is not particularly limited, but may be an irregular cross section (for example, a triangular shape, a Y shape, a star shape, etc. in which the second moment of area is high) or a hollow cross section (for example, a triangular hollow shape, a round hollow shape, a hollow shape with a projection, etc.). By doing so, the three-dimensional structure formed by the molten discharge filaments is difficult to alleviate the flow, and conversely, the flow time at the contact point can be kept long and the bonding point can be strengthened, which is particularly preferable. In the case of heating for bonding described in Japanese Patent Application Laid-Open No. 1-2075, it is not preferable because the three-dimensional structure is easily relaxed, and it becomes difficult to form a three-dimensional structure. As the effect of improving the characteristics of the structure,
The apparent bulk can be increased, the weight can be reduced, the compression resistance can be improved, and the elasticity can be improved. When the hollow ratio exceeds 80% in the hollow cross section, the cross section is likely to be crushed.
More preferably, it is 20% or more and 60% or less. The pitch between the holes of the orifices must be such that the loop formed by the filaments can sufficiently contact. The pitch between holes is shortened for a dense structure, and the pitch between holes is increased for a dense structure. The pitch between the holes of the present invention is preferably 3 mm to 20 m.
m, more preferably 5 mm to 10 mm. In the present invention, different densities and different finenesses can be obtained as desired. The different-density layer can be formed by a configuration in which the pitch between rows or the pitch between holes is changed, or a method in which both the pitch between rows and between holes are also changed. Also, if the pressure loss difference at the time of discharge is given by changing the cross-sectional area of the orifice, a principle is used in which the discharge amount at which the molten thermoplastic elastic resin is extruded from the same nozzle at a constant pressure becomes smaller as the pressure loss of the orifice increases. Different fineness can be achieved. Then, the two-dimensional three-dimensional structure in the molten state is sandwiched between both sides of the take-off net, and the melted winding wire in the molten state on both sides is bent and deformed by 30 mm or more to flatten the surface and at the same time, the discharge wire that is not bent is formed. After the structure is formed by bonding the contact points of the above, it is quenched continuously with a cooling medium (usually, water at room temperature is preferably used because the cooling rate can be increased and the cost is reduced), and the three-dimensional structure of the present invention is obtained. A three-dimensional network structure is obtained. Then, drying with water is performed. However, if a surfactant or the like is added to the cooling medium, draining or drying becomes difficult, and the thermoplastic elastic resin may swell, which is not preferable. As a preferred method of the present invention, a pseudo crystallization treatment is performed after cooling once. The pseudo-crystallization treatment temperature is at least 10 ° C. lower than the melting point (Tm) and is equal to or higher than the α dispersion rise temperature (Tαcr) of Tan δ. This treatment has an endothermic peak below the melting point and significantly improves heat resistance and sag resistance as compared to those that do not pseudo crystallize (have no endothermic peak). The preferred pseudo crystallization treatment temperature of the present invention is (Tαcr + 10 ° C.) to (Tm−20 ° C.).
Although heat proofing and sagging resistance can be improved by pseudo-crystallization by simple heat treatment, heat proofing and sagging resistance can be significantly improved by annealing once by applying a compression deformation of 10% or more after cooling. More preferred. In addition, when a drying step is performed after cooling once, the pseudo crystallization treatment can be performed at the same time by setting the drying temperature to the annealing temperature. Further, a pseudo crystallization treatment can be separately performed. Then, it is cut into a desired length or shape and used as a cushion material. The distance between the nozzle surface and the take-off conveyor installed on the cooling medium that solidifies the resin, the melt viscosity of the resin,
The desired loop diameter or fiber diameter can be determined by the hole diameter of the orifice and the discharge amount. By sandwiching and stopping a discharge line in a molten state by a pair of take-up conveyors with adjustable intervals installed on the cooling medium, the parts that are in contact with each other are fused and continuously drawn into the cooling medium and solidified to form a network structure. When forming the, by adjusting the interval of the conveyor,
The thickness can be adjusted while the fused net is in a molten state, and a desired thickness can be obtained. The distance between the take-up conveyor and the nozzle surface is preferably within 30 cm. If the distance is too long, the molten wire is cooled and the contact portion is not fused, which is not preferable. If the conveyor speed is too high, the formation of contact points may be insufficient, or cooling may be performed until the fusion points are sufficiently formed, and the fusion of the contact portions may be insufficient.
On the other hand, if the speed is too slow, the melt will stay too much and the density will increase, so it is necessary to set a conveyor speed suitable for the desired apparent density.

【0021】本発明の難燃性複合網状構造体をクッショ
ン材に用いる場合、その使用目的、使用部位により使用
する樹脂、繊度、ループ径、嵩密度を選択する必要があ
る。例えば、表層のワディングに用いる場合は、ソフト
なタッチと適度の沈み込みと張りのある膨らみを付与す
るために、低密度で細い繊度、細かいループ径にするの
が好ましく、中層のクッション体としては、共振振動数
を低くし、適度の硬さと圧縮時のヒステリシスを直線的
に変化させて体型保持性を良くし、耐久性を保持させる
ために、中密度で太い繊度、やや大きいループ径が好ま
しい。また、3次元構造を損なわない程度に成形型等を
用いて使用目的にあった形状に成形して側地を被せ車両
用座席、船舶用座席、ベット、椅子、家具などに用いる
ことが出来る。勿論、用途との関係で要求性能に合うべ
く他の素材、例えば短繊維集合体からなる硬綿クッショ
ン材、不織布などと組み合わせて用いることも可能であ
る。また、樹脂製造過程以外でも性能を低下させない範
囲で製造過程から成形体に加工し、製品化する任意の段
階で難燃化、防虫抗菌化、耐熱化、溌水溌油化、着色、
芳香等の機能付与を薬剤添加などの処理加工が出来る。
When the flame-retardant composite network structure of the present invention is used for a cushion material, it is necessary to select a resin, a fineness, a loop diameter, and a bulk density to be used depending on the purpose of use and the site of use. For example, when used for wading of the surface layer, in order to provide a soft touch and a moderate sinking and swelling with tension, it is preferable to have a low-density, fine fineness, a fine loop diameter, and as a middle-layer cushion body In order to lower the resonance frequency, linearly change the appropriate hardness and the hysteresis at the time of compression to improve body shape retention and maintain durability, medium density, large fineness, and slightly larger loop diameter are preferable. . Further, it can be formed into a shape suitable for the purpose of use by using a molding die or the like so as not to impair the three-dimensional structure and covered with side lands, and can be used for vehicle seats, marine seats, beds, chairs, furniture and the like. Of course, it can be used in combination with another material, for example, a hard cotton cushion material made of a short fiber aggregate, a nonwoven fabric, or the like so as to meet the required performance in relation to the application. In addition, it is processed into a molded product from the manufacturing process as long as the performance is not degraded even in the process other than the resin manufacturing process, and at any stage of commercialization, flame retardancy, insect repellent antibacterial, heat resistance, water repellent, oil repellent, coloring,
Processing such as addition of chemicals can be applied to impart functions such as aroma.

【0022】[0022]

【実施例】以下に実施例で本発明を詳述する。The present invention will be described in detail with reference to the following examples.

【0023】なお、実施例中の評価は以下の方法で行っ
た。 1.融点(Tm)および融点以下の吸熱ピーク 島津製作所製TA50、DSC50型示差熱分析計を使
用し、昇温速度20℃/分で測定した吸発熱曲線から吸
熱ピーク(融解ピーク)温度を求めた。 2.Tαcr ポリマーを融点+10℃に加熱して、厚み約300μm
のフィルムを作成して、オリエンテック社製バイブロン
DDVII型を用い、110Hz、昇温速度1℃/分で測
定したTanδ(虚数弾性率M”と弾性率の実数部分
M’との比M”/M’)のゴム弾性領域から融解領域へ
の転移点温度に相当するα分散の立ち上がり温度を求め
た。 3.見掛け密度 試料を15cm×15cmの大きさに切断し、4カ所の高さ
を測定し体積を求め、試料の重さを体積で除した値で示
す。(n=4の平均値) 4.線条の繊度 試料の10カ所から各線条部分を切り出し、アクリル樹
脂で包埋して断面を削りだし切片を作成して断面写真を
得る。各部分の断面写真より各部の断面積(Si)を求
める。また、同様にしてえた切片をアセトンでアクリル
樹脂を溶解し、真空脱泡して密度勾配管を用いて40℃
にて測定した比重(SGi)を求める。ついで、次式よ
り線条の9000mの重さを求める。(単位cgs) 繊度=〔(1/10)ΣSi×SGi〕×900000 5.融着 試料を目視判断で接着しているか否か判断し、接着して
いる繊維同士を手で引っ張って外れないか否かで外れな
いものを融着していると判断する。 6.25%圧縮硬さ 試料を20cm×20cmの大きさに切断し、オリエンテッ
ク社製テンシロンにてφ150mm圧縮板にて65%まで
圧縮して得た応力−歪み曲線の25%圧縮時の応力で示
す。(n=3の平均値) 7.耐熱耐久性(70℃残留歪み) 試料を15cm×15cmの大きさに切断し、50%圧縮し
て70℃乾熱中22時間放置後冷却して圧縮歪みを除き
1日放置後の厚み(b)を求め、処理前の厚み(a)か
ら次式、即ち(a−b)/a×100より算出する:単
位%(n=3の平均値) 8.繰り返し圧縮歪み 試料を15cm×15cmの大きさに切断し、島津製作所製
サーボパルサーにて、25℃65%RH室内にて50%
の厚みまで1Hzのサイクルで圧縮回復を繰り返し2万
回後の試料を1日放置した後の厚み(b)を求め、処理
前の厚み(a)から次式、即ち(a−b)/a×100
より算出する:単位%(n=3の平均値) 9.座り心地 30℃RH75%室内で座席用フレームにバケットシー
ト状に成形したクッションにポリエステルモケットの側
地を掛けた座席にパネラーを座らせ(n=5) (1)床つき感:座った時の「どすん」と床に当たった
感じの程度を感覚的に定性評価した。感じない;◎、ほ
とんど感じない;○、やや感じる;△、感じる;× (2)蒸れ感:2時間座っていて、臀部や太股の内側の
座席と接する部分が蒸れた感じを感覚的に定性評価し
た。ほとんど感じない;◎、僅かに蒸れを感じる;○、
やや蒸れを感じる;△、蒸れを著しく感じる;× (3)8時間以内でどの程度我慢して座席に座っていら
れるか:4時間以上;◎、2〜4時間;○、1〜2時
間;△、1時間以内;× (4)4時間座席に座らせたときの腰の疲れ程度を感覚
的に定性評価した。無し;◎、ほとんど疲れない;○、
やや疲れる;△、非常に疲れる;× (5)総合評価:(1)〜(4)までの評価の◎を4
点、○を3点、△を2点、×を1点として点数を求め、
その内12点以上で△を含まないもの;非常に良い
(◎)、12点以上で△を含むもの;良い(○)、10
点以上で×を含まないもの;やや悪い(△)、×を含む
もの;悪い(×)として評価した。 10. 燃焼ガスの毒性指数 JIS−K−7217の方法で測定した各燃焼ガス量
(mg/g)を10分間吸入での致死量(mg/10リット
ル)で除した値の積算値で示す。 11. 難燃性 防炎製品認定委員会の定める防炎製品の性能試験基準に
基づく45゜メセナミン法で評価した。
The evaluation in the examples was performed by the following method. 1. Melting point (Tm) and endothermic peak below melting point The endothermic peak (melting peak) temperature is determined from an endothermic curve measured at a heating rate of 20 ° C./min using a Shimadzu TA50 / DSC50 differential thermal analyzer. Was. 2. Heat the Tαcr polymer to the melting point + 10 ° C to a thickness of about 300 µm.
And a Tan δ (ratio M ″ / tan δ (imaginary elastic modulus M ″ and real modulus M ′ of elastic modulus) measured at 110 Hz at a heating rate of 1 ° C./min using Orientec Vibron DDVII type. The rise temperature of α-dispersion corresponding to the transition point temperature of the rubber elastic region to the melting region of M ′) was determined. 3. Apparent density The sample was cut into a size of 15 cm x 15 cm, the height was measured at four locations to determine the volume, and the value was obtained by dividing the weight of the sample by the volume. (Average value of n = 4) 4. Fineness of filaments Each filamentous portion is cut out from 10 places of the sample, embedded in acrylic resin, and a cross section is cut out to prepare a section to obtain a photograph of the cross section. The cross-sectional area (Si) of each part is determined from a cross-sectional photograph of each part. Further, the section obtained in the same manner was prepared by dissolving the acrylic resin in acetone, degassing in vacuo, and using a density gradient tube at 40 ° C.
The specific gravity (SGi) measured in is obtained. Next, a weight of 9000 m of the filament is obtained from the following equation. (Unit cgs) Fineness = [(1/10) ΣSi × SGi] × 90000000 5. Fusion It is judged whether or not the samples are adhered by visual judgment, and whether the adhered fibers are pulled apart by hand or not. It is judged that the thing which does not come off is fused by the judgment. 6.25% compression hardness A sample is cut into a size of 20 cm × 20 cm, and is compressed to 65% with a φ150 mm compression plate using Orientec Tensilon, and the stress at the time of 25% compression of the stress-strain curve obtained. Indicated by (Average value of n = 3) 7. Heat resistance (residual strain at 70 ° C.) A sample is cut into a size of 15 cm × 15 cm, compressed by 50%, allowed to stand in dry heat at 70 ° C. for 22 hours, and cooled to reduce compressive strain. Except for one day, the thickness (b) after standing for one day is calculated, and the thickness (a) before the treatment is calculated from the following formula, that is, (ab) / a × 100: unit% (average value of n = 3) 8. Repetitive compressive strain A sample was cut into a size of 15 cm x 15 cm, and 50% in a room at 25 ° C and 65% RH using a servo pulser manufactured by Shimadzu Corporation.
The compression recovery is repeated at a cycle of 1 Hz until the thickness of the sample reaches 20,000 times, and the thickness (b) of the sample after standing for 20,000 times is obtained for one day. From the thickness (a) before the treatment, the following formula is used: (ab) / a × 100
Calculated from: Unit% (average value of n = 3) 9. Sit comfort 30 ° C. RH 75% In a room, a paneler sits on a seat formed by buckling a polyester moquette on a cushion molded into a bucket frame on a seating frame. (N = 5) (1) Feeling of being on the floor: The degree of the feeling of hitting the floor with "doing" when sitting was qualitatively evaluated sensuously. Not felt; ◎, almost felt; ○, slightly felt; △, felt; × (2) Feeling of stuffiness: Sensitive qualitatively sensed that the part in contact with the seat inside the buttocks and thighs was humid after sitting for two hours. evaluated. Hardly felt; ◎, slightly stuffy; ○,
Slightly stuffy; △, noticeably stuffy; × (3) How much patience you can sit on the seat within 8 hours: 4 hours or more; ◎, 2-4 hours; ○, 1-2 hours; Δ: Within one hour; × (4) The degree of waist fatigue when seated in a seat for four hours was qualitatively evaluated sensuously. None; ◎, almost no fatigue; ○,
Slightly tired; △, very tired; × (5) Overall rating: 4 in evaluations (1) to (4)
Points, 3 points for ○, 2 points for Δ, 1 point for ×,
Among them, those not containing な い at 12 or more points; very good (、), those containing △ at 12 points or more; good (○), 10
It was evaluated as “not good” and “not good” (poor) and “good” (good). 10. Toxicity index of combustion gas It shows the integrated value of the value obtained by dividing each combustion gas amount (mg / g) measured by the method of JIS-K-7217 by lethal dose (mg / 10 liter) for inhalation for 10 minutes. 11. Flame retardancy The flame retardant products were evaluated by the 45 ゜ mesenamine method based on the performance test standards of flame retardant products specified by the Flameproof Product Certification Committee.

【0024】実施例1〜4 ポリエステル系エラストマーとして、ジメチルテレフタ
レート(DMT)またはジメチルナフタレート(DM
N)と1・4ブタンジオール(1・4BD)を少量の触
媒と仕込み、常法によりエステル交換後、ポリテトラメ
チレングリコール(PTMG)を添加して昇温減圧しつ
つ重縮合せしめポリエーテルエステルブロック共重合エ
ラストマーを生成させ、ついで抗酸化剤1重量%を添加
混合練り込み後ペレット化し、50℃48時間真空乾燥
して得られた熱可塑性弾性樹脂原料の処方を表1に示
す。
Examples 1-4 As dimethyl terephthalate (DMT) or dimethyl naphthalate (DM
N) and 1,4-butanediol (1.4BD) were charged with a small amount of a catalyst, transesterified by a conventional method, and polytetramethylene glycol (PTMG) was added. A copolymer elastomer was formed, and then 1% by weight of an antioxidant was added, mixed, kneaded, pelletized, and vacuum-dried at 50 ° C. for 48 hours.

【0025】[0025]

【表1】 [Table 1]

【0026】ポリウレタン系エラストマーとして、4・
4’ジフェニルメタンジイソシアネート(MDI)とP
TMG及び鎖延長剤として1・4BDを添加して重合し
ペレット化し真空乾燥してポリエーテル系ウレタンを熱
可塑性弾性樹脂原料とした。得られたポリマーの融点は
158℃、PTMG含有量は54%、Tαcrは−10
℃であった。(実験No.A−4)
As the polyurethane-based elastomer, 4.
4 'diphenylmethane diisocyanate (MDI) and P
TMG and 1.4 BD as a chain extender were added, polymerized, pelletized, and vacuum-dried to obtain a polyether-based urethane as a thermoplastic elastic resin raw material. The melting point of the obtained polymer is 158 ° C., the PTMG content is 54%, and Tαcr is −10.
° C. (Experiment No. A-4)

【0027】得られた熱可塑性弾性樹脂と常法により化
−1で示されるカルボン酸を燐原子として2500pp
m共重合した極限粘度0.60、融点258℃の難燃性
ポリエチレンテレフタレート共重合体(以下難燃PET
と略す)とを個々に通常の押出機にて溶融し、溶融温度
を278℃にて、重量比50:50となるようにオリフ
ィス直前で、実施例1、2及び実施例4ではシースを熱
可塑性弾性樹脂、コアを難燃PETとなるように分配合
流させ、ノズルは幅50cm、長さ5cmのノズル有効面に
長さ方向に列間ピッチを5mm、幅方向に孔間ピッチを1
0mmのオリフィス形状が実施例1と実施例3はトリプル
ブリッジの丸型中空形成ノズル、実施例2と実施例4は
Y型のノズルより、全吐出量を1100g/分にて吐出
させ、ノズル面12cm下に冷却水を配し、幅60cmのス
テンレス製エンドレスネットを平行に5cm間隔で一対の
引き取りコンベアを水面上に一部出るように配した上に
引き取り、接触部分を融着させつつ、両面を挟み込みつ
つ毎分1mの速度で25℃の冷却水中へ引き込み固化さ
せ、ついで100℃の熱風乾燥基中で20分疑似結晶化
処理した後、所定の大きさに切断して線条の繊度が90
00〜9200デニール、見掛け密度0.043〜0.
044g/cm3 の難燃性複合網状構造体を得た。得られ
た複合網状構造体の特性は表2に示す。実施例1は線条
の断面形態が三角おむすびの中空シース・コア型で難燃
性は良好であり、耐久性も良く、適度の沈み込みと中空
異形効果により適度の反発力を持ち、座り心地の良いク
ッション材に適した例である。実施例2と実施例4は線
条の断面形状が三角シース・コア型で難燃性は良好であ
り、耐久性も良く、適度の沈み込みと異形効果による反
発力が働き、座り心地の良いクッション材に適した例で
ある。実施例3は線条の断面形態が三角おむすびの中空
サイドバイサイド型で難燃性は良好であり、耐久性も良
く、適度の沈み込みと中空異形効果と非弾性樹脂である
難燃PETの効果やや硬めの反発力を持ち、座り心地の
良いクッション材に適した例である。なお、燃焼ガスの
毒性指数は実施例1は4.8、実施例2は5.1、実施
例3は5.3、実施例4は6.0と安全性の高いもので
ある。
The obtained thermoplastic elastic resin and the carboxylic acid represented by Chemical Formula 1 were converted into phosphorus atoms at 2500 pp by a conventional method.
m copolymerized intrinsic viscosity 0.60, melting point 258 ° C, flame-retardant polyethylene terephthalate copolymer (hereinafter referred to as flame-retardant PET)
Are individually melted by an ordinary extruder, and the sheath is heated at a melting temperature of 278 ° C. immediately before the orifice so as to have a weight ratio of 50:50. In Examples 1, 2 and 4, the sheath is heated. The plastic elastic resin and the core are mixed and flowed so as to be flame-retardant PET. The nozzle has a pitch of 5 mm in the length direction and a pitch of 1 in the width direction on the nozzle effective surface having a width of 50 cm and a length of 5 cm.
In the first and third embodiments, the orifice shape is 0 mm. The total discharge amount is 1100 g / min from the triple bridge round hollow nozzles in the first and third embodiments, and the Y-type nozzles in the second and fourth embodiments. Cooling water is placed 12 cm below, a pair of take-up conveyors are placed on a pair of take-up conveyors at a distance of 5 cm in parallel with stainless steel endless nets with a width of 60 cm, and are taken out. Is inserted into the cooling water at 25 ° C. at a speed of 1 m per minute while solidifying, and then subjected to pseudo-crystallization treatment in a hot air drying base at 100 ° C. for 20 minutes, and then cut into a predetermined size to reduce the fineness of the filament. 90
00-9200 denier, apparent density 0.043-0.
A flame-retardant composite network of 044 g / cm 3 was obtained. Table 2 shows the properties of the obtained composite network structure. Example 1 has a hollow sheath-core type with a triangular diaper having a cross-sectional shape of a filament, has good flame retardancy, has good durability, has a moderate rebound force due to a moderate sinking and a hollow deforming effect, and is comfortable to sit. This is an example suitable for a cushioning material having good quality. In Examples 2 and 4, the cross-sectional shape of the filaments is a triangular sheath core type, has good flame retardancy, has good durability, moderate sinking and repulsive force due to the deforming effect work, and the seating comfort is good. This is an example suitable for a cushion material. Example 3 is a hollow side-by-side type in which the cross section of the filament is a triangular diaper and has good flame retardancy, good durability, moderate sinking, hollow irregularity effect, and the effect of flame-retardant PET which is an inelastic resin. This is an example suitable for a cushioning material having a firm repulsive force and a comfortable seating. The toxicity index of the combustion gas is 4.8 in Example 1, 5.1 in Example 2, 5.3 in Example 3, and 6.0 in Example 4, which are highly safe.

【0028】[0028]

【表2】 [Table 2]

【0029】実施例5〜6 常法により化1で示されるカルボン酸を燐原子として5
00及び5000ppm共重合した極限粘度0.60
で、融点がそれぞれ260℃及び256℃の難燃PET
をコア成分に分配する以外は実施例2と同様の条件で得
られる線条の繊度が9000〜9200デニール、見掛
け密度0.043〜0.044g/cm3 の難燃性複合網
状体の特性を表2に示す。実施例5は線条の断面形態が
三角おむすびの中空シース・コア型であり、コア成分が
燐原子含有量が500ppmと少ない難燃PETである
ため、難燃性は良好であり、耐久性も良く、適度の沈み
込みと中空異形効果により適度の反発力を持ち、座り心
地の良いクッション材に適した例である。実施例6は線
条の断面形態が三角おむすびの中空シース・コア型であ
り、コア成分が燐原子含有量が5000ppmの難燃P
ETであるため、難燃性は良好あり、実用上必要な耐久
性を満たし、適度の沈み込みと中空異形効果により適度
の反発力を持ち、座り心地の良いクッション材に適した
例である。なお、燃焼ガスの毒性指数は実施例5は4.
8、実施例6は4.9と安全性の高いものである。
Examples 5 to 6 The carboxylic acid of formula 1 was converted to a phosphorus atom by a conventional method.
00 and 5000 ppm intrinsic viscosity 0.60
Flame-retardant PET with a melting point of 260 ° C and 256 ° C, respectively
The characteristics of the flame-retardant composite net having a fineness of 9000 to 9200 denier and an apparent density of 0.043 to 0.044 g / cm 3 obtained under the same conditions as in Example 2 except that It is shown in Table 2. Example 5 is a hollow sheath-core type in which the cross section of the filament is triangular diaper, and the core component is a flame-retardant PET having a low phosphorus atom content of 500 ppm, so that the flame retardancy is good and the durability is high. This is an example that is suitable for a cushioning material that has a moderate repulsive force due to a moderate sinking and a hollow deforming effect and is comfortable to sit on. Example 6 is a hollow sheath-core type in which the cross section of the filament is triangular diaper, and the core component is a flame-retardant P having a phosphorus atom content of 5000 ppm.
Since it is ET, it has good flame retardancy, satisfies the durability required for practical use, has appropriate repulsion due to appropriate sinking and hollow deforming effects, and is an example suitable for a cushioning material with good sitting comfort. The toxicity index of the combustion gas was 4 in Example 5.
8. The sixth embodiment has a high safety of 4.9.

【0030】比較例1 固有粘度0.63のポリエチレンテレフタレート(PE
T)をコア成分にし、熱可塑性弾性樹脂としてA−2を
シース成分にし、個々に通常の押出機にて溶融し、溶融
温度を278℃にて、重量比50:50となるようにオ
リフィス直前で分配合流させ、孔配列は実施例2と同一
で孔形状が丸断面のオリフィスより吐出し、疑似結晶化
処理しなかった以外は実施例2と同様の条件で得られた
複合線条の繊度が9000デニール、見掛け密度0.0
43g/cm3 の複合網状構造体の特性を表2に示す。比
較例1は耐久性、適度の沈み込みはあるが、難燃性が不
合格となる。
Comparative Example 1 Polyethylene terephthalate having an intrinsic viscosity of 0.63 (PE
T) as a core component, and A-2 as a thermoplastic elastic resin as a sheath component, which are individually melted by a normal extruder at a melting temperature of 278 ° C. and a weight ratio of 50:50 immediately before the orifice. And the hole arrangement was the same as in Example 2, the hole shape was discharged from the orifice having a round cross section, and the fineness of the composite filament obtained under the same conditions as in Example 2 except that the pseudo-crystallization treatment was not performed. Is 9000 denier, apparent density 0.0
Table 2 shows the properties of the 43 g / cm 3 composite network structure. Comparative Example 1 has durability and moderate sinking, but fails in flame retardancy.

【0031】比較例2 イソフタル酸を50モル%含有した固有粘度0.65の
ポリエチレンテレフタレート−ポリエチレンイソフタレ
ート共重合ポリエステル(PES)をシース成分にし、
常法により化1で示されるカルボン酸を燐原子として2
500ppm共重合した極限粘度0.60、融点258
℃の難燃PETをコア成分にし、個々に通常の押出機に
て溶融し、溶融温度を278℃にて、重量比50:50
となるようにオリフィス直前で分配合流させ、孔配列は
実施例2と同一で孔形状が丸断面のオリフィスより吐出
し、疑似結晶化処理しなかった以外は実施例2と同様の
条件で得られた複合線条の繊度が7500デニール、見
掛け密度が0.045g/cm3 の複合網状構造体の特性
を表2に示す。比較例2は繊度のやや低い非弾性ポリエ
ステルからなる複合網状構造体のため、耐久性が悪く、
硬くて座り心地も悪いクッション材に適さない例であ
る。
Comparative Example 2 Polyethylene terephthalate-polyethylene isophthalate copolymerized polyester (PES) containing 50 mol% of isophthalic acid and having an intrinsic viscosity of 0.65 was used as a sheath component.
The carboxylic acid represented by the chemical formula 1 is converted to a phosphorus atom by a conventional method.
500 ppm copolymerized intrinsic viscosity 0.60, melting point 258
C. as a core component and individually melted by a normal extruder at a melting temperature of 278 ° C. and a weight ratio of 50:50.
And the hole arrangement was the same as in Example 2 except that the hole shape was discharged from the orifice having a round cross-section and the pseudo-crystallization treatment was not performed. Table 2 shows the properties of the composite network having a denier of 7,500 denier and an apparent density of 0.045 g / cm 3 . Comparative Example 2 was poor in durability because of a composite network structure made of inelastic polyester having a slightly lower fineness.
This is an example that is not suitable for a cushion material that is hard and has a poor sitting comfort.

【0032】比較例3 比較例1と同一のノズルを用いて溶融温度278℃にて
吐出し、ノズル面60cm下に引き取りコンベアネットを
配して引き取った後疑似結晶化処理をしなかった以外、
実施例2と同様の方法で得た複合網状構造体の特性の一
部を表2に示す。なお、得られた網状構造体は接着状態
が不良で形態保持が悪いため、見掛け密度、70℃残留
歪み、繰り返し圧縮歪み及び座り心地の評価は実施して
いない。比較例3は形態が固定されていないので体型保
持機能が付与できないクッション材に適さない例であ
る。
Comparative Example 3 The same nozzle as in Comparative Example 1 was used to discharge at a melting temperature of 278 ° C., and a take-up conveyor net was arranged below the nozzle surface 60 cm.
Table 2 shows some of the characteristics of the composite network obtained by the same method as in Example 2. In addition, since the obtained net-like structure had a poor bonding state and poor shape retention, the evaluation of the apparent density, the residual strain at 70 ° C., the repetitive compressive strain, and the sitting comfort was not performed. Comparative Example 3 is an example that is not suitable for a cushion material to which a body shape holding function cannot be imparted because the form is not fixed.

【0033】比較例4 幅50cm、長さ5cmのノズル有効面に長さ方向に列間ピ
ッチを3mm、幅方向に孔間ピッチを4mmとした丸断面の
オリフィスを持つノズルより、溶融温度を278℃にて
全吐出量を50g/分で吐出し、ノズル面4cm下に引き
取りコンベアネットを配して0.1m/分にて引き取っ
た以外、比較例3と同様にして得た線条の繊度が97デ
ニール、見掛け密度が0.025g/cm3 の複合網状構
造体の特性を表2に示す。比較例4は緻密な構造で繊度
が著しく細いため回復性は良好だが、柔らかすぎてクッ
ション材としてはそのまま使えない例である。
COMPARATIVE EXAMPLE 4 A melting point of 278 was obtained from a nozzle having a circular cross-section orifice having a pitch of 3 mm in the length direction and a pitch of 4 mm in the width direction on the effective surface of a nozzle having a width of 50 cm and a length of 5 cm. The fineness of the filaments obtained in the same manner as in Comparative Example 3 except that the total discharge amount was discharged at 50 ° C. at 50 ° C., and a take-up conveyor net was disposed 4 cm below the nozzle surface and taken up at 0.1 m / min. Are 97 denier and the apparent density is 0.025 g / cm 3. Table 2 shows the properties of the composite network structure. Comparative Example 4 is an example in which the recovery is good because of the dense structure and the fineness is extremely small, but it is too soft to be used as a cushion material as it is.

【0034】比較例5 幅50cm、長さ5cmのノズル有効面に長さ方向に列間ピ
ッチを8mm、幅方向に孔間ピッチを20mmとした丸断面
のオリフィスを持つノズルより、溶融温度を278℃に
て全吐出量を5600g/分で吐出し、ノズル面25cm
下に引き取りコンベアネットを配して1.5m/分にて
引き取った以外、比較例3と同様にして得た線条の繊度
が146000デニール、見掛け密度が0.15g/cm
3 の複合網状構造体の特性を表2に示す。比較例5は繊
度が太すぎて硬くなり座り心地の悪いクッション材の例
である。
COMPARATIVE EXAMPLE 5 A melting point of 278 was obtained from a nozzle having a round orifice having a pitch between rows of 8 mm in the length direction and a pitch between holes of 20 mm in the width direction on an effective surface of a nozzle having a width of 50 cm and a length of 5 cm. At 5600 g / min at 25 ° C, nozzle surface 25 cm
The fineness of the filament obtained in the same manner as in Comparative Example 3 was 146,000 denier, and the apparent density was 0.15 g / cm, except that the take-up conveyor net was arranged below and taken up at 1.5 m / min.
Table 2 shows the characteristics of the composite network structure of No. 3 . Comparative Example 5 is an example of a cushion material having too large a fineness and becoming hard and having a poor sitting comfort.

【0035】比較例6〜7 比較例3と同一のノズルを用いて溶融温度278℃にて
全吐出量280g/分及び1100g/分にて吐出し、
ノズル面6cm及び25cmしたに引き取りコンベアネット
を配して引き取り速度2.0m/分及び0.2m/分に
て引き取った以外比較例3と同様にして得た複合網状構
造体の特性を表2に示す。比較例6は線条の繊度が23
00デニール、見掛け密度が0.0045g/cm3 と低
いため難燃性、耐久性は良好であるが、柔らかすぎて極
めて座り心地の悪くなるクッション材に適さない例であ
る。比較例7は線条の繊度が9400デニール、見掛け
密度が0.22g/cm3 と見掛け密度が高いため耐久性
がやや劣り、硬いため座り心地もやや劣るクッション材
に適さない例である。
Comparative Examples 6 and 7 Using the same nozzle as in Comparative Example 3, the liquid was discharged at a melting temperature of 278 ° C. at a total discharge rate of 280 g / min and 1100 g / min.
Table 2 shows the characteristics of the composite network structure obtained in the same manner as in Comparative Example 3 except that a take-up conveyor net was arranged at the nozzle surface of 6 cm and 25 cm, and the take-up speed was 2.0 m / min and 0.2 m / min. Shown in In Comparative Example 6, the fineness of the filament was 23.
This is an example which is not suitable for a cushioning material which is excellent in flame retardancy and durability because it is 00 denier and has an apparent density as low as 0.0045 g / cm 3 , but is too soft and extremely uncomfortable to sit. Comparative Example 7 is an example which is not suitable for a cushioning material having a fineness of 9400 denier and a high apparent density of 0.22 g / cm 3, which has a high apparent density of 0.22 g / cm 3, and has a slightly inferior durability.

【0036】実施例7 ノズル有効面を幅120cm、長さ12cmとし、単孔当た
り1.98g/分・孔の吐出量にて吐出し、引き取りコ
ンベアのステンレス製エンドレスネット幅を140cmと
し平行に12cm間隔で引き取った以外実施例2と同様に
して得られた長さ2mに切断した難燃性複合網状構造体
の特性及び線条の繊度とループの平均直径は実施例2と
同じであった。この網状構造体を幅110cmに切断し
て、難燃ポリエステル繊維からなる幅110cm、長さ2
00cm、厚み12cmに縫製されたキルティング側地に入
れてマットレスを作成した。このマットレスをベットに
設置し、25℃RH65%室内にてパネラー4人に7時
間使用させて寝心地を完納評価した。なお、ベットには
シーツを掛け、掛け布団は1.8kgのダウン/フェザ
ー:90/10を中綿にしたもの、枕はパネラーが毎日
使用しているものを使用させた。評価結果は、床つき感
がなく、沈み込みが適度で、蒸れを感じない快適な寝心
地のベットであった。比較のため、密度0.04g/cm
3 で厚み10cmの発泡ウレタン板状体で同様のマットレ
スを作成し、ベットに設置して寝心地を評価した結果、
床つき感は少ないが沈み込みが大きく、やや蒸れを感じ
る寝心地の悪いベットであった。
Example 7 The effective nozzle area was 120 cm wide and 12 cm long. The nozzle was discharged at a discharge rate of 1.98 g / min. Per hole, and the stainless steel endless net of the take-off conveyor was 140 cm wide and 12 cm in parallel. The properties, the fineness of the filaments and the average diameter of the loops of the flame-retardant composite network structure cut to 2 m in length obtained in the same manner as in Example 2 except that the fibers were taken at intervals were the same as those in Example 2. This net-like structure is cut into a width of 110 cm, and is made of flame-retardant polyester fiber.
The mattress was put in a quilted side cloth sewn to a size of 00 cm and a thickness of 12 cm. The mattress was placed on a bed, and four panelists used it for 7 hours in a room at 25 ° C. and 65% RH, and the sleeping comfort was completely evaluated. The bed was covered with sheets, the comforter was a 1.8 kg down / feather: 90/10, and the pillows were used by panelists every day. The evaluation result was a bed with a comfortable sleeping feeling without feeling of flooring, moderate sinking, and no stuffiness. For comparison, a density of 0.04 g / cm
A similar mattress was made of a foamed urethane plate with a thickness of 10 cm at 3 , and it was installed on a bed to evaluate the sleeping comfort.
The bed had little feeling of flooring, but was deeply submerged, and the bed was a little uncomfortable to feel stuffy.

【0037】比較例8 ノズル有効面を幅120cm、長さ12cmとし、引き取り
コンベアのステンレス製エンドレスネット幅を140cm
とし平行に12cm間隔で引き取った以外比較例2と単孔
当たりの吐出量で同様にして得られた長さ2mに切断し
た難燃性複合網状構造体の特性及び線条の繊度とループ
の平均直径は比較例2と同じであった。この網状構造体
を幅110cmに切断して、難燃ポリエステル繊維からな
る幅110cm、長さ200cm、厚み12cmに縫製された
キルティング側地に入れてマットレスを作成した。この
マットレスをベットに設置し、実施例8と同様に寝心地
の官能評価を行った結果、沈み込みが少なく硬いためか
床つき感が大きく、ベットマットと接する部分が痛くな
ってすぐに目覚め、しかも蒸れを感じ寝苦しい寝心地の
悪いベットであった。
Comparative Example 8 The effective surface of the nozzle was 120 cm in width and 12 cm in length, and the width of the stainless steel endless net of the take-off conveyor was 140 cm.
The characteristics of the flame-retardant composite net structure cut to 2 m in length obtained in the same manner as in Comparative Example 2 except that it was taken out in parallel at an interval of 12 cm with the discharge amount per single hole, and the fineness of the filament and the average of the loop The diameter was the same as Comparative Example 2. This net-like structure was cut into a width of 110 cm and placed in a quilted side sewn to 110 cm in width, 200 cm in length, and 12 cm in thickness made of flame-retardant polyester fiber to prepare a mattress. The mattress was placed on a bed, and the sensory evaluation of sleeping comfort was performed in the same manner as in Example 8. As a result, it was hard to sink and the floor was large because it was hard, and the part in contact with the bed mat became sore that it awoke immediately, and The bed was stuffy and uncomfortable to sleep.

【0038】実施例8 実施例7で得た網状構造体を幅58cm、長さ58cmに切
断してポリエステル繊維からなるモケットの側地を掛
け、座部は4カ所、背部は2カ所のキルトを入れたクッ
ションを作成し、ソファーの座部と背部に設置し、実施
例7と同様に座り心地を評価した結果、背部はもたれた
時に適度に反発を示し、座部は床つき感、蒸れ感をほと
んど感じず、腰の疲れをあまり感じない座り心地の良好
なソファーであった。
Example 8 The net-like structure obtained in Example 7 was cut to a width of 58 cm and a length of 58 cm, and a moquet made of polyester fiber was hung on the side. Four quilts were used for the seat part and two quilts were used for the back part. A cushion was put in and placed on the seat and back of the sofa, and the seating comfort was evaluated in the same manner as in Example 7. As a result, the back showed moderate rebound when leaned, and the seat had a feeling of flooring and stuffiness. It was a comfortable sofa with little feeling of tiredness and not much tired waist.

【0039】比較例9 比較例8で得た網状構造体を実施例8と同様のクッショ
ンを作成し、ソファーの座部と背部に設置し、実施例8
と同様に座り心地を評価した結果、背部はもたれた時に
硬く異物感を感じ、座部は床つき感、蒸れ感が著しく、
臀部が痛くなり長時間座れない座り心地の劣悪なソファ
ーであった。
COMPARATIVE EXAMPLE 9 A cushion similar to that of Example 8 was prepared from the net-like structure obtained in Comparative Example 8, and the cushion was installed on the seat and back of the sofa.
As a result of evaluating the sitting comfort in the same way as above, the back part felt hard and foreign body feeling when leaned, and the seat part was noticeable with floor feeling and stuffiness,
The sofa was inferior in sitting comfort because the buttocks hurt and I could not sit for a long time.

【0040】実施例9 実施例7で得た網状構造体を幅38cm、長さ40cmで角
を丸くアールをつけて切断してポリエステル繊維からな
るモケットの側地を掛け、事務用椅子に設置し、実施例
8と同様に座り心地を評価した結果、床つき感、蒸れ感
はほとんど感じず、腰の疲れをあまり感じない座り心地
の良好な事務用椅子であった。
Example 9 The net-like structure obtained in Example 7 was cut at 38 cm in width and 40 cm in length with rounded corners, cut over a moquette made of polyester fiber, and placed in an office chair. As a result of evaluating the sitting comfort in the same manner as in Example 8, it was found that the office chair was good in sitting comfort with almost no feeling of flooring and stuffiness and little tired waist.

【0041】[0041]

【発明の効果】本発明の難燃性複合網状構造体は熱可塑
性弾性樹脂と難燃性ポリエステルを複合化された線条が
融着一体化して3次元立体網状構造化した座り心地のよ
り改善された、難燃性の良好な、耐久性のある嵩高で適
度の圧縮反発力を持ち、蒸れにくいクッション材に適し
たリサイクルが容易な網状構造体であるので、車両用座
席、船舶用座席、家具用クッション、寝装用品に提供で
きる。難燃性複合網状体単独での使用や他の素材との併
用も可能である。さらには、伸縮不織布用途にも種々の
加工により使用できる。
The flame-retardant composite net structure of the present invention has a three-dimensional three-dimensional net-like structured structure in which a filament formed by combining a thermoplastic elastic resin and a flame-retardant polyester is fused and integrated to further improve sitting comfort. Because it is a recyclable mesh structure suitable for a cushioning material that is resistant to stuffiness and has a suitable bulky and durable bulky and durable flame retardant, it is suitable for vehicle seats, marine seats, Can be provided for furniture cushions and bedding. It is also possible to use the flame-retardant composite net alone or in combination with other materials. Furthermore, it can be used in various applications for elastic nonwoven fabric applications.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) D04H 1/00 - 18/00 B68G 1/00 - 15/00 D01D 1/00 - 13/02 D01F 1/00 - 13/04 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) D04H 1/00-18/00 B68G 1/00-15/00 D01D 1/00-13/02 D01F 1 / 00-13/04

Claims (12)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】熱可塑性樹脂からなる繊度が100〜10
0000デニールの線条であり、少なくとも一種類は熱
可塑性弾性樹脂であり、少なくとも一種類は燐含有エス
テル形成性化合物を共重合または燐含有難燃剤を含有し
てなる難燃性ポリエステルからなる複合構造化され連続
した線条を、曲がりくねらせ互いに接触させて該接触部
の大部分を融着せしめて3次元網状構造を形成した見掛
け密度が0.005g/cm3 以上0.20g/cm3 以下
の難燃性複合網状構造体。
A fineness of a thermoplastic resin is 100 to 10
A composite structure comprising a 0000 denier filament, at least one kind of which is a thermoplastic elastic resin, and at least one kind comprising a flame-retardant polyester obtained by copolymerizing a phosphorus-containing ester-forming compound or containing a phosphorus-containing flame retardant. the reduction is continuous filament, apparent density of contacting to form a three-dimensional network structure allowed fused most of the contact portion with each other so Magarikunera is 0.005 g / cm 3 or more 0.20 g / cm 3 or less Flame-retardant composite network structure.
【請求項2】難燃性ポリエステルの燐原子含有量が50
0ppmから10000ppmである請求項1記載の難
燃性複合網状構造体。
2. The flame-retardant polyester having a phosphorus atom content of 50.
The flame-retardant composite network structure according to claim 1, wherein the content is from 0 ppm to 10000 ppm.
【請求項3】連続し線条の複合構造がシース・コア構造
であり、シース成分が熱可塑性弾性樹脂であり、コア部
が難燃性ポリエステルである請求項1記載の難燃性複合
網状構造体。
3. The flame-retardant composite network structure according to claim 1, wherein the continuous and continuous composite structure is a sheath-core structure, the sheath component is a thermoplastic elastic resin, and the core portion is a flame-retardant polyester. body.
【請求項4】連続した線条の複合構造がサイドバイサイ
ド構造であり、その構成成分が熱可塑性弾性樹脂と難燃
性ポリエステルである請求項1記載の難燃性複合網状構
造体。
4. The flame-retardant composite network structure according to claim 1, wherein the composite structure of the continuous filaments is a side-by-side structure, and its constituent components are a thermoplastic elastic resin and a flame-retardant polyester.
【請求項5】連続した線条が中空断面である請求項1記
載の難燃性複合網状構造体。
5. The flame-retardant composite network structure according to claim 1, wherein the continuous filament has a hollow cross section.
【請求項6】連続し線条が異形断面である請求項1記載
の難燃性複合網状構造体。
6. The flame-retardant composite network structure according to claim 1, wherein the continuous filament has an irregular cross section.
【請求項7】連続した線条の一部を構成する熱可塑性弾
性樹脂を示差走査型熱量計(DSC)で測定した融解曲
線に室温以上融点以下の温度に吸熱ピークを持つ請求項
1記載の難燃性複合網状構造体。
7. The method according to claim 1, wherein the melting curve of the thermoplastic elastic resin constituting a part of the continuous filament has an endothermic peak at a temperature from room temperature to a melting point, which is measured by a differential scanning calorimeter (DSC). Flame retardant composite network.
【請求項8】網状構造体を形成するループがループの途
中において、該網状構造体の厚み方向を基線とした時、
基線から30゜以上曲げられ接触部の大部分が融着して
おり、構造体は実質的に面がフラット化されている請求
項1記載の難燃性複合網状構造体。
8. When a loop forming the network structure is in the middle of the loop and the thickness direction of the network structure is a base line,
The flame-retardant composite network structure according to claim 1, wherein the structure is bent by 30 ° or more from the base line, most of the contact portions are fused, and the surface of the structure is substantially flattened.
【請求項9】熱可塑性弾性樹脂と難燃性ポリエステルを
複合化できるように各ノズルオリフィス前で分配し該熱
可塑性樹脂の高融点成分の融点より10℃以上高く、且
つ低融点成分の融点より125℃高い温度を越えない温
度範囲の溶融温度で該ノズルをより下方に向けて吐出さ
せ、溶融状態で互いに接触させて融着させ3次元構造を
形成しつつ、引き取り装置で挟み込み冷却槽で冷却せし
め網状構造を形成することを特徴とする難燃性複合網状
構造体の製法。
9. Dispersing the thermoplastic elastic resin and the flame-retardant polyester in front of each nozzle orifice so that they can be combined with each other by 10 ° C. or more than the melting point of the high melting point component of the thermoplastic resin and the melting point of the low melting point component. The nozzles are discharged downward at a melting temperature within a temperature range that does not exceed 125 ° C. higher, and are brought into contact with each other in a molten state and fused to form a three-dimensional structure. A method for producing a flame-retardant composite network structure, comprising forming a reticulated network structure.
【請求項10】一旦冷却後、熱可塑性弾性樹脂の融点よ
りも少なくとも10℃以下でアニーリングする請求項9
記載の難燃性複合網状構造体の製法。
10. Once cooled, annealing is performed at least 10 ° C. below the melting point of the thermoplastic elastic resin.
A method for producing the flame-retardant composite network structure according to the above.
【請求項11】一旦冷却後、10%以上の圧縮歪みを付
与して熱可塑性弾性樹脂の融点より少なくとも10℃以
下でアニーリングする請求項9記載の難燃性複合網状構
造体の製法。
11. The method for producing a flame-retardant composite network structure according to claim 9, wherein after cooling, a compression strain of 10% or more is applied to anneal at a temperature of at least 10 ° C. below the melting point of the thermoplastic elastic resin.
【請求項12】請求項1記載の難燃性複合網状構造体を
用いた車両用座席、船舶用座席、各種ベット、家具用椅
子および事務用椅子のいずれかに記載された製品。
12. A product according to claim 1, wherein the flame-retardant composite net structure is used for a vehicle seat, a marine seat, various beds, a furniture chair, and an office chair.
JP3120494A 1994-03-01 1994-03-01 Flame-retardant composite network structure, manufacturing method and product using the same Expired - Fee Related JP3346506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3120494A JP3346506B2 (en) 1994-03-01 1994-03-01 Flame-retardant composite network structure, manufacturing method and product using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3120494A JP3346506B2 (en) 1994-03-01 1994-03-01 Flame-retardant composite network structure, manufacturing method and product using the same

Publications (2)

Publication Number Publication Date
JPH07243161A JPH07243161A (en) 1995-09-19
JP3346506B2 true JP3346506B2 (en) 2002-11-18

Family

ID=12324894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3120494A Expired - Fee Related JP3346506B2 (en) 1994-03-01 1994-03-01 Flame-retardant composite network structure, manufacturing method and product using the same

Country Status (1)

Country Link
JP (1) JP3346506B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100687032B1 (en) * 2006-04-14 2007-02-26 주식회사 효성 3-dimension crimp polyethyleneterephthalate multifilament for carpet

Also Published As

Publication number Publication date
JPH07243161A (en) 1995-09-19

Similar Documents

Publication Publication Date Title
JP2921638B2 (en) Cushion net structure and manufacturing method
JP3314837B2 (en) Different density network structure and method of manufacturing the same
JP3430443B2 (en) Netting structure for cushion, method for producing the same, and cushion product
JP3346506B2 (en) Flame-retardant composite network structure, manufacturing method and product using the same
JP3430444B2 (en) Netting structure for cushion, manufacturing method thereof and cushion product
JP3314838B2 (en) Thermal adhesive network structure and method for producing the same
JP2002000408A (en) Vehicle seat
JPH07324273A (en) Mixed net-shaped material with different fineness, its production and product made of the same
JP3431097B2 (en) Multilayer laminated net, manufacturing method and product using the same
JP3431098B2 (en) Flame-retardant reinforced mesh, manufacturing method and products using the same
JP3430445B2 (en) Composite net, its manufacturing method and products using it
JP3351488B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3430446B2 (en) Composite elastic network, its production method and products using it
JP3346507B2 (en) Flame-retardant reticulated body, manufacturing method and products using the same
JP3351490B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3351489B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3431096B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3698212B2 (en) Flame retardant network structure and manufacturing method
JP3351491B2 (en) Flame-retardant laminated net, manufacturing method and product using the same
JP3430447B2 (en) Laminated elastic structure, manufacturing method and product using the same
JPH08336443A (en) Bed mattress and manufacturing method
JP3431092B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3444372B2 (en) Multilayer laminated net, manufacturing method and product using the same
JPH07238462A (en) Nonwoven fabric laminated structure, its production and product using the same
JPH07238461A (en) Laminated structure, its production and product using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070906

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20080906

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090906

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090906

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20100906

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100906

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20110906

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120906

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20130906

LAPS Cancellation because of no payment of annual fees