JPH0653593B2 - 合成シリカガラス光学体及びその製造方法 - Google Patents

合成シリカガラス光学体及びその製造方法

Info

Publication number
JPH0653593B2
JPH0653593B2 JP2148633A JP14863390A JPH0653593B2 JP H0653593 B2 JPH0653593 B2 JP H0653593B2 JP 2148633 A JP2148633 A JP 2148633A JP 14863390 A JP14863390 A JP 14863390A JP H0653593 B2 JPH0653593 B2 JP H0653593B2
Authority
JP
Japan
Prior art keywords
optical body
silica glass
less
synthetic silica
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2148633A
Other languages
English (en)
Other versions
JPH0388742A (ja
Inventor
茂 山形
恭一 稲木
利勝 松谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15380261&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0653593(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Publication of JPH0388742A publication Critical patent/JPH0388742A/ja
Publication of JPH0653593B2 publication Critical patent/JPH0653593B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、合成シリカガラス光学体及びその製造方法に
関し、詳しくは略 360nm以下の紫外光、エキシマレーザ
等に使用されるレンズ、窓部材、ミラー、プリズム、フ
ィルタ、エタロン板等の光学体に関する。
「従来の技術」 近年におけるLSI の微細化、高集積化の進展は極めて著
しく、すでにチップ当りの素子数が百万以上のVLSIの時
代に入っている。これに伴ないウエハ上に集積回路パタ
ーンを描画するリソグラフィ技術においてもその開発が
急速に進み、より微細な線巾例えば1MビットDRAMに対応
する線巾 1μm、4MビットDRAMに対応する線巾 0.8μm
が開発されている。そして今やサブミクロンの線巾すな
わち16M ビット乃至256MビットDRAMに対応する0.5 乃至
0.2μmの線巾で描画可能なリソグラフィ技術の開発が
急務とされている。
しかしながら従来の光リソグラフィ技術はその欠点とし
て露光波長が大きいため、回折により解像力が制限され
るという問題があり、上記要請を満足することはできな
い。
光の短波長化を図る為に、400nm 以下の紫外線を用いた
技術が開示されているが、従来の光学ガラスを用いたレ
ンズでは使用波長が365nm (i線)付近より光透過率が急
激に低下するために、レンズ材料を従来の光学ガラスか
ら石英ガラスに代える必要があるが、石英ガラスに通常
の紫外線を透過した場合光スペクトル巾が広いために色
収差が発生してしまう。
そこでスペクトル巾の狭い且つ紫外域で発振する高出力
パルスレーザであるエキシマレーザ、特にサブミクロン
単位のより鮮明画像を得るために短波長なKrF(248nm),A
rF(193nm)を前記光リソグラフィー用の光源として用い
た技術が検討されている。
しかしながらエキシマレーザ光は従来の i線、 g線等に
比較して極めてパワーが大であり而も発振波長の短波長
化が進むにつれ、例え前記石英ガラスを用いて前記レー
ザ光用光学部材を製作したとしても該レーザ光が長時間
照射されるとレンズ等の光学部材がダメージを受け、透
過率の低下等の耐レーザ性が低下し、最終的にクラック
が発生するという問題が生じる。
ところで、従来水晶を溶融して造った天然石英ガラスを
水素ガス雰囲気中で約 400〜1000℃で加熱することによ
り電離線の作用によりその石英ガラスが着色を生じるの
を防止しようとする技術が提案されている(特公昭40-1
0228号参照)が、このような単に水素処理を施しただけ
にすぎない石英ガラスでは耐レーザ性が不充分であり、
前記問題点を解決することができない。
「発明が解決しようとする技術的課題」 本発明は、従来のフォトンエネルギーが小さい g線(436
nm)ではなくより短波長化、具体的には略 400nm〜150nm
の高出力紫外光が光学体に作用した場合の耐レーザ性
その他の経時劣化を極力防止する事を目的とする。
即ちより具体的には前記光学体を構成する石英ガラスは
400nm〜150nm の紫外線波長域の光が作用した場合、他
の種類の光(例えば前記波長より長波長の可視光や、短
波長のγ線等)に比較して大幅に強い光学的ダメージを
受けやすい。
例えば紫外線レーザ光が長時間照射されると石英ガスの
網目構造が切断され、いわゆる E′センターと呼ばれる
略 215nmの吸収バンドと、別の略 260nmの吸収バンドが
生成し、 400nm〜150nm の透過率を低下させ、光学的劣
化現象を生じさせてしまう。
そして特に略400 〜150nm のパルス発振レーザであるエ
キシマレーザは、他のあらゆる種類の紫外線光に比較し
て最も強いエネルギーをもっており、該エキシマレーザ
の照射により一層強い光学的ダメージを受けやすい事が
確認されている。
従って本発明は、前記石英ガラス材の高純度化を図って
も、尚高エネルギー密度の紫外光を照射した場合に生じ
る経時劣化を極力低減し、耐久性の向上を図った紫外線
用光学体とその製造方法を提供する事を目的とする。
「課題を解決する為の技術手段」 すなわち、本発明は、波長略 400nm以下の紫外光に使用
される合成シリカガラス光学体において、該光学体を少
なくとも、一方向脈理フリーで、かつOH基を略10ppm 以
上含有する高純度合成シリカガラス材で形成すると共
に、該光学体に前記紫外光照射による光透過率低下を抑
制するに充分な量の水素分子を含有させたことを特徴と
する合成シリカガラス光学体を要旨とするものであり、
さらにその製造方法を提供するものである。
以下順を追って説明する。
石英ガラスは単にその高純度化を図ったのみでは、高出
力で且つ短波長レーザ光用光学体として満足する結果が
得られない。その理由は例え高純度化を図っても金属不
純物の存在を完全に消去する事は原料及び製造上の問題
から不可能であり、又合成シリカガラスには前記耐レー
ザを低下させる各種欠陥若しくは要素が包含されている
ものと思慮され、これらが組み合わさって耐レーザ性を
低下させているものと推定される。
そこで本発明者達は先ず、前記各種短波長光の内、特に
条件の厳しいエキシマレーザにおける耐レーザ性に不純
物金属元素がどの様に悪影響を及ぼすかを確認するため
に、酸水素炎加水分解法のダイレクト法と CVDスート再
溶融法に基づいて高純度の合成シリカガラスを製造し、
これをアニール処理(内部歪除去処理)したインゴット
を用いて試験片を製作して耐レーザ性を確認したが、な
お満足されるべき結果が得られなかった。
次に、前記アニール処理後のインゴットにそれぞれ加圧
下において水素ドープ処理を行ったところ、ダイレクト
法で製造した高純度インゴットの試験片についてのみ好
ましい耐レーザ性が得られることが確認できたため、ダ
イレクト法とスート法で製造した高純度インゴットとの
間における物性上の差異を調べた所、前者の方がOH基含
有量が多い事が確認できた。
そこでスート法に基づいて、高純度合成シリカガラスを
製造する再に酸水素炎を調整してOH基含有量を増大させ
たインゴットを製造し、前記と同様な方法で耐レーザ性
を確認した所、OH基含有量の増大に比例して耐レーザ性
が向上する事が知見できた。
又水素ドープ量についても加圧条件を変化させて耐レー
ザ性を確認した所、特に短波長のフォトンエネルギーの
大なるエキシマレーザ光を照射した場合に、その耐レー
ザ性は水素ドープ量の増減に依存することが知見でき
た。
即ち、前記実験過程から明らかな如く、水素ドープ材の
存在下にOH基含有量の増大が前記経時的な耐熱レーザ性
能の低下を防ぐ事は本発明者達が始めて知見した事実で
あり、そして更に本発明者達は略360nm 以下の高出力紫
外光を作用させた場合に所望の耐レーザ性を得る為には
OH基を少なくとも10重量ppm 以上含有させる事が必要で
あることを明らかにした。
尚、OH基含有量が何故前述した光学特性に影響するかは
さだかではないが、以下のように考えられる。
シリカガラスに強力なレーザ光が長時間照射されると、
ガラス網目構造を構成する原子間の結合が徐々に切断さ
れ、その経過透過率が低下し、吸収バンドが現われ最悪
にはクラック等が発生してしまう。
しかし、これら原子間の切断も、シリカガラス中に存在
するOH基自体若しくは、該OH基中の水素原子の存在や移
動により大部分が修復され、そして更にクラックの発生
においてもOH基が多量に含まれると上記理由により吸収
バンドの発生が小さくなり、その結果として光吸収が少
なくなり、クラックが少なくなると考えられる。
一方水素ドープ量は、後記実験例のデータにあるよう
に、光学体に250nm 以下のようなレーザ光を作用せる場
合に充分な抵抗性を得るためには水素分子濃度が略 5×
1016(molecules/cm3)以上であることが必要である。ま
たこのドープ分子濃度は真空下で1000℃昇温時における
放出量としても規定可能であり、この場合は水素分子放
出量が略 1×1020(molecules/m2)以上になるように水素
が含有されていることが必要である。
水素ドープをすべきシリカガラス中には、少なくとも光
入射方向における脈理、より好ましくは三方向何れの方
向にも脈理が存在しない事が必要となる。
即ち前記のようにOH基が多く存在するようにシリカガラ
スを合成した場合、その合成過程において脈理が形成さ
れ易くなるが、このように脈理の存在するシリカガラス
材に水素ガスドープ処理を行っても、均一な水素ガス濃
度分布が得られず、これにより好ましい耐レーザ性が得
られない。
この理由は前記脈理部分では、OH基が局部的に多くなっ
ており、その為水素ガスの溶存濃度が該OH基含有量によ
って左右される為、均一な水素ガス濃度分布が得られな
いからである。
したがって、脈理が存在する合成シリカガラス塊をその
まま本発明の光学体用原料とすることはできず、予め脈
理除去の処理を施す必要がある。
この脈理除去の方法としては、例えば USP2,904,713、同
3,128,166、同3,128,169 及び同3,483,613 等に記載され
ている方法“横型浮遊帯域融解法”(FZ法)により脈理
を除去することができる。具体的には脈理を除去しよう
とするシリカガラス塊を棒状体とし、その両端を回転し
得る旋盤で把持し、棒状体の中間部分をバーナ火炎で軟
化点以上に加熱しひねるという操作によって行なわれ
る。
本発明の光学体はΔnが 2×10-6以下であること及び複
屈折率 5(nm/cm) 以下であることが望ましいが、これら
の特性を得るためには上記した脈理除去の処理が重要な
意味を持つ。
本発明の光学体を製造するには、上記脈理除去の処理を
施したシリカガラス塊について内部歪除去の処理を施し
た後水素ガスドープを行なう。この内部歪除去の処理は
通常の場合大気雰囲気中で温度1000〜1200℃に約 5時間
以上維持しついで徐冷することにより行なわれる。水素
ドープはこのシリカガラス塊を常圧ないし加圧の水素ガ
ス雰囲気中で 200〜1000℃望ましくは 400〜800 ℃の温
度にて約10時間以上維持することにより行なわれる。
なお、別の方法として上記内部歪除去の際の雰囲気を水
素ガス雰囲気としついで行なわれる徐冷工程において 2
00〜1000℃に所定時間維持されるようにすることによ
り、内部歪除去の処理と水素ドープを連続して行なうこ
とができる。
本発明は脈理フリー、OH基、水素ドープ、そして更に後
記する高純度の四つの組合せにおいて始めて所期の目的
を達成したものと言える。
尚、本発明は、高純度合成シリカガラスを用いることを
前提とするものであるが、該シリカガラスは熱処理その
他の光学体製造過程で僅かながら汚染され、その汚染を
許容し得る程度に純度設定を行う必要がある。
そこで本発明においては前記要件を満たすことにより、
光学体中の不純物含有量を、Li、Na 及び Kのトータル含
有量を150ppb以下、Mg 及びCaのトータル含有量を100ppb
以下、Ti、Cr、Fe、Ni及びCuのトータル含有量を50ppb 以
下、より具体的には耐レーザ性に悪影響を及ぼす金属不
純物を夫々Na≦50ppb、 K≦50ppb、Li≦50ppb、Mg≦10ppb、
Ca≦10ppb、Ti≦10ppb、Cr≦10ppb、Fe≦10ppb、Ni≦10ppb
及びCu≦10ppb の範囲までの不純物の存在であれば十分
所期の目的を達成し得る事を確認した。これにより前記
製造過程での僅かながら汚染が生じても商業的に且つ再
現性よく所望の目的を達成し得る光学体の提供を可能に
した。
本発明に係わる合成シリカガラス光学体は、波長略360n
m 以下の高出力紫外光特にエキシマレーザ、YAG4倍高調
波(250nm) レーザによるダメージを受け難いすぐれたも
のであるので、リソグラフィ用レーザ露光装置等の高集
積回路製造装置、レーザ光化学反応装置、レーザ加工装
置、レーザ医療装置、レーザ核融合装置その他の高出力
紫外線レーザを利用した各種装置に組込まれる各種光学
体として有用されるものである。
「実験例」 本発明に至った経過を具体的な実験例に基づいて説明す
る。
原料四塩化ケイ素を蒸留処理して不純物を除去させた後
弗素樹脂ライニング付ステンレス製容器に貯溜した高純
度四塩化ケイ素を用意し、該高純度の四塩化ケイ素原料
を用いて酸水素炎加水分解法のダイレクト法と CVDスー
ト再溶融合成法にて、高純度シリカガラスインゴットを
各々複数個合成した。これらインゴットを一定の直径の
棒状体に延伸した後、横型浮遊帯域溶融法(FZ法)によ
り混練り均質化し、三方向脈理フリーでありかつ光使用
領域(クリヤーアパーチャー)における屈折率変動幅
(Δn)を 2×10-6に設定した。そして前記インゴット
群よりOH基の含有量が5 ppm 以下、100ppm、200ppm、400p
pm、800ppm のOH基濃度を有するインゴットを分取した。
次に、前記各OH基濃度を有するインゴットを雰囲気加熱
炉内のチャンバー内に設置して、第 1のインゴット群
(I)においては塩化水素雰囲気下(常圧)、第 2のイ
ンゴット群(II)においては5%の HClを加味した水素ガ
ス雰囲気(常圧)下にて、第 3のインゴット群(III)
においては水素ガス雰囲気(約10気圧)の加圧下にて、
各々約1100〜1200℃で約50時間保持した後、約 200℃の
温度以下になるまで一定のプログラムにより徐冷を行
い、その後大気放冷を行った。
次に、前記熱処理後の各インゴットについてアルカリ金
属元素Li、Na、K、アルカリ土類金属元素Mg、Ca 呼び遷移金
属元素Ti、Cr、Fe、Ni、Cuの各元素の含量分析を原子吸光光
度法及び中性子放射化分析法にて行ってみるに、いずれ
もアルカリ金属元素が 0.05ppm以下、アルカリ土類が0.
01ppm 前後、遷移金属元素が0.01ppm 以下と高純度が維
持されていた。
そして、このように形成した内部歪のない複屈折が 5(n
m/cm) 以下のインゴットを40×30×t30mm の寸法に切断
しかつ両面鏡面仕上を行ってエキシマレーザ照射実験用
試験片を作成するのと同時にH2ガス測定用サンプルとし
て寸法40×20×t1mmでかつ両面を鏡面仕上したもの及び
寸法10×10×20(l)mm でかつ 3面を鏡面仕上したものを
作成してH2放出量及びH2濃度の測定を行う。前記H2ガス
放出量の測定はサンプルをセットした石英チャンバー内
を真空雰囲気にした後、4 ℃/minで1000℃まで昇温させ
た後、該1000℃にて 2hr保持する。その時放出される各
種ガスを四重極型質量分析計に導入し、分子の種類と量
を測定する。(森本幸裕、他、照明学会 東京支部大会
誌、 pp.16〜25、1989) かかる測定結果によれば、試料番号I群におけるH2放出
量は 5×1018〜 1×1019(molecules/m2)試料番号II群に
おけるH2放出量は 1×1020〜 2×1020(mokecules/m2)、
又試料番号III群におけるH2放出量は 1×1021〜 6×10
21(molecules/m2)という値を得た(表-1参照)。
さらに、レーザラマン散乱測定法によるH2ガス濃度測定
では、サンプルをセットした後Arレーザ(488nm) で照射
し4135(cm-1)と800(cm-1) の散乱光の強度比よりH2ガス
濃度を計算する。(V.S.Khotimchenko,etal. Zhurnal Pr
ikladnoi Spektroskopii, Vol.46, No.6, PP.987〜991,
1986)この測定結果によれば、試料番号I群におけるH2
濃度は 5×1016(molecules/cm3)未満、II群では 2×10
17〜 5×1017(molecules/cm3)、III群では 2×1018〜 5
×1018(molecules/cm3)という値を得た(表-3参照)。
次に前記耐エキシマレーザー性評価用の試験片に対し
て、KrF エキシマレーザ(248nm) を用い、パルス当りエ
ネルギー密度100,200,400(mJ/cm2・pulse)及び照射パル
ス数 1×105 、1 ×106 、 1×107 (pulse)の組合せか
ら成る照射条件にて照射を行った。
そして、前期照射終了後の各試験片について、干渉計に
て屈折率分布変化、透過率計にてソーラリゼーション、
蛍光測定器にて蛍光強度測定を行った。結果は表-1及び
表-2に示すとおりであった。
また、前記耐エキシマレーザ性評価用の別の試験片に対
して ArFエキシマレーザ(193nm) を用い、パルス当りエ
ネルギー密度を100(mJ/cm2・pulse)、周波数を100(Hz) に
て連続照射を行い、 5.8eV(略215nm)における内部透
過率が2%低下するまでの照射パルス数を測定し、KrF エ
キシマレーザ(248nm) でのデータと比較を行った結果は
表-4に示すとおりであった。
前記一覧表より理解される如く、H2放出量が 1×1020(m
olecules/m2)以上,またH2濃度が 5×1016(molecules/c
m3)以上のII群及びIII群の試験片においては、OH基が10
0ppm以上含有する試験片(II-2,3,4,5、III-2,3,4,5)
が蛍光、透過率、屈折率変動のいずれの面でも極めて好
ましい耐レーザ性が得られた。一方H2放出量が 1×1020
(molecules/m2)未満、またH2濃度が 5×1016(molecules
/cm3)未満のI群の試験片においては、OH基が800ppm含
有する試験片(I-5)においても好ましい評価が得られ
ずいずれも耐レーザ性は平均的水準以下であった。
又、II及びIII群の試験片においても、OH基濃度量が 5p
pm 以下であれば耐レーザ性が低いとが明らかとなっ
た。
次に、耐エキシマレーザ性に対する不純物金属元素の影
響を確認するためにダイレクト法にてOH基を800ppm含有
するインゴットを合成する際、前述の高純度四塩化ケイ
素に蒸留処理前の四塩化ケイ素を混合した原料を用いて
インゴットを合成しH2ドープ処理を行った後試験片(II
-5′)を作成し、H2ガス濃度測定と耐KrF エキシマレー
ザ性の評価を行った。その結果、不純物金属元素が一定
レベル以上含まれると、耐KrF エキシマレーザ性は大き
く低下することが明らかとなった(表-5及び表-6参
照)。
最後に、耐エキシマレーザ性と光学的均質性に対する脈
理の影響を確認するために、ダイレクト法にてOH基を80
0ppm含有するインゴットを合成した後、横型浮遊帯域融
解法による脈理除去処理は行なわずにH2ドープ処理を行
い試験片(II-5″)を作成しH2濃度測定と透過率低下と
屈折率分布に関する耐KrF エキシマレーザ性の評価を行
った。その結果、脈理の存在するインゴットでは、Δn
の悪いシリカガラスしか得られず基本的に光学体として
使えないものであり、H2ドープも均一に行うことができ
ず、エキシマレーザ照射による透過率低下も不均一に起
こってしまった(表-5及び表-6参照)。
かかる実験結果より本発明の効果が円滑に達成されてい
ることが理解出来る。
「発明の効果」 以上記載したように、本発明により提供される合成シリ
カガラス光学体は、高出力紫外光特にエキシマレーザ、
YAG4倍高調波レーザに対し、すぐれた抵抗性(ダメージ
を受け難い)を示す。
また本発明の製造方法により、光学特性としてのΔnの
値及び複屈折率を満足し、均一な水素ドープの施こされ
た耐レーザ性にすぐれたシリカガラス光学体を得ること
ができる。
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−195137(JP,A) 特開 昭62−75604(JP,A) 特開 平2−124739(JP,A) 特開 平2−80343(JP,A) 特開 平1−320232(JP,A)

Claims (11)

    【特許請求の範囲】
  1. 【請求項1】波長略400nm以下の紫外光に使用される
    合成シリカガラス光学体において、 該光学体を少なくとも一方向脈理フリーで、且つOH基
    を10ppm以上含有する高純度合成シリカガラス材で形
    成するとともに、該光学体に前記紫外光照射による光透
    過率低下を抑制するのに充分な量の水素分子を含有させ
    たことを特徴とする合成シリカガラス光学体
  2. 【請求項2】略250nm以下の高出力紫外線レーザに使用
    される合成シリカガラス光学体において、 前記光学体のOH量含有基が略100ppm以上であり、且つ水
    素分子の含有量が略5×1016(molecules/cm3)以上であ
    る事を特徴とする請求項1)記載の光学体
  3. 【請求項3】略250nm以下の高出力紫外線レーザに使用
    される合成シリカガラス光学体において、 前記光学体のOH基含有量が略100ppm以上であり、且つ真
    空下での1000℃昇温時における水素分子放出量が略1×1
    020(molecules/m2)以上になるように水素分子を含有さ
    せてある事を特徴とする請求項1)記載の光学体
  4. 【請求項4】前記光学体の入射光に直交する平面内にお
    けるΔn(屈折率の変動幅)の値が2×10-6以下であ
    る請求項1)記載の光学体
  5. 【請求項5】前記光学体が、アルカリ金属(Li,Na、K)
    の含有量が150ppb以下、アルカリ土類金属(Mg、Ca)の
    含有量が100ppb以下、遷移金属(Ti,Cr,Fe,Ni、Cu)の
    含有量が50ppb以下の合成シリカガラスである特徴とす
    る請求項1)記載の光学体
  6. 【請求項6】前記光学体が、アルカリ金属Li,Na、Kの夫
    々の含有量が50ppb以下、アルカリ土類金属Mg、Caの夫
    々の含有量が10ppb以下、遷移金属Ti,Cr,Fe,Ni、Cuの夫
    々の含有量が10ppb以下の合成シリカガラスである特徴
    とする請求項1)記載の光学体
  7. 【請求項7】前記光学体が、三方向脈理フリーの合成シ
    リカガラスである特徴とする請求項1)記載の光学体
  8. 【請求項8】前記光学体が、複屈折率5(nm/cm)以下
    の合成シリカガラスである特徴とする請求項1)記載の光
    学体
  9. 【請求項9】OH基を10ppm以上含有するように合成した
    高純度シリカガラス塊を出発母材とし、 該ガラス塊について軟化点以上の加熱下で脈理を除去す
    る処理、及び略1000〜1200℃の範囲で一定時間加熱しつ
    いで徐冷する内部歪除去の処理を施した後、 常圧乃至加圧の水素ガス雰囲気中で略200から1000℃の
    範囲内に加熱し、紫外光照射による光透過率低下を抑制
    するのに充分な量の水素分子をドープすることを特徴と
    する合成シリカガラス光学体の製造方法
  10. 【請求項10】前記内部歪除去の処理工程を経たガラス
    塊について、水素分子ドープに先立って、減圧下で200
    〜1000℃の範囲内に加熱する事により脱ガス処理を施す
    ことを特徴とする請求項9)記載の製造方法
  11. 【請求項11】OH基を10ppm以上含有するように合成し
    た高純度シリカガラス塊を出発母材とし、 該ガラス塊について軟化点以上の加熱下で脈理を除去す
    る処理、及び1000〜1200℃の範囲で一定時間加熱しつい
    で徐冷する内部歪除去の処理を水素ガス雰囲気で実施す
    ると共に、その徐冷工程において常圧乃至加圧雰囲気下
    で略200〜1000℃の範囲内に所定時間維持する事によ
    り、該ガラス塊中に紫外光照射による光透過率低下を抑
    制するのに充分な量の水素分子をドープすることを特徴
    とする合成シリカガラス光学体の製造方法
JP2148633A 1989-06-09 1990-06-08 合成シリカガラス光学体及びその製造方法 Expired - Lifetime JPH0653593B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1-145226 1989-06-09
JP14522689 1989-06-09

Publications (2)

Publication Number Publication Date
JPH0388742A JPH0388742A (ja) 1991-04-15
JPH0653593B2 true JPH0653593B2 (ja) 1994-07-20

Family

ID=15380261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2148633A Expired - Lifetime JPH0653593B2 (ja) 1989-06-09 1990-06-08 合成シリカガラス光学体及びその製造方法

Country Status (1)

Country Link
JP (1) JPH0653593B2 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2530954B2 (ja) * 1991-08-30 1996-09-04 信越石英株式会社 光学部材
JP2566349B2 (ja) * 1991-10-02 1996-12-25 信越化学工業株式会社 合成石英ガラス部材の製造方法
US5616159A (en) * 1995-04-14 1997-04-01 Corning Incorporated Method of forming high purity fused silica having high resistance to optical damage
US6143676A (en) * 1997-05-20 2000-11-07 Heraeus Quarzglas Gmbh Synthetic silica glass used with uv-rays and method producing the same
JP4493060B2 (ja) 1999-03-17 2010-06-30 信越石英株式会社 エキシマレーザー用光学石英ガラスの製造方法
EP1233005B2 (en) * 2001-02-15 2013-01-16 Heraeus Quarzglas GmbH & Co. KG Method for producing synthetic quartz glass members for excimer lasers and synthetic quartz glass members for excimer laser optics produced by the same
JP4104338B2 (ja) * 2002-01-31 2008-06-18 信越石英株式会社 ArF露光装置用合成石英ガラス素材
DE10308466A1 (de) * 2003-02-21 2004-09-02 Carl Zeiss Smt Ag Verfahren zur Herstellung von strahlungsresistentem Quarzglasmaterial und Quarzglasmaterial
JP4470479B2 (ja) 2003-12-17 2010-06-02 旭硝子株式会社 光学部材用合成石英ガラスおよびその製造方法
DE102004009577B3 (de) * 2004-02-25 2005-03-03 Heraeus Quarzglas Gmbh & Co. Kg Verfahren zur Herstellung eines optischen Bauteils
US7928026B2 (en) * 2005-06-30 2011-04-19 Corning Incorporated Synthetic silica material with low fluence-dependent-transmission and method of making the same
US7592063B2 (en) * 2006-09-05 2009-09-22 Asahi Glass Company, Limited Quartz glass substrate and process for its production
JPWO2011132786A1 (ja) * 2010-04-23 2013-07-18 旭硝子株式会社 紫外線透過型近赤外線カットフィルタガラス
JP5915976B2 (ja) * 2014-07-08 2016-05-11 ウシオ電機株式会社 ロングアーク型放電ランプおよび光照射装置
CN114074799A (zh) * 2020-08-18 2022-02-22 三赢科技(深圳)有限公司 载料带及载料卷

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5924743B2 (ja) * 1980-01-30 1984-06-12 日本電信電話株式会社 光フアイバ母材の製造法
JPS6275604A (ja) * 1985-09-30 1987-04-07 Mitsubishi Metal Corp 耐放射線性の光伝送路
JPS63195137A (ja) * 1987-02-06 1988-08-12 Tosoh Corp 石英ガラス中の脈理の除去方法
JPS6428240A (en) * 1987-07-22 1989-01-30 Shinetsu Sekiei Kk Optical quartz glass member
JPH01320232A (ja) * 1988-06-20 1989-12-26 Shin Etsu Chem Co Ltd 石英ガラスの製造方法
JPH0733259B2 (ja) * 1988-08-30 1995-04-12 信越化学工業株式会社 耐紫外線用合成石英ガラスおよびその製造方法
JP2764207B2 (ja) * 1988-08-31 1998-06-11 日本石英硝子株式会社 紫外域用有水合成石英ガラス及びその製造方法
JPH0791084B2 (ja) * 1988-09-14 1995-10-04 信越化学工業株式会社 耐紫外線用合成石英ガラスおよびその製造方法
JPH02124739A (ja) * 1988-10-31 1990-05-14 Shin Etsu Chem Co Ltd 合成石英ガラスおよびその製造方法

Also Published As

Publication number Publication date
JPH0388742A (ja) 1991-04-15

Similar Documents

Publication Publication Date Title
JP3069562B1 (ja) エキシマレ―ザ及びエキシマランプ用のシリカガラス光学材料及びその製造方法
JP3188624B2 (ja) 遠紫外線用高純度合成シリカガラス及びその製造方法
JPH0653593B2 (ja) 合成シリカガラス光学体及びその製造方法
JP3403317B2 (ja) 高出力真空紫外線用合成シリカガラス光学材料およびその製造方法
US6689705B2 (en) Synthetic quartz glass optical material and optical member
JPH0627014B2 (ja) 紫外線レーザ用合成シリカガラス光学体及びその製造方法
JPH0627013B2 (ja) 紫外線レーザ用合成シリカガラス光学体及びその製造方法
JP2971686B2 (ja) 耐紫外線レーザー用光学部材の製造方法
JP3472234B2 (ja) エキシマレーザ及びエキシマランプ用のシリカガラス光学材料
JP2000239040A (ja) F2エキシマレーザー光学部材用石英ガラス材料及び光学部材
JP3071362B2 (ja) ArFエキシマレーザリソグラフィー用合成石英マスク基板およびその製造方法
JP3531870B2 (ja) 合成石英ガラス
JPH0616449A (ja) エキシマレーザー用合成石英ガラス光学部材及びその製造方法
US6835683B2 (en) Quartz glass member and projection aligner
JPH0624997B2 (ja) レーザ光用光学系部材
JPH0648734B2 (ja) レーザ光用光学系部材
JP4228493B2 (ja) 合成石英ガラス
JP2566151B2 (ja) レーザー光学系母材の製造方法
JPH1067526A (ja) 石英ガラス光学部材
JPH0840736A (ja) エキシマレーザ光学素材用合成石英ガラス部材およびその製造方法
JP2001302275A (ja) 合成石英ガラス製光学部材
JPH0825773B2 (ja) レーザー光学系の製造素体
JP2652847B2 (ja) レーザ光用光学系部材及びリソグラフィ装置用光学系部材
JP4159852B2 (ja) 光学部材用合成石英ガラス材料
JPH0463019B2 (ja)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080720

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080720

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 16

EXPY Cancellation because of completion of term