JPH07147991A - β−ヒドロキシ酸の製造方法 - Google Patents

β−ヒドロキシ酸の製造方法

Info

Publication number
JPH07147991A
JPH07147991A JP5329708A JP32970893A JPH07147991A JP H07147991 A JPH07147991 A JP H07147991A JP 5329708 A JP5329708 A JP 5329708A JP 32970893 A JP32970893 A JP 32970893A JP H07147991 A JPH07147991 A JP H07147991A
Authority
JP
Japan
Prior art keywords
culture
microorganism
acid
hydroxy acid
specific
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5329708A
Other languages
English (en)
Inventor
Tsunetoshi Miura
常稔 三浦
Akihisa Kanda
彰久 神田
Toshimitsu Nakajima
敏光 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP5329708A priority Critical patent/JPH07147991A/ja
Publication of JPH07147991A publication Critical patent/JPH07147991A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

(57)【要約】 【構成】β−ヒドロキシ酸の生産能を有する微生物を培
養してβ−ヒドロキシ酸を製造するに際し、微生物のエ
ネルギー源の比供給速度を制御することにより該微生物
の比増殖速度を制御しながら培養することを特徴とする
β−ヒドロキシ酸の製造方法。 【効果】本発明の方法により、β−ヒドロキシ酸生産微
生物のβ−ヒドロキシ酸生産能を長期間安定に維持する
ことが可能となり、また光学活性なβ−ヒドロキシ酸の
生産性の向上および生産のための培養槽の小型化が可能
となる。さらに、分離装置との組み合わせにより培養槽
内の菌濃度を高濃度に維持できる上、菌体と生産物とを
容易に分離できるためβ−ヒドロキシ酸の精製などの後
処理プロセスの負荷が著しく低減され工業的に極めて有
利である。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、2種の異なる官能基を
有し、医薬、農薬などの有用な合成中間体となるβ−ヒ
ドロキシ酸の製造方法に関する。
【0002】
【従来の技術】近年、生化学、有機化学などの著しい進
展により、種々の生理活性物質が分離同定、あるいは合
成され、それらの立体構造と生理活性との相関が明らか
にされるに伴い、光学活性もその重要な因子として確認
されるようになった。現在、種々の手法を用いて光学活
性な生理活性物質の合成研究が盛んに行われている。本
発明者らが本特許で対象としている光学活性な脂肪酸系
のβ−ヒドロキシ酸は、2種の官能基を持ち、その特性
の違いを利用して種々の光学活性物質へ容易に誘導し得
ることから、学際的にも産業的にも魅力ある物質群であ
る。
【0003】すでに工業的に実施し得る経済的なβ−ヒ
ドロキシ酸の生産法は、精力的に研究され、微生物の代
謝制御を利用して立体特異性を異にするDおよびL型の
各種β−ヒドロキシ酸の選択的かつ効率的な生産法が開
発されている(特公昭59−21599号公報、特公昭
59−21600号公報、特公昭60−16235号公
報、特公昭61−12676号公報、特公昭59−53
838号公報、特公昭61−12678号公報、特公昭
62−57311号公報、特公昭62−57312号公
報、特公昭61−42559号公報、特公昭61−42
560号公報、特公昭63−19153号公報、特公昭
62−54474号公報、特開昭57−65189号公
報、特公平04−8035号公報、特公平04−803
6号公報)。なかでも、例えば血圧降下剤カプトプリル
の原料となるD−β−ヒドロキシイソ酪酸(以下、HI
BAと略す)などは、すでに工業生産されている。
【0004】光学活性なβ−ヒドロキシ酸(以下、単に
β−ヒドロキシ酸と略す場合がある)、例えばHIBA
の工業生産では安価で大量入手が容易な脂肪酸、アルコ
ールがその原料として利用され、脂肪酸のβ−水酸化法
は脂肪酸の主代謝経路であるβ−酸化酵素系や、類縁の
分岐状アミノ酸代謝経路と共通すると思われる酵素系を
利用して行われている。これらの代謝経路では、その代
謝主要経路にATPが必須であり、したがって代謝系を
活性化し、β−ヒドロキシ酸の生産速度を上昇させるに
は、好気的条件下にグルコース、グリセリンなどの微生
物のエネルギー源を補給しながら培養することが重要で
ある。したがって現在、主要なβ−ヒドロキシ酸、例え
ばHIBAは、前述のごとく変異改良により代謝制御さ
れた微生物を通気攪拌槽でサスペンジョン回分培養して
工業生産されている。
【0005】
【発明が解決しようとする課題】しかしながら、現在、
工業生産で実施されているサスペンジョン回分培養は、
(1)培養終了後、生産物(β−ヒドロキシ酸)と分離
した微生物を再利用することが困難であり、β−ヒドロ
キシ酸の生産能(代謝活性)を有し、かなりの高菌体濃
度にまで高められた活性微生物を結果的には廃棄しなけ
ればならない、(2)培養後期においてβ−ヒドロキシ
酸の生産能(代謝活性)の低下が見られる、(3)大容
量培養槽で培養するため、培養終了時の菌体の分離、洗
浄、生産物の抽出などに大きな負荷を要する、などの問
題点を有し、工業的な生産技術としては改善が望まれて
いる。特に、β−ヒドロキシ酸の工業生産においては、
活性を有する微生物を最大限に有効利用するために、前
記(1)、(2)、(3)の問題を、とりわけ(1)の
問題を克服できるような新たな培養方法の開発が望まれ
ていた。
【0006】
【課題を解決するための手段】本発明者らは上述の課題
を解決するために鋭意検討した結果、β−ヒドロキシ酸
の生産能を有する微生物を培養してβ−ヒドロキシ酸を
生産するに際し、エネルギー源の比供給速度を制御する
ことによって、該微生物の増殖を制御でき、かつ高いβ
−ヒドロキシ酸の生産能を長期間維持できることを見出
し、本発明を完成するに到った。
【0007】即ち、本発明の要旨は、(1)β−ヒドロ
キシ酸の生産能を有する微生物を培養してβ−ヒドロキ
シ酸を製造するに際し、微生物のエネルギー源の比供給
速度を制御することにより該微生物の比増殖速度を制御
しながら培養することを特徴とするβ−ヒドロキシ酸の
製造方法、並びに(2)β−ヒドロキシ酸の生産能を有
する微生物が、(1)に記載の方法に従ってβ−ヒドロ
キシ酸の製造に既に使用されている微生物であって、β
−ヒドロキシ酸の製造のための培養の途中または終了後
に培養槽から培養液を抜き出し、分離装置に通して培養
上清を分離した後、再び培養槽内にリサイクルされたも
のであることを特徴とする(1)に記載の方法、に関す
る。
【0008】本発明におけるβ−ヒドロキシ酸の生産能
を有する微生物(以下、β−ヒドロキシ酸生産微生物と
略す場合がある)としては、酵母が通常使用される。酵
母としてはβ−ヒドロキシ酸の生産能を有するものであ
れば特に限定されるものではなく、いかなる酵母も使用
可能であるが、代表的なものとして、キャンディダ(C
andida)属の酵母が挙げられ、具体的には、キャ
ンディダ・ルゴーサ(Candida rugosa)
IFO0750、同KT8201、同KT8202、同
IFO0591、およびそれらから誘導された変異株な
どを挙げることができる。なお、このうちキャンディダ
・ルゴーサKT8201、同KT8202については、
工業技術院微生物工業技術研究所に表1に示した番号で
寄託されている。
【0009】
【表1】
【0010】本発明においてβ−ヒドロキシ酸生産微生
物の変異株を得るためには、自然変異、あるいは人工変
異が利用され、通常、効率的に行うためには紫外線照射
および、N−メチル−N−ニトロ−N’−ニトロソグア
ニジンなどの変異誘起剤による処理が用いられるが、特
にこの方法に限定されるものではない。
【0011】次に、これらの微生物は、基質として酪
酸、クロトン酸、ブチルアルコール、ブチルアルデヒ
ド、ブチルアミンなどを用いた場合は、β−ヒドロキシ
酸としてD−(−)−β−ヒドロキシ酪酸(以下、HO
BAと略す)を生産し、基質としてイソ酪酸、メタクリ
ル酸、イソブチルアルコール、イソブチルアルデヒド、
イソブチルアミン、イソブチルアミドなどを用いた場合
は、D−(−)−β−ヒドロキシイソ酪酸を生産する。
またこれらのβ−ヒドロキシ酸生産のための基質は単独
あるいは2種以上の混合基質のいずれの場合も使用しう
る。
【0012】これらの微生物を培養してβ−ヒドロキシ
酸を生産させる場合に使用される培地としては、微生物
の培養に通常使用される物が広く使用され得る。例えば
炭素源としてグルコース、シュクロース、マンニトール
等の炭水化物;エタノールを始めとするアルコール類;
パラフィン、オレフィン類の炭化水素;酢酸等の有機酸
類;大豆油等の油脂類の単独又はこれらの混合物、窒素
源として硫酸アンモニウム、リン酸アンモニウム等の無
機窒素源、有機窒素源としてイーストエキス、麦芽エキ
ス、肉エキス、ポリペプトン等、無機塩類として塩化ナ
トリウム、塩化カリウム、硫酸マグネシウム等、またビ
タミン等、通常の培養に用いられる栄養源を適宜混合し
た培地を用いることができる。
【0013】培養の際の栄養培地のpH、温度は、該微
生物が増殖しうる範囲であれば特に限定されないが、好
ましくはpHは4.0〜9.5の範囲で、温度は15〜
40℃の範囲で培養されるのが望ましい。培養液中の溶
存酸素濃度に関しては、溶存酸素濃度が著しく低い条件
下ではβ−ヒドロキシ酸生産微生物の生産能が著しく低
下するため、少なくとも0.5〜2ppm必要であり、
これらの濃度より高い条件であればよい。即ち、0.5
ppm未満の条件下では、β−ヒドロキシ酸生産微生物
の生産能が低下するので好ましくない。
【0014】また、生産物であるD−(−)−β−ヒド
ロキシ酪酸あるいはD−(−)−β−ヒドロキシイソ酪
酸などのβ−ヒドロキシ酸の培養液中の濃度は、あまり
高濃度になると、生産物阻害が発生し、β−ヒドロキシ
酸生産微生物のβ−ヒドロキシ酸生産能の低下が起こ
る。従って、β−ヒドロキシ酸の濃度は生産物阻害が発
生しない条件下で行うことが必要であり、好ましくは生
産物濃度が80g/リットルを越えない条件下で培養を
行うのが望ましい。
【0015】β−ヒドロキシ酸の生産能を維持している
活性微生物の再利用方法としては、培養終了時にバッチ
方式で無菌的分離装置を用いて、微生物とβ−ヒドロキ
シ酸を含む培養液を分離し、微生物を培養槽内にリサイ
クルして再利用する反復回分培養方式、あるいは培養と
同時に、培養槽から培養液を連続的あるいは間欠的に一
部を抜き出したのち分離装置に通し微生物と培養上清を
分離し、微生物を培養槽内に再び戻す操作を行う方法の
いずれも採用しうる。このような培養と同時に微生物の
分離を行う後者の方法では、生産物阻害を発生させない
範囲で、比較的高い生産物濃度を維持しながら、連続的
にβ−ヒドロキシ酸を生産することが可能となる。従っ
て、半回分培養方式に比べ工業的には生産性も高く好都
合である。
【0016】このような、微生物と培養液を分離し、微
生物をリサイクルするための分離装置としては、例えば
(1)セラミック材料など培養液は通すが微生物は通さ
ない程度の孔径を有する精密濾過膜等を用いて培養液と
微生物とを分離する濾過型分離装置 (2)遠心力によって培養液と微生物とを分離する遠心
型分離装置 (3)重力沈降によって培養液と微生物とを分離する沈
降型分離装置 などがあげられるが、無菌的に微生物と培養上清との分
離が可能な装置であれば上記装置に限定されるものでは
ない。
【0017】また、本発明の方法は長期間、β−ヒドロ
キシ酸の生産活性が維持された活性微生物を再利用し
て、β−ヒドロキシ酸の生産性を向上させるものであ
る。このような活性微生物の生産活性を長期間維持する
ための手段として、本発明においては該微生物の比増殖
速度を制御しながら培養することを特徴とするものであ
る。即ち、該微生物の比増殖速度の制御はエネルギー源
の比供給速度を制御することによって実現される。具体
的には、(1)予め、エネルギー源の比供給速度と比増
殖速度の関係式を求め、求められた関係式を利用して制
御する方法、(2)菌濃度測定装置、例えばレーザー濁
度計などを培養槽に装着し、微生物濃度をオンラインで
検出しながらエネルギー源を供給する方法、(3)例え
ば酪酸、イソ酪酸などの基質、あるいはHIBA、HO
BAなどの生産物をチューブ法、あるいは培養槽に装着
した自動サンプリング装置を介して液体クロマトグラフ
ィーなどに取り込み、オンラインで検出し、一方では培
養排ガス中のCO2 濃度をオンラインCO2 分析装置で
検出し、エネルギー源の供給速度との間の炭素収支によ
り培養槽内の菌濃度を推定して制御する方法、などが適
用しうる。これらは対象となる微生物、生産物、基質、
エネルギー源の種類に応じて適宜選択され、単独あるい
は組み合わせて用いることができる。
【0018】本発明者らの検討結果によれば、比生産速
度と比増殖速度の関係も、β−ヒドロキシ酸の工業的な
生産性を向上させる上で、極めて重要である。後述の参
考例に示したように、例えばHIBAの場合はその比生
産速度は増殖非連動型であり、比生産速度は比増殖速度
に依存しないので、比増殖速度は微生物の生産活性を長
期間維持しうる範囲で制御されればよいが、工業的には
余剰菌体量、使用するエネルギー源を極力抑制する上
で、活性を維持しうる範囲内でより低い比増殖速度に制
御するのが好ましい。
【0019】しかしながら、例えばHOBAの場合のよ
うに比生産速度が増殖連動型、すなわち比生産速度が比
増殖速度に比例する場合、比増殖速度はより高く保つ方
が好ましいが、比増殖速度を上昇させた場合、培養槽内
での微生物の酸素要求量が急激に上昇し、結果として前
述したβ−ヒドロキシ酸の生産には不適な程度にまで、
溶存酸素濃度が低下する。したがってHOBAのような
増殖連動型のβ−ヒドロキシ酸の生産においても、使用
される培養槽の酸素供給能に応じて、溶存酸素濃度を一
定のレベルに維持できる範囲で、エネルギー源の比供給
速度を制御することにより、できるだけ大きな比増殖速
度に制御することが肝要となる。本発明において、この
ようなエネルギー源の比供給速度は、グルコース換算で
通常0.02〜0.2g/cell(g)・h、好まし
くは0.05〜0.18g/cell(g)・hの範囲
に設定するのが良い。
【0020】本発明の方法によって、製造されたβ−ヒ
ドロキシ酸の培養上清からの分離、精製は、常法に従
い、有機溶媒、例えばエーテル、クロロホルム、酢酸エ
チル等による抽出等により容易に行うことができる。
【0021】
【実施例】以下、本発明を実施例および参考例によりさ
らに詳しく説明するが、本発明はもとよりこれらに限定
されるものではない。 実施例1 500mlの坂口フラスコに、100mlの培地(グル
コース40g/L、イーストエキス3g/L、(NH4)
2 HPO4 13g/L、KH2 PO4 7g/L、NaC
l 0.1g/L、MgSO4 ・7H2 O 8g/L、
ZnSO4 ・7H2 O 0.6g/L、FeSO4 ・7
2 O 0.9g/L、MnSO4 ・4〜6H2
0.1g/L、CuSO4 ・5H2 O 0.05g/
L)を入れ、オートクレーブ後、キャンディダ・ルゴー
サKT8201を植菌し、30℃、pH7.0、振盪速
度150oscillations/minで2日間培
養して種母を調製した。次いで、10Lのジャーファー
メンターに、5Lの培地(グルコース20g/L、H3
PO4 1.40g/L、KCl 1.83g/L、Mg
SO4 ・7H2 O 1.00g/L、(NH4)2 HPO
4 0.64g/L、NaCl 0.11g/L、ZnS
4 ・7H2 O 0.11g/L、MnSO4 ・4〜6
2 O 0.01g/L、FeSO4 ・7H2 O 0.
09g/L、CuSO4 ・5H2 O 0.005g/
L、ビタミンB1 0.002g/L、ビオチン0.00
1g/L、イソ酪酸20g/L、pH7.0)を入れ、
オートクレーブ後、上記フラスコ培養の終了したキャン
ディダ・ルゴーサKT8201を培地ごと植菌し、30
℃、pH7.0、通気量6L/min、攪拌数400r
pmで培養を行った。
【0022】まず回分培養を行い、グルコースがなくな
った時点で、55%グルコース溶液を菌体単位質量当た
りのグルコース流加速度がグルコース0.09〜0.1
1g/cell(g)・hとなるように、また50%イ
ソ酪酸溶液をイソ酪酸濃度は2〜5g/Lになるように
流加し培養を行い、β−D−ヒドロキシイソ酪酸を生産
した(培養1−1)。このとき、流加培養期間を通じて
溶存酸素濃度は常に0.5ppm以下であった。続い
て、上記培養と同一の条件で再度培養を行った(培養1
−2)。ただし通気には空気と純酸素との混合ガスを用
いることによって、流加培養期間を通じて溶存酸素濃度
が2ppm以上となるようにした。これら2回の培養に
おける、比生産速度を表2に示す。
【0023】
【表2】
【0024】また上記β−D−ヒドロキシイソ酪酸生産
培養と同様の要領で、微生物としてキャンディダ・ルゴ
ーサKT8202を用いて、β−D−ヒドロキシ酪酸の
生産培養を行った。基質としては、イソ酪酸の代わりに
酪酸を用いた。培養は、上記β−D−ヒドロキシイソ酪
酸生産培養と同様に、流加培養期間を通じて溶存酸素濃
度が0.5ppm以下となる条件下(培養1−3)、及
び溶存酸素濃度が2ppm以上となる条件下(培養1−
4)でそれぞれ行った。これらの培養における比生産速
度を表3に示す。
【0025】
【表3】
【0026】表2、表3より、微生物を用いてβ−ヒド
ロキシ酸生産を行う培養では、比生産速度の点から、溶
存酸素濃度が0.5ppm以下とならない条件が適して
いると言える。
【0027】参考例1 β−D−ヒドロキシイソ酪酸生産能を有する微生物の比
エネルギー源供給速度と比増殖速度との関係、および比
増殖速度と比生産速度の関係を調べるために、β−D−
ヒドロキシイソ酪酸生産のための培養を行った。培養
は、実施例1で述べた培養1−2と同様に行い、エネル
ギー源であるグルコース供給速度の設定を変えて数回を
行った。また通気には空気と純酸素との混合気体を用
い、溶存酸素濃度が2ppm以上となる条件下で培養を
行った。
【0028】比グルコース供給速度FGlc.〔グルコース
(g)/cell(g)・h〕と比増殖速度μ〔1/
h〕間の関係を図1に示す。即ち、両者の間に、 μ=−0.0233+0.475FGlc. なる実験式が得られた。また、比生産速度は比増殖速度
によらず0.12〔HIBA(g)/cell(g)・
h〕で一定であり、従って比生産速度は増殖非連動性で
あると結論された。
【0029】参考例2 β−D−ヒドロキシ酪酸生産能を有する微生物の比エネ
ルギー源供給速度と比増殖速度との関係、および比増殖
速度と比生産速度の関係を調べるために、参考例1と同
様に、β−D−ヒドロキシ酪酸生産のための培養を行っ
た。培養は、実施例1で述べた培養1−4と同様に行
い、エネルギー源であるグルコース供給速度の設定を変
えて数回行った。また通気には空気と純酸素との混合気
体を用い、溶存酸素濃度が2ppm以上となる条件下で
培養を行った。
【0030】この結果、比グルコース供給速度F
Glc.〔グルコース(g)/cell(g)・h〕と比増
殖速度μ〔1/h〕間に、 μ=−0.0252+0.450FGlc. なる実験式が得られた。また、比生産速度ρ〔HOBA
(g)/cell(g)・h〕と比増殖速度の間に、 ρ=0.0635+0.695μ なる実験式が得られ、比生産速度の増殖連動性が示され
た。
【0031】実施例2 HIBA生産微生物を用いた反復回分培養を行った。培
養は実施例1で述べた培養1−2と同様に行い、流加培
養を50時間行った時点で培養液を抜き出し、菌体を濾
過分離装置(東京理化器製セラミック濾過器MCF型)
を用いて分離した後無菌的に培養槽に戻し、培地を加え
て再び流加培養を行うという操作を繰り返し、流加培養
を計5回行った。培養は、比増殖速度を0となるように
制御したもの(培養2−1)、および0.01〔1/
h〕となるように制御したもの(培養2−2)をそれぞ
れ行った。なお比増殖速度の制御は、参考例1で示した
実験式をもとに、比グルコース供給速度を制御して行っ
た。また通気には空気と純酸素との混合気体を用い、溶
存酸素濃度が2ppm以上となる条件下で培養を行っ
た。表4に各培養における比増殖速度および比生産速度
を示す。
【0032】
【表4】
【0033】実施例3 実施例2と同様の濾過分離装置を用いたHIBA生産連
続培養を行った。培養は実施例1で述べた培養1−2と
同様に行い、グルコース溶液およびイソ酪酸溶液流加開
始と同時に流加量と同量の培養液を培養槽外に連続的に
抜き出し、菌体を濾過分離装置(実施例2で用いたもの
と同一)によって培養液から分離した後、無菌的に槽内
にリサイクルする操作を行い、β−D−ヒドロキシイソ
酪酸を連続的に生産した。培養は、比増殖速度を0とな
るように制御したもの(培養3−1)、および0.01
〔1/h〕となるように制御したもの(培養3−2)を
それぞれ行った。なお比増殖速度の制御は実施例2と同
様に、参考例1で示した実験式をもとに、比グルコース
供給速度の制御によって行った。また通気には空気と純
酸素との混合気体を用い、溶存酸素濃度が2ppm以上
となる条件下で培養を行った。表5に各培養における比
増殖速度および比生産速度を示す。
【0034】
【表5】
【0035】実施例4 遠心分離を用いたHOBA生産連続培養を行った。培養
は実施例1で述べた培養1−4と同様に行い、グルコー
ス溶液および酪酸溶液流加開始と同時に流加量と同量の
培養液を培養槽外に連続的に抜き出し、菌体を遠心分離
器(アルファ・ラバル製LAPX202)によって培養
液から分離した後、無菌的に槽内にリサイクルする操作
を行い、β−D−ヒドロキシ酪酸を連続的に生産した。
培養は、比増殖速度を0となるように制御したもの(培
養4−1)、および0.01〔1/h〕となるように制
御したもの(培養4−2)をそれぞれ行った。なお比増
殖速度の制御は、参考例2で示した実験式をもとに、比
グルコース供給速度の制御によって行った。また通気に
は空気と純酸素との混合気体を用い、溶存酸素濃度が2
ppm以上となる条件下で培養を行った。表6に各培養
における比増殖速度および比生産速度を示す。
【0036】
【表6】
【0037】実施例2、実施例3、実施例4中で示した
表4、表5、表6より、予め求めた比グルコース供給速
度と比増殖速度間の実験式を利用することにより、比増
殖速度を制御することができ、比増殖速度を0.01
〔1/h〕に制御することにより実施例2〜4のいずれ
の場合も、β−ヒドロキシ酸生産酵母の活性を長期間維
持することができた。
【0038】実施例5 実施例4で述べた遠心分離を用いた連続培養系に、オン
ライン菌濃度計(ASR製レーザー濁度計GT01)、
チュービング・センサー(特開昭57−29925号公
報)、CO2 計(東京理化製CO2 −O2 分析計MGA
100型)などのオンラインセンサーを組み込んだ連続
培養制御システムを用いて、HIBA生産の自動制御連
続培養を行った。連続培養制御システムの概要図を図2
に示す。培養は実施例4と同様に行い、オンライン・セ
ンサーを用いて菌体濃度を測定し、基本的には参考例1
で示した実験式を用いて前述した炭素収支により補正を
加えながら、比グルコース供給速度により比増殖速度を
自動制御した。培養は、比増殖速度を0となるように制
御したもの(培養5−1)、および0.01〔1/h〕
となるように制御したもの(培養5−2)をそれぞれ行
った。また通気には空気と純酸素との混合気体を用い、
溶存酸素濃度が2ppm以上となる条件下で培養を行っ
た。表7に各培養における比増殖速度および比生産速度
を示す。
【0039】
【表7】
【0040】表7より、自動制御システムを用いること
により、比増殖速度をより良く制御することができた。
【0041】
【発明の効果】本発明の方法により、β−ヒドロキシ酸
生産微生物のβ−ヒドロキシ酸生産能を長期間安定に維
持することが可能となり、また光学活性なβ−ヒドロキ
シ酸の生産性の向上および生産のための培養槽の小型化
が可能となる。さらに、分離装置との組み合わせにより
培養槽内の菌濃度を高濃度に維持できる上、菌体と生産
物とを容易に分離できるためβ−ヒドロキシ酸の精製な
どの後処理プロセスの負荷が著しく低減され工業的に極
めて有利である。
【図面の簡単な説明】
【図1】図1は参考例1における比グルコース供給速度
と比増殖速度の関係を示す図である。
【図2】図2は実施例5で用いる連続培養制御システム
の概略図である。
【符号の説明】
1 グルコース 2 イソ酪酸または酪酸 3 流量計 4 ポンプ 5 酸 6 アルカリ 7 チュービングセンサ 8 コンピュータ 9 遠心分離器 10 培養槽

Claims (6)

    【特許請求の範囲】
  1. 【請求項1】 β−ヒドロキシ酸の生産能を有する微生
    物を培養してβ−ヒドロキシ酸を製造するに際し、微生
    物のエネルギー源の比供給速度を制御することにより該
    微生物の比増殖速度を制御しながら培養することを特徴
    とするβ−ヒドロキシ酸の製造方法。
  2. 【請求項2】 培養液の溶存酸素濃度が少なくとも0.
    5ppm以上である請求項1記載の方法。
  3. 【請求項3】 エネルギー源の比供給速度がグルコース
    換算で0.02〜0.2g/cell(g)・hの範囲
    にある請求項1または請求項2に記載の方法。
  4. 【請求項4】 β−ヒドロキシ酸の生産能を有する微生
    物が、請求項1に記載の方法に従ってβ−ヒドロキシ酸
    の製造に既に使用されている微生物であって、β−ヒド
    ロキシ酸の製造のための培養の途中または終了後に培養
    槽から培養液を抜き出し、分離装置に通して培養上清を
    分離した後、再び培養槽内にリサイクルされたものであ
    ることを特徴とする請求項1から請求項3のいずれか1
    項に記載の方法。
  5. 【請求項5】 微生物がイソ酪酸あるいはイソブチルア
    ルコールをβ−ヒドロキシイソ酪酸に変換する能力を有
    する微生物である請求項1記載の方法。
  6. 【請求項6】 微生物が酪酸あるいはブチルアルコール
    をβ−ヒドロキシ酪酸に変換する能力を有する微生物で
    ある請求項1記載の方法。
JP5329708A 1993-11-30 1993-11-30 β−ヒドロキシ酸の製造方法 Pending JPH07147991A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5329708A JPH07147991A (ja) 1993-11-30 1993-11-30 β−ヒドロキシ酸の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5329708A JPH07147991A (ja) 1993-11-30 1993-11-30 β−ヒドロキシ酸の製造方法

Publications (1)

Publication Number Publication Date
JPH07147991A true JPH07147991A (ja) 1995-06-13

Family

ID=18224388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5329708A Pending JPH07147991A (ja) 1993-11-30 1993-11-30 β−ヒドロキシ酸の製造方法

Country Status (1)

Country Link
JP (1) JPH07147991A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006515991A (ja) * 2003-01-14 2006-06-15 コグニス コーポレーション 生体酸化を制御する方法
WO2018235441A1 (ja) * 2017-06-21 2018-12-27 株式会社日立製作所 連続培養条件のスクリーニング方法および連続培養条件のスクリーニング装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006515991A (ja) * 2003-01-14 2006-06-15 コグニス コーポレーション 生体酸化を制御する方法
WO2018235441A1 (ja) * 2017-06-21 2018-12-27 株式会社日立製作所 連続培養条件のスクリーニング方法および連続培養条件のスクリーニング装置
JP2019004723A (ja) * 2017-06-21 2019-01-17 株式会社日立製作所 連続培養条件のスクリーニング方法および連続培養条件のスクリーニング装置

Similar Documents

Publication Publication Date Title
Obradors et al. Effects of different fatty acids in lipase production by Candida rugosa
EP1194583B1 (en) Culture of microorganisms for the synthesis of a polyunsatured fatty acid
CN1986822A (zh) 用寇氏隐甲藻发酵生产二十二碳六烯酸油脂的方法
CN111748480B (zh) 一种维斯假丝酵母及其应用
KR910002857B1 (ko) 폴리-d-(-)-3-하이드록시부티르산의 제조방법
FR2461753A1 (fr) Procede de preparation d'une cephalosporine par fermentation et micro-organisme destine a la mise en oeuvre de ce procede
JPH0564597A (ja) 発酵法によるリボフラビンの製造法
JPH07147991A (ja) β−ヒドロキシ酸の製造方法
KR100240696B1 (ko) 아릴알카노산의 분리
NO161811B (no) Fremgangsmaate til fremstilling av etanol ved hjelp av fermentering i to trinn.
KR900005771B1 (ko) L-글루탐산의 제조방법
EP0844308A2 (en) Method for producing L-glutamic acid by continuous fermentation
Gledhill et al. Citrate production from hydrocarbons by use of a nonsterile, semicontinuous cell recycle system
US4830964A (en) Ethanol production by high performance bacterial fermentation
JPH0339678B2 (ja)
JP2884119B2 (ja) ベンゼンジカルボン酸モノエステルまたはその誘導体の製造方法
JPH0965871A (ja) 海洋性微細藻類の培養方法
SU553283A1 (ru) Способ получени алкогольдегидрогеназы
RU2209250C2 (ru) Способ микробиологической переработки отходов ректификационной очистки спирта с получением белковой биомассы
JPS6349097A (ja) イプシロン−ポリ−l−リシンの製造法
JP4179760B2 (ja) 不飽和脂肪酸又はその誘導体の製造法
JPS6349075A (ja) イプシロン―ポリ―l―リシンを生産する菌株
JPH0146112B2 (ja)
JPH09131199A (ja) リポマイセス属微生物の産生する菌体外多糖の製造方法
JPH01222798A (ja) 光学活性カルボン酸及びその対掌体エステルの製造法