JPH069219A - チタン酸バリウム・ストロンチウム固溶体の製造法 - Google Patents

チタン酸バリウム・ストロンチウム固溶体の製造法

Info

Publication number
JPH069219A
JPH069219A JP5059774A JP5977493A JPH069219A JP H069219 A JPH069219 A JP H069219A JP 5059774 A JP5059774 A JP 5059774A JP 5977493 A JP5977493 A JP 5977493A JP H069219 A JPH069219 A JP H069219A
Authority
JP
Japan
Prior art keywords
barium
particle size
solid solution
powder
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5059774A
Other languages
English (en)
Inventor
Hiroyasu Akashi
景泰 明石
Shingo Kimura
真吾 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP59268458A priority Critical patent/JPS61146712A/ja
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP5059774A priority patent/JPH069219A/ja
Publication of JPH069219A publication Critical patent/JPH069219A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

(57)【要約】 【構成】 含水酸化チタンと、ストロンチウムおよびバ
リウムの塩化物および/または硝酸塩と、アルカリ金属
水酸化物とを、チタン換算で120〜10000倍モル
の水の存在下、60℃〜110℃で反応させるチタン酸
バリウム・ストロンチウム固溶体の製造法。 【効果】 粒径が0.07〜0.5μmと微細で比表面
積が小さく、かつ粒度分布の狭い、球形状の低温焼結可
能なチタン酸バリウム・ストロンチウム固溶体が得られ
る。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、粒径が0.07〜0.
5μmと微細で比表面積が小さく、粒度分布が狭い、球
形状の新規なチタン酸バリウム・ストロンチウム固溶体
の製造法に関するものである。さらには、低温焼結可能
である新規なチタン酸バリウム・ストロンチウム固溶体
粉末の製造法に関するものである。
【0002】
【従来の技術】これまでチタン酸バリウム・ストロンチ
ウム固溶体粉末およびチタン酸バリウム粉末は大粒径の
ものや、小粒径ではあるが分散性が悪く、粒径や形状が
不均一な粉末のみが知られていた。大粒径のものや、強
度に凝集したものは見かけ上一個の粒子として挙動する
ため、焼結開始温度が1100℃以上で、相対密度を9
0%以上にするには、1300℃以上の高温を必要とす
る。また、分散性が悪いもの、粒径および形状が不均一
の粉は、均一な充填構造をとる事が難しく、焼結も均一
に進行せず、寸法精度や物性のバラツキの原因となって
いる。
【0003】さらに、粒径が0.05μm以下の超微粉
ではハンドリング性が非常に悪く、均一な成形体を得る
事が難しく信頼性の高い焼結体が得られ難いという欠点
を有していた。現在、チタン酸バリウム・ストロンチウ
ム固溶体およびチタン酸バリウムは、コンデンサー、P
TC素子、半導体等として、電子部品分野で広く応用さ
れている。
【0004】近年、電子部品はますます小型化の傾向に
ある。例えば、コンデンサーもその類にたがわず、小型
化高容量化が望まれており、これを実現するものとし
て、積層コンデンサーが注目を集めている。現在、積層
コンデンサーではさらに電極間距離を10〜20μmと
小さくして高容量化を促進する傾向にある。この要求を
満足し、コンデンサーの性能および信頼性を保証するた
め、かかるセラミックコンデンサーでは、電極間で焼結
体を構成する粒子をできるだけ数多く、均一に存在させ
る事が望ましい。しかし、例えば焼結に1300℃以上
を要することは、高価な貴金属内部電極を必要とする
為、電極コストを引き上げる原因となり、さらに、焼結
体中の粒子の粒生長により大きくなるため、電極間距離
を短かくできず、高容量化を阻害する原因となり、ま
た、物性や寸法精度がバラツクことは、歩留まり低下を
もたらし、コスト高の原因となる。この為、上記欠点は
改善されることが強く望まれていた。また、この事は積
層コンデンサー以外の電子部品についても強く要望され
ていた。しかし、これらの諸要求を満足させるチタン酸
バリウム・ストロンチウム固溶体粉末およびチタン酸バ
リウム粉末の合成方法は、従来知られていなかった。
【0005】従来より工業的には、チタン酸バリウム・
ストロンチウム固溶体粉末およびチタン酸バリウム粉末
は固相反応法により製造されている。固相反応法とは、
炭酸ストロンチウムおよび/または炭酸バリウムと二酸
化チタンを混合し、各々1000℃以上の高温で反応さ
せ、チタン酸バリウム・ストロンチウム固溶体およびチ
タン酸バリウムを合成する方法である。しかしながら、
この方法は高温で反応を行なうため、粉末製造時に既に
焼結が始まり、粉体同志の固着および粒成長が生じ、本
質的に微細で均一粒径を有するチタン酸バリウム・スト
ロンチウム固溶体またはチタン酸バリウムを得ることは
困難であるという欠点を有している。
【0006】一方、最近シユウ酸法、アルコキシド法、
水酸化物法などによるチタン酸バリウム粉末やチタン酸
ストロンチウム粉末の新しい合成法が提案されており、
上記欠点についてかなりの改善が見られるが、本発明の
特性の粉末は得られていない。例えばP.K.Gall
agherらは“J.Am.Ceram.Soc.,4
6,359〜365(1963)”で、0.09〜0.
73μmまでの範囲で様々な粒径を持つチタン酸バリウ
ム粉末をシユウ酸法で合成したことを報告している。ま
た、K.S.Mazdiyasniらは“J.Am.C
eram.Soc.,52,523〜526(196
9)”で、アルコキシド法により粒径50〜150Åの
高純度チタン酸バリウムを合成したことを報告してい
る。
【0007】しかし、シユウ酸法は、シユウ酸塩を60
0℃以上で焼成してチタン酸塩を合成する方法であるた
め、固相反応法に近いものになり、粉体の凝集が生じ易
く、また多量に使うシユウ酸を回収、再使用できない為
コストが高い欠点がある。また、アルコキシド法は、原
料が非常に高価であり、工業的には問題がある。一方、
水酸化物法は、未だ確立された技術ではないが、製造プ
ロセスが簡単で、また、原料も安価であり、得られた粉
は焼結性も高いという点で注目されている。しかし、水
酸化物法で本発明のチタン酸バリウム・ストロンチウム
固溶体が生成することは従来知られていなかった。
【0008】例えば、松岡らは“高知大学水熱化学実験
所報告Vol.2,No.15(1978)”におい
て、酸化チタンと水酸化バリウムをバリウムとチタンの
元素の比が1.2となるように混合し、攪拌型オートク
レーブ中、110℃〜370℃でチタン酸バリウムを合
成している。該研究では、比較的粒子の大きい酸化チタ
ンを原料に使用したため、反応率を100%にするに
は、高温高圧(300℃、85気圧以上)を必要とし、
生成したチタン酸バリウム粒子も粗いものであった。該
研究で松岡らは、酸化チタンと水酸化バリウムの混合の
際に水を加えると、反応率が低下することも指摘してい
る。
【0009】また、久保らは“工業化学雑誌71巻1号
(1968)”において、含水率95重量%の含水酸化
チタンと水酸化バリウムを、バリウムとチタンの比が2
〜3となるよう機械的に混合し、100℃に加熱するこ
とにより、反応率100%で粒径が約300Å程度のチ
タン酸バリウムを得たことを報告している。しかし、久
保らの方法で得られたチタン酸バリウムは、その形状が
含水酸化チタンと非常によく似た角ばった形をしてお
り、また、細孔を有しているため比表面積が40.2m
2 /gと大きく、凝集粒子が見られ、粒径分布は不均一
であり、粒子形状、粒子の凝集性、粒径分布等について
は依然不満足であった。
【0010】上平らは特開昭59−39726号公報お
よび特開昭59−39728号公報において、チタン化
合物の加水分解生成物と水溶性バリウム塩または水溶性
ストロンチウム塩とを強アルカリ水溶液中で反応させ、
チタン酸バリウムまたはチタン酸ストロンチウムを得て
いる。該特許に開示されている方法では、得られるチタ
ン酸バリウムの粒径は200〜300Å、チタン酸スト
ロンチウムの粒径は100〜200Åと小さいものであ
る。
【0011】久保らの方法および上平らの方法は、10
0℃という低温で収率良くチタン酸バリウムを合成でき
るという優れた特徴を有するものの、得られる粉末の粒
径は100〜300Å程度と非常に小さいため粉自体の
凝集性が強く、例えば該粉末を用いてグリーンシート化
を行ない、積層コンデンサーを作ろうとした場合、ペー
スト中で凝集粒子が十分な分散状態にならない為、密度
が大きく、十分な強度を持ったシートが得られず積層コ
ンデンサーへの組立てが困難であり、さらに該シートを
焼結した場合、凝集粒子の部分にボイドなどの欠陥が生
じ、信頼性の高いコンデンサーが得られ難いなどの欠点
を有している。
【0012】このように、水酸化物法の研究では、未だ
実用的に満足できるチタン酸バリウムは得られておら
ず、また、その研究では、反応率を上げるため、含水酸
化チタンと水酸化バリウムの混合時には、水を必要最小
限に限定する傾向にある。
【0013】
【発明が解決しようとする課題】本発明は、微細で比表
面積が小さく、粒度分布が狭く、かつ球形状の低温焼結
可能な新規なチタン酸バリウム・ストロンチウム固溶体
の製造法を提供することを目的とする。
【0014】
【課題を解決するための手段】本発明者らは、微細で均
一な粒径を持つチタン酸バリウム・ストロンチウム固溶
体を製造するため、水酸化物法について鋭意研究を重ね
た結果、含水酸化チタンとストロンチウムおよびバリウ
ムの塩化物および/または硝酸塩とアルカリ金属水酸化
物とを、比較的大量の水の存在下で混合しつつ反応さ
せ、粒径0.07〜0.5μmと微細で、かつ均一粒径
を有し、ほぼ球形状を有し、さらには比表面積が小さく
ほとんど凝集のない、新規な性状のチタン酸バリウム・
ストロンチウム固溶体が合成できることを見出し、この
知見に基づいて本発明をなすに至った。
【0015】すなわち、本発明は、含水酸化チタンと、
ストロンチウムおよびバリウムの塩化物および/または
硝酸塩と、アルカリ金属水酸化物とを、チタン換算で1
20〜10000倍モルの水の存在下で混合しつつ60
℃〜110℃の温度範囲で反応させるチタン酸バリウム
・ストロンチウム固溶体の製造方法である。本発明にお
いて、含水酸化チタンとしてはオルトチタン酸、メタチ
タン酸、二酸化チタンのいずれか一種類以上を用いる
が、特にオルトチタン酸は、その反応性の高さから最も
好ましい。これらは固体あるいはゲルの状態で使用でき
る。このような含水酸化チタン、たとえばオルトチタン
酸は、チタンの塩化物、硫酸塩、シユウ酸塩等をアルカ
リで処理することにより容易に得られるが、特に塩化物
は好ましい。また、メタチタン酸および二酸化チタン
は、オルトチタン酸を加熱していけばオルトチタン酸の
有する構造水が順次抜けていくため、順次容易に得られ
る。
【0016】本発明で用いられるストロンチウムの塩化
物、硝酸塩およびバリウムの塩化物、硝酸塩としては、
無水物、水和物いずれのものも用いられ水酸化物に比
べ、コスト面で有利である。これらはそのまま用いても
よく、また水に溶かして用いても良い。本発明で用いら
れるアルカリ金属水酸化物は、リチウム、ナトリウム、
カリウム、ルビジウム、セシウム、フランシウムの水酸
化物から選ばれた1種以上である。コスト、反応性の観
点から好ましくは水酸化リチウム、水酸化ナトリウム、
水酸化カリウムから選ばれた1種以上であり、より好ま
しくは水酸化ナトリウムである。
【0017】本発明の反応は、二酸化炭素の存在により
阻害される。したがって、反応を行なう際に二酸化炭素
が存在しないよう充分注意を払うことはもちろん、反応
に供する含水酸化チタン、アルカリ金属水酸化物および
これらを分散、希釈する水等から、あらかじめ二酸化炭
素を除去しておくことが望ましい。本発明では、チタン
換算で120〜10000倍モルの量の水を存在させる
事が必要である。120倍モルより少なくなれば、反応
系の流動性が保てなくなり、球状で均一粒径を有する粉
末を製造することが困難になるばかりでなく、含水酸化
チタンとストロンチウムおよび/またはバリウムの塩化
物、硝酸塩との反応性が高まるため、粒径が0.05μ
m以下と小さく、結晶子も小さく、細孔を有し、比表面
積が大きく、したがって凝集性の強い粉末が生成し始め
る。また、10,000倍モルを超えるほど多量に水を
加えた場合、反応系全体の濃度を低下させ反応性を落と
し、もはや実質的に反応を行なうことが困難となる。水
の量はより好ましくは200〜2000倍である。
【0018】本発明では、含水酸化チタンとストロンチ
ウムおよびバリウムの塩化物および/または硝酸塩との
モル比を1以上、好ましくは1〜5とする。モル比が1
以下では未反応の含水酸化チタンが混在した生成物が得
られる。モル比を5以上にしても反応に及ぼす効果は増
大せず、コストアップの要因となる。より好ましいモル
比は1〜3である。
【0019】アルカリ金属水酸化物は、ストロンチウム
およびバリウムの塩化物および/または硝酸塩1モルに
対して好ましくは2.1モル以上加えられる。モル比が
2.1以下では未反応の含水酸化チタンが混在した生成
物が得られる。アルカリ金属水酸化物を2.1モル以上
と加剰に存在させた場合、反応に要する時間が短かくな
り、さらに粒径の大きさの制御も容易となる。また、均
一な焼結組織、良好な誘電特性を与える粉が、含水酸化
チタンとバリウムおよびストロンチウムの塩化物および
/または硝酸塩とのモル比の広い領域で合成可能とな
る。さらに好ましくは2.3〜5モル加えられる。2.
3モル以下ではアルカリ金属水酸化物の効果はあまり顕
著とならず、5モル以上加えても反応に及ぼす効果は増
大せず、コストアップの原因となる。
【0020】本発明において、反応の温度範囲は60℃
〜110℃である。反応温度が60℃よりも低ければ、
反応速度が極めて遅くなり実用的でないためであり、反
応温度が110℃以上であれば、水熱条件下での反応と
なり、装置上コスト高となるばかりでなく、生成する粒
子が粒成長を起こし、微細かつ均一粒径を有する粉末を
製造することが困難となるためである。
【0021】さらに、本発明において、混合を行なうこ
とが粉末形状を球状化し、粒径分布を均一化する上で好
ましい。反応時間は反応を完結するに必要な時間以上与
えられるならば、特に限定されるものではない。このよ
うにして得られたチタン酸バリウム・ストロンチウム固
溶体は、常法にしたがって、水洗、ろ過、乾燥後、場合
によっては適当な温度で仮焼した後、弱酸で洗浄し、水
洗し、ろ過し、乾燥される。
【0022】
【実施例】以下、実施例によって本発明をさらに詳細に
説明する。
【0023】
【実施例1】含水率95%のゲル状オルトチタン酸0.
5モルを水1リットルと共に反応器中へ入れた。この混
合液中へ窒素ガスを吹き込んで反応器中を窒素置換し、
さらに窒素ガスを流しつつ20時間放置した。一方塩化
バリウム125gと塩化ストロンチウム31gと水酸化
ナトリウム96gを水2リットルに溶解し、炭酸バリウ
ムを除去するためろ過し、ろ液を空気に触れさせないよ
うに窒素ガスの下で充分注意を払いつつ、オルトチタン
酸と水を入れて放置してある反応器中へ入れた(水はチ
タンに対して420倍モルである。)。この反応器に窒
素ガスを流しながら、さらに攪拌混合しつつ、オイルバ
スで100℃、4時間加熱して反応を行なった。反応終
了後、約5分間放置し、上澄液を除去し、さらに熱水3
リットルを加えて攪拌洗浄した後ろ過した。この洗浄、
ろ過の操作を3回繰り返し、合計9リットルの熱水で洗
浄した後0.2N酢酸0.5リットルで洗浄し、ろ過し
た後さらに純水で洗浄、ろ過を3回繰り返した後、空気
中100℃で20時間乾燥した。この様にして得られた
粉末を走査型電子顕微鏡による観察およびX線回折によ
る解析を行なった結果粒径0.1〜0.2μmの球状で
分布が均一である、立方晶のチタン酸バリウムとチタン
酸ストロンチウムの均一な固溶体であった。X線回折図
のピーク位置から求めたバリウムの量は約60%、スト
ロンチウムの量は約40%であった。比表面積は9.0
2 /gであった。
【0024】
【参考例1】含水率93%のゲル状オルトチタン酸1モ
ルを水2リットルと共に反応器中へ入れ、窒素ガスを吹
き込んで反応器中を窒素置換し、さらに窒素ガスを流し
つつ24時間放置した。一方、塩化バリウム310gと
水酸化ナトリウム170gを水2リットルに溶解し、炭
酸バリウムを除去するためろ過し、ろ液を空気に触れさ
せないよう窒素ガスの下で充分注意を払いつつ、オルト
チタン酸と水を入れて放置してある反応器中へ入れた
(水はチタンに対して280倍モルである。)。この反
応器中へ窒素ガスを流しながら、さらに攪拌混合しつ
つ、オイルバスで100℃、2時間加熱して反応を行な
った。反応終了後、約5分間放置し、上澄液を除去し、
さらに熱水4リットルを加えて攪拌洗浄後ろ過した。こ
の洗浄、ろ過の操作を3回繰り返し、合計12リットル
の熱水で洗浄後、空気中、100℃で20時間乾燥して
白色粉末を得た。この粉末を空気中、800℃で2時間
焼成した後、0.2N酢酸1リットルで洗浄し、ろ過
し、さらに純水で洗浄、ろ過を3回繰り返した。
【0025】このようにして得られた粉末について、走
査型電子顕微鏡による観察およびX線回折による解析を
行なった結果、非常に分散性の良い粒径0.1〜0.2
μmの均一球状粒子の立方晶チタン酸バリウムで、さら
にX線のピーク巾からシエラーの式を用いて求めた結晶
子径は約0.04μmと極めて結晶性が高いものであっ
た。さらに比表面積を測定したところ、比表面積は9.
1m2 /gであり、これを球状粒子と仮定して粒径を算
出した結果、約0.11μmとなり、走査型電子顕微鏡
による観察結果と良い一致を示した。
【0026】この粉末を2ton/cm2 の圧力でプレ
ス成形し、1200℃で1時間焼成した結果、相対密度
93%と、焼成温度が低いにもかかわらず、高い焼結密
度が得られた。また、焼結体を構成する粒子は約0.5
μmと極めて小さく、かつ均一な粒子径を有していた。
【0027】
【参考例2および参考比較例1】含水率93%のゲル状
オルトチタン酸1モルを水6リットルと共に反応器中へ
入れ、窒素ガスを5時間流した後、硝酸バリウム365
gと水酸化ナトリウム160gとを水2リットルに溶解
し、炭酸バリウムを除去するためのろ過した後溶液を反
応器に加えた(水はチタンに対して510倍モルだあ
る。)。窒素を流しながら100℃で4時間攪拌下で反
応を行なわせた。得られたこれらの粉末を、実施例1と
同様にして洗浄、乾燥を行ない、800℃で2時間焼成
した後、0.2N酢酸1リットルで洗浄し、ろ過、純水
洗浄を行なった後、乾燥し白色粉末を得た。また、比較
のため水酸化ナトリウム量を115gとした以外は、上
記方法と同様にしてチタン酸化バリウム粉末を得た。こ
のようにして得られた粉末について、走査型電子顕微鏡
による観察オよびX線回折による解析を行なった。どち
らの粉も粒径0.1〜0.2μmの立方晶チタン酸バリ
ウムであったが、水酸化ナトリウムを多く加えたものの
粒径は若干小さかった。これらの粉末を実施例1と同様
にして1200℃1時間焼成した。どちらの粉も相対密
度93%と高い焼結密度が得られた。また、焼結体を構
成する粒子は、水酸化ナトリウムを多く加えたものでは
約0.5μmと極めて小さく、かつ均一な粒子径を有し
ていたが、水酸化ナトリウムが少ないものでは10μm
以上に成長した巨大粒子が存在していた。
【0028】
【発明の効果】本発明の方法は、含水酸化チタンとスト
ロンチウムおよびバリウムの塩化物、硝酸塩との反応が
温和に進行するため、得られる粉末は粒径が0.07〜
0.5μmであり、結晶子が大きく細孔がなく比表面積
が小さく、ほとんど凝集のないものとなること、及び反
応時の流動化が可能となり粒子形状が球状で、粒径分布
が均一なものとなる。また、該粉末を原料とした積層コ
ンデンサーは信頼性の高いものとなり、電極間の誘電体
層の厚みを十分に薄くすることも可能である。
【0029】さらに、本発明で得られる粉末は積層コン
デンサー用原料のみでなく、各種コンデンサ、PTC半
導体等に使用する原料としても有効である。また、本発
明方法で得られるチタン酸バリウム・ストロンチウム固
溶体粉末またはチタン酸バリウム粉末は、従来の粉末に
比べて、焼結温度が100℃〜200℃低いため、エネ
ルギーコストを低くできるほか、積層コンデンサのよう
に電極焼付をコンデンサの焼結と同時に行なう場合に、
電極コストを大巾に低くすることが可能となる。

Claims (1)

    【特許請求の範囲】
  1. 【請求項1】 含水酸化チタンと、ストロンチウムおよ
    びバリウムの塩化物および/または硝酸塩と、アルカリ
    金属水酸化物とを、チタン換算で120〜10000倍
    モルの水の存在下、60℃〜110℃で反応させること
    を特徴とするチタン酸バリウム・ストロンチウム固溶体
    の製造法。
JP5059774A 1984-12-21 1993-03-19 チタン酸バリウム・ストロンチウム固溶体の製造法 Pending JPH069219A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59268458A JPS61146712A (ja) 1984-12-21 1984-12-21 チタン酸バリウムの製造法
JP5059774A JPH069219A (ja) 1984-12-21 1993-03-19 チタン酸バリウム・ストロンチウム固溶体の製造法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP59268458A JPS61146712A (ja) 1984-12-21 1984-12-21 チタン酸バリウムの製造法
JP5059774A JPH069219A (ja) 1984-12-21 1993-03-19 チタン酸バリウム・ストロンチウム固溶体の製造法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP59268458A Division JPS61146712A (ja) 1984-12-21 1984-12-21 チタン酸バリウムの製造法

Publications (1)

Publication Number Publication Date
JPH069219A true JPH069219A (ja) 1994-01-18

Family

ID=26400845

Family Applications (2)

Application Number Title Priority Date Filing Date
JP59268458A Granted JPS61146712A (ja) 1984-12-21 1984-12-21 チタン酸バリウムの製造法
JP5059774A Pending JPH069219A (ja) 1984-12-21 1993-03-19 チタン酸バリウム・ストロンチウム固溶体の製造法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP59268458A Granted JPS61146712A (ja) 1984-12-21 1984-12-21 チタン酸バリウムの製造法

Country Status (1)

Country Link
JP (2) JPS61146712A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5725728A (en) * 1995-09-18 1998-03-10 Kabushiki Kaisha Shinkawa Pellet pick-up device
US6059936A (en) * 1997-10-08 2000-05-09 Micron Technology, Inc. Rapid annealing of powder phosphors
WO2013176956A2 (en) * 2012-05-22 2013-11-28 3M Innovative Properties Company Sintered product, metal ion adsorbent, method for removing metal ions, and metal ion removing equipment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61168527A (ja) * 1985-01-22 1986-07-30 Jgc Corp チタン酸塩系磁器原料の製造法
JPS6272525A (ja) * 1985-09-27 1987-04-03 Fuji Titan Kogyo Kk チタン酸バリウムまたはチタン酸ストロンチウムの製造法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5771820A (en) * 1980-08-22 1982-05-04 Gen Electric Fusion synthesis of alkali earth metal titanate, zirconate and solid solution thereof
JPS60155532A (ja) * 1984-01-24 1985-08-15 Sony Corp チタン酸バリウム・ストロンチウム微粒子の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5771820A (en) * 1980-08-22 1982-05-04 Gen Electric Fusion synthesis of alkali earth metal titanate, zirconate and solid solution thereof
JPS60155532A (ja) * 1984-01-24 1985-08-15 Sony Corp チタン酸バリウム・ストロンチウム微粒子の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5725728A (en) * 1995-09-18 1998-03-10 Kabushiki Kaisha Shinkawa Pellet pick-up device
US6059936A (en) * 1997-10-08 2000-05-09 Micron Technology, Inc. Rapid annealing of powder phosphors
WO2013176956A2 (en) * 2012-05-22 2013-11-28 3M Innovative Properties Company Sintered product, metal ion adsorbent, method for removing metal ions, and metal ion removing equipment
WO2013176956A3 (en) * 2012-05-22 2014-03-06 3M Innovative Properties Company Sintered product, metal ion adsorbent, method for removing metal ions, and metal ion removing equipment

Also Published As

Publication number Publication date
JPS61146712A (ja) 1986-07-04
JPH0573695B2 (ja) 1993-10-14

Similar Documents

Publication Publication Date Title
US4898843A (en) Titanate powder and process for producing the same
EP0641740A1 (en) Process for the synthesis of crystalline ceramic powders of perovskite compounds
JP3154509B2 (ja) チタン酸バリウムおよびその製造方法
KR20020037284A (ko) 구형의 정방정계 티탄산바륨 입자 및 그의 제조방법
JPH01167228A (ja) 粉末状チタン酸バリウムの製造方法
US8715614B2 (en) High-gravity reactive precipitation process for the preparation of barium titanate powders
US8431109B2 (en) Process for production of composition
JPH1179746A (ja) ペロブスカイト型複合酸化物及びその製造方法
JPH06305729A (ja) ペロブスカイト型化合物微細粒子粉末およびその製造法
JPH069219A (ja) チタン酸バリウム・ストロンチウム固溶体の製造法
JPH069218A (ja) チタン酸バリウム・ストロンチウム固溶体の製造方法
JPH0246531B2 (ja)
JPS60176968A (ja) SnO↓2−ΖrO↓2−TiO↓2系誘電体磁器の製造法
JPH0239451B2 (ja)
JPS61186223A (ja) 誘電体微粉末の製造方法
JPH07277710A (ja) ペロブスカイト型複合酸化物粉末の製造方法
JPH08119745A (ja) セラミック粉体の製造方法
JPH0712922B2 (ja) 無機水酸化物沈殿の形成方法
EP0163739A1 (en) Process for preparing fine particles of ba (zrx ti 1-x)o3-solid solution
JPH04238814A (ja) 二価の陽イオンのチタン酸塩の製造方法
JP3319795B2 (ja) ペロブスカイト型化合物微細粒子粉末
JPH06321630A (ja) セラミツク誘電体用組成物
JP3254693B2 (ja) 水和ジルコニアゾルおよびジルコニア粉末の製法
JPH0262496B2 (ja)
JPH05116945A (ja) ジルコニア微粉末の製造方法

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19950410