JPH0646565A - 電力変換器 - Google Patents
電力変換器Info
- Publication number
- JPH0646565A JPH0646565A JP4195276A JP19527692A JPH0646565A JP H0646565 A JPH0646565 A JP H0646565A JP 4195276 A JP4195276 A JP 4195276A JP 19527692 A JP19527692 A JP 19527692A JP H0646565 A JPH0646565 A JP H0646565A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- output
- power converter
- inverter
- frequency inverter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Inverter Devices (AREA)
Abstract
(57)【要約】
【目的】 スイッチング周波数が低い電力変換器の制御
応答を高くするため、補助的な動作をする補助用電力変
換器を備えた電力変換器の提供を目的とする。 【構成】 電力変換器の出力電圧歪みと逆相の電圧を補
助インバータに出力させ、変圧器にて合成する。
応答を高くするため、補助的な動作をする補助用電力変
換器を備えた電力変換器の提供を目的とする。 【構成】 電力変換器の出力電圧歪みと逆相の電圧を補
助インバータに出力させ、変圧器にて合成する。
Description
【0001】
【産業上の利用分野】この発明は、PWMインバータや
サイクロコンバータのような電力変換器に関し、特に電
力変換器の出力電圧を高精度でかつ歪率の低い正弦波電
圧に制御するように補助する補助用電力変換器を備えた
電力変換器に関するものである。
サイクロコンバータのような電力変換器に関し、特に電
力変換器の出力電圧を高精度でかつ歪率の低い正弦波電
圧に制御するように補助する補助用電力変換器を備えた
電力変換器に関するものである。
【0002】
【従来の技術】図12は例えばインテレック(Inte
lec)83(oct 18〜21、Tokyo)論文
集、P.205〜212、「インバータ アウトプット
ボルテージ ウェーブフォーム クローズドループ
コントロール テクニック(Inverter Out
put Voltage Waveform Clos
ed−Loop Control Techniqu
e)に示された従来のPWMインバータを、本発明と同
様の形式に書き改めたブロック図であり、1はインバー
タ主回路、2、3は交流フィルターを構成するリアクト
ルおよびコンデンサ、4は直流電源、5は負荷、101
はコンデンサ3の電圧を検出する電力変換器、301は
PWM変調回路、302は電圧制御回路、303は正弦
波の基準電圧を発生する出力基準発生回路、401は加
減算器である。図13は、PWM変調回路301の構成
を示すブロック図であり、301aは比較回路、301
bは搬送波発生回路である。
lec)83(oct 18〜21、Tokyo)論文
集、P.205〜212、「インバータ アウトプット
ボルテージ ウェーブフォーム クローズドループ
コントロール テクニック(Inverter Out
put Voltage Waveform Clos
ed−Loop Control Techniqu
e)に示された従来のPWMインバータを、本発明と同
様の形式に書き改めたブロック図であり、1はインバー
タ主回路、2、3は交流フィルターを構成するリアクト
ルおよびコンデンサ、4は直流電源、5は負荷、101
はコンデンサ3の電圧を検出する電力変換器、301は
PWM変調回路、302は電圧制御回路、303は正弦
波の基準電圧を発生する出力基準発生回路、401は加
減算器である。図13は、PWM変調回路301の構成
を示すブロック図であり、301aは比較回路、301
bは搬送波発生回路である。
【0003】次に、動作について説明する。インバータ
1は直流電源4の電圧を矩形波状の交流電圧に変換し、
この交流電圧はリアクトル2とコンデンサ3により高調
波が除去され、正弦波状の電圧が負荷5に給電される。
1は直流電源4の電圧を矩形波状の交流電圧に変換し、
この交流電圧はリアクトル2とコンデンサ3により高調
波が除去され、正弦波状の電圧が負荷5に給電される。
【0004】一方、出力電圧基準発生回路303の正弦
波基準と電圧検出器101にて検出した出力電圧信号と
の差を加減算器401にて求め、この差信号を電圧制御
回路302に入力する。電圧制御回路302はこの差信
号を増幅し、PWM変調回路301へ正弦波状の信号を
出力する。PWM変調回路301は、三角波状の搬送波
発生回路301bと比較回路301aとから構成されて
おり、電圧制御回路302からの信号にもとづき、PW
Mのスイッチング時点を決定している。
波基準と電圧検出器101にて検出した出力電圧信号と
の差を加減算器401にて求め、この差信号を電圧制御
回路302に入力する。電圧制御回路302はこの差信
号を増幅し、PWM変調回路301へ正弦波状の信号を
出力する。PWM変調回路301は、三角波状の搬送波
発生回路301bと比較回路301aとから構成されて
おり、電圧制御回路302からの信号にもとづき、PW
Mのスイッチング時点を決定している。
【0005】PWMインバータは、正弦波基準と出力電
圧との偏差が少なくなるようにフィードバック制御され
るが、電圧偏差が生じてから始めてそれを補正する制御
動作を行っているために、整流器などの高調波を多く発
生する負荷を接続すると、制御動作遅れにより、負荷高
調波に応じた電圧歪みが発生する。従来方式では、この
電圧歪みを少なくするために、インバータ主回路1のス
イッチング素子のスイッチング周波数を高くし、電圧制
御回路の増幅率を上げ、制御応答を高速にしていた。
圧との偏差が少なくなるようにフィードバック制御され
るが、電圧偏差が生じてから始めてそれを補正する制御
動作を行っているために、整流器などの高調波を多く発
生する負荷を接続すると、制御動作遅れにより、負荷高
調波に応じた電圧歪みが発生する。従来方式では、この
電圧歪みを少なくするために、インバータ主回路1のス
イッチング素子のスイッチング周波数を高くし、電圧制
御回路の増幅率を上げ、制御応答を高速にしていた。
【0006】
【発明が解決しようとする課題】従来のPWMインバー
タ等の電力変換器は以上のように構成されているので、
負荷高調波に応じた電圧歪みを少なくするには、制御応
答を高速にする必要があり、このため、電力変換器のス
イッチング周波数を高くしなければならず、スイッチン
グ時の損失が増大するという問題点があった。
タ等の電力変換器は以上のように構成されているので、
負荷高調波に応じた電圧歪みを少なくするには、制御応
答を高速にする必要があり、このため、電力変換器のス
イッチング周波数を高くしなければならず、スイッチン
グ時の損失が増大するという問題点があった。
【0007】この発明はかかる問題点を解決するために
なされたもので、スイッチング周波数が低い電力変換器
の制御応答を高くするため、補助的な動作をする補助用
電力変換器を備えた電力変換器を提供するものである。
なされたもので、スイッチング周波数が低い電力変換器
の制御応答を高くするため、補助的な動作をする補助用
電力変換器を備えた電力変換器を提供するものである。
【0008】
【課題を解決するための手段】この発明に係る電力変換
器は、負荷端電圧が、スイッチング周波数の低い電力変
換器の出力と、スイッチング周波数の高い補助用電力変
換器の出力との合成になるように構成したものである。
器は、負荷端電圧が、スイッチング周波数の低い電力変
換器の出力と、スイッチング周波数の高い補助用電力変
換器の出力との合成になるように構成したものである。
【0009】
【作用】この発明においては、補助用電力変換器は、負
荷端電圧の歪みが少なくなるように動作する。
荷端電圧の歪みが少なくなるように動作する。
【0010】
【実施例】実施例1.図1に本発明の一実施例を示す。
前述の図12と対応する部分には同一符号を付し、その
詳細説明は省略する。ここで、補助用インバータに関す
る主回路構成要素は10番台、センサは200番台、制
御回路構成要素は500番以降の番号として区別してい
る。
前述の図12と対応する部分には同一符号を付し、その
詳細説明は省略する。ここで、補助用インバータに関す
る主回路構成要素は10番台、センサは200番台、制
御回路構成要素は500番以降の番号として区別してい
る。
【0011】図において、11は補助用インバータ、1
2,13はインバータ11に接続され、交流フィルタを
構成するリアクトルとコンデンサ、14は補助用インバ
ータ11に接続された直流電源、15は1次側が補助用
インバータ11の交流フィルタに接続され、2次側がイ
ンバータ1の交流フィルタと負荷5間に挿入された変圧
器、501はPWM変調回路、503は増幅ゲインKを
持つ増幅器、504は帯域通過フィルタである。
2,13はインバータ11に接続され、交流フィルタを
構成するリアクトルとコンデンサ、14は補助用インバ
ータ11に接続された直流電源、15は1次側が補助用
インバータ11の交流フィルタに接続され、2次側がイ
ンバータ1の交流フィルタと負荷5間に挿入された変圧
器、501はPWM変調回路、503は増幅ゲインKを
持つ増幅器、504は帯域通過フィルタである。
【0012】次に動作について説明する。
【0013】インバータ1は、例えばスイッチング周波
数1kHz程度の低周波インバータで、出力容量10k
VA,補助用インバータ11はスイッチング周波数10
kHz程度の高周波インバータとする。整流器などの高
調波を多く発生する負荷を接続すると、スイッチング周
波数以上の高調波負荷電流成分による電圧歪みが発生す
る。この電圧歪みは、電圧制御系により補正されないた
め、負荷端電圧が歪み、加減算器401は出力電圧基準
と負荷端電圧の偏差を出力する。この偏差の内、低周波
インバータは出力できないが、高周波インバータでは出
力できる周波数帯域(補正周波数帯域)の電圧偏差成分
を帯域通過フィルタ504にて検出し、この信号を増幅
器503にてK倍した信号をPWM変調回路に入力する
と、高周波インバータは電圧歪みに比例した電圧を逆相
で出力する。この出力は高周波インバータ11の交流フ
ィルタによりリップルが除去され、変圧器15を介して
低周波インバータの出力電圧に加算される。従って、低
周波インバータ1のみで給電している場合より、電圧偏
差が約1/Kに減少する。また、高周波インバータは、
電圧歪みを補正するだけなので、僅かな出力容量でよ
く、例えば、電圧歪みが10%程度ならば、10kVA
×10%=1kVAとなる。
数1kHz程度の低周波インバータで、出力容量10k
VA,補助用インバータ11はスイッチング周波数10
kHz程度の高周波インバータとする。整流器などの高
調波を多く発生する負荷を接続すると、スイッチング周
波数以上の高調波負荷電流成分による電圧歪みが発生す
る。この電圧歪みは、電圧制御系により補正されないた
め、負荷端電圧が歪み、加減算器401は出力電圧基準
と負荷端電圧の偏差を出力する。この偏差の内、低周波
インバータは出力できないが、高周波インバータでは出
力できる周波数帯域(補正周波数帯域)の電圧偏差成分
を帯域通過フィルタ504にて検出し、この信号を増幅
器503にてK倍した信号をPWM変調回路に入力する
と、高周波インバータは電圧歪みに比例した電圧を逆相
で出力する。この出力は高周波インバータ11の交流フ
ィルタによりリップルが除去され、変圧器15を介して
低周波インバータの出力電圧に加算される。従って、低
周波インバータ1のみで給電している場合より、電圧偏
差が約1/Kに減少する。また、高周波インバータは、
電圧歪みを補正するだけなので、僅かな出力容量でよ
く、例えば、電圧歪みが10%程度ならば、10kVA
×10%=1kVAとなる。
【0014】実施例2.図2はこの発明の他の実施例を
示すブロック図であり、図2において、図1と対応する
部分には同一符号を付し、その詳細説明は省略する。上
記実施例1では、帯域通過フィルタ504の入力が加減
算器401からとしたが、本実施例では電圧センサ10
1からの入力とし、帯域通過フィルタ504にて基本部
分も除去させ、負荷端電圧歪みの補正周波数帯域成分を
出力電圧から直接検出している。この検出信号は上記実
施例1と逆極性であるので、増幅器503のゲインはー
K倍となる。本実施例では、低周波インバータ1の制御
回路から高周波インバータ11の制御回路へ微小なレベ
ルの電圧偏差信号を送る必要がなくなるので、実施例1
よりもノイズ耐量が上がる。
示すブロック図であり、図2において、図1と対応する
部分には同一符号を付し、その詳細説明は省略する。上
記実施例1では、帯域通過フィルタ504の入力が加減
算器401からとしたが、本実施例では電圧センサ10
1からの入力とし、帯域通過フィルタ504にて基本部
分も除去させ、負荷端電圧歪みの補正周波数帯域成分を
出力電圧から直接検出している。この検出信号は上記実
施例1と逆極性であるので、増幅器503のゲインはー
K倍となる。本実施例では、低周波インバータ1の制御
回路から高周波インバータ11の制御回路へ微小なレベ
ルの電圧偏差信号を送る必要がなくなるので、実施例1
よりもノイズ耐量が上がる。
【0015】実施例3.図3はこの発明の更に他の実施
例を示すブロック図であり、図3において、図1と対応
する部分には同一符号を付し、その詳細説明は省略す
る。上記実施例1と異なるのは、増幅器503の出力に
応じた電圧が変圧器2次側に発生するように制御する電
圧制御ループを高周波インバータ11に持たせた点であ
る。変圧器2次側の電圧を電圧センサ201にて検出
し、この検出信号と増幅器503の出力の差を加減算器
601にて求め、この差信号を電圧制御回路502にて
増幅し、PWM変調回路501へ信号を出力しているの
で、インバータの上下アーム短絡防止時間などによるP
WM変調の非線形性を電圧制御ループが補正する。従っ
て、本実施例では、高周波インバータ11は電圧偏差信
号に応じた電圧を正確に変圧器15に発生することがで
きるので、実施例1よりも電圧歪みが少なくなる。
例を示すブロック図であり、図3において、図1と対応
する部分には同一符号を付し、その詳細説明は省略す
る。上記実施例1と異なるのは、増幅器503の出力に
応じた電圧が変圧器2次側に発生するように制御する電
圧制御ループを高周波インバータ11に持たせた点であ
る。変圧器2次側の電圧を電圧センサ201にて検出
し、この検出信号と増幅器503の出力の差を加減算器
601にて求め、この差信号を電圧制御回路502にて
増幅し、PWM変調回路501へ信号を出力しているの
で、インバータの上下アーム短絡防止時間などによるP
WM変調の非線形性を電圧制御ループが補正する。従っ
て、本実施例では、高周波インバータ11は電圧偏差信
号に応じた電圧を正確に変圧器15に発生することがで
きるので、実施例1よりも電圧歪みが少なくなる。
【0016】実施例4.図4はこの発明の更に他の実施
例を示すブロック図であり、図4において、図1と対応
する部分には同一符号を付し、その詳細説明は省略す
る。本実施例は、上記実施例2に対して、増幅器503
の出力に応じた電圧が変圧器2次側に発生するように制
御する電圧制御ループを高周波インバータ11に持たせ
たものである。変圧器2次側の電圧を電圧センサ201
にて検出し、この検出信号と増幅器503の出力の差を
加減算器601にて求め、この差信号を電圧制御回路5
02にて増幅し、PWM変調回路501へ信号を出力し
ているので、インバータの上下アーム短絡防止時間など
によるPWM変調の非線形性を電圧制御ループが補正す
る。従って、本実施例では、高周波インバータ11は電
圧偏差信号に応じた電圧を正確に変圧器15に発生する
ことができるので、実施例2よりも電圧歪みが少なくな
る。
例を示すブロック図であり、図4において、図1と対応
する部分には同一符号を付し、その詳細説明は省略す
る。本実施例は、上記実施例2に対して、増幅器503
の出力に応じた電圧が変圧器2次側に発生するように制
御する電圧制御ループを高周波インバータ11に持たせ
たものである。変圧器2次側の電圧を電圧センサ201
にて検出し、この検出信号と増幅器503の出力の差を
加減算器601にて求め、この差信号を電圧制御回路5
02にて増幅し、PWM変調回路501へ信号を出力し
ているので、インバータの上下アーム短絡防止時間など
によるPWM変調の非線形性を電圧制御ループが補正す
る。従って、本実施例では、高周波インバータ11は電
圧偏差信号に応じた電圧を正確に変圧器15に発生する
ことができるので、実施例2よりも電圧歪みが少なくな
る。
【0017】実施例5.図5はこの発明の更に他の実施
例を示すブロック図であり、図5において、図1と対応
する部分には同一符号を付し、その詳細説明は省略す
る。上記実施例1と異なるのは、変圧器15の2次側を
交流出力フィルタ用コンデンサ3に直列に接続している
点であり、その他は実施例1と同様である。実施例1の
場合は変圧器15に負荷電流が流れるので、変圧器15
の電流定格は100%必要であるが、本実施例の構成で
は変圧器巻線にはフィルタ用コンデンサの電流しか流れ
ないので(PWMインバータのフィルタ用コンデンサは
一般に10〜40%程度)、変圧器15のコストを低く
できる。
例を示すブロック図であり、図5において、図1と対応
する部分には同一符号を付し、その詳細説明は省略す
る。上記実施例1と異なるのは、変圧器15の2次側を
交流出力フィルタ用コンデンサ3に直列に接続している
点であり、その他は実施例1と同様である。実施例1の
場合は変圧器15に負荷電流が流れるので、変圧器15
の電流定格は100%必要であるが、本実施例の構成で
は変圧器巻線にはフィルタ用コンデンサの電流しか流れ
ないので(PWMインバータのフィルタ用コンデンサは
一般に10〜40%程度)、変圧器15のコストを低く
できる。
【0018】実施例6.図6はこの発明の更に他の実施
例を示すブロック図であり、図6において、図1と対応
する部分には同一符号を付し、その詳細説明は省略す
る。本実施例は、上記実施例2に対して、変圧器15の
2次側を交流出力フィルタ用コンデンサ3に直列に接続
している点であり、その他は実施例2と同様である。実
施例2の場合は変圧器15に負荷電流が流れるので、変
圧器15の電流定格は100%必要であるが、本実施例
の構成では変圧器巻線にはフィルタ用コンデンサの電流
しか流れないので(PWMインバータのフィルタ用コン
デンサは一般に10〜40%程度)、変圧器15のコス
トを低くできる。
例を示すブロック図であり、図6において、図1と対応
する部分には同一符号を付し、その詳細説明は省略す
る。本実施例は、上記実施例2に対して、変圧器15の
2次側を交流出力フィルタ用コンデンサ3に直列に接続
している点であり、その他は実施例2と同様である。実
施例2の場合は変圧器15に負荷電流が流れるので、変
圧器15の電流定格は100%必要であるが、本実施例
の構成では変圧器巻線にはフィルタ用コンデンサの電流
しか流れないので(PWMインバータのフィルタ用コン
デンサは一般に10〜40%程度)、変圧器15のコス
トを低くできる。
【0019】実施例7.図7はこの発明の更に他の実施
例を示すブロック図であり、図7において、図1と対応
する部分には同一符号を付し、その詳細説明は省略す
る。本実施例は、上記実施例3に対して、変圧器15の
2次側を交流出力フィルタ用コンデンサ3に直列に接続
している点であり、その他は実施例3と同様である。実
施例3の場合は変圧器15に負荷電流が流れるので、変
圧器15の電流定格は100%必要であるが、本実施例
の構成では変圧器巻線にはフィルタ用コンデンサの電流
しか流れないので(PWMインバータのフィルタ用コン
デンサは一般に10〜40%程度)、変圧器15のコス
トを低くできる。
例を示すブロック図であり、図7において、図1と対応
する部分には同一符号を付し、その詳細説明は省略す
る。本実施例は、上記実施例3に対して、変圧器15の
2次側を交流出力フィルタ用コンデンサ3に直列に接続
している点であり、その他は実施例3と同様である。実
施例3の場合は変圧器15に負荷電流が流れるので、変
圧器15の電流定格は100%必要であるが、本実施例
の構成では変圧器巻線にはフィルタ用コンデンサの電流
しか流れないので(PWMインバータのフィルタ用コン
デンサは一般に10〜40%程度)、変圧器15のコス
トを低くできる。
【0020】実施例8.図8はこの発明の更に他の実施
例を示すブロック図であり、図8において、図1と対応
する部分には同一符号を付し、その詳細説明は省略す
る。本実施例は、上記実施例4に対して、変圧器15の
2次側を交流出力フィルタ用コンデンサ3に直列に接続
している点であり、その他は実施例4と同様である。実
施例4の場合は変圧器15に負荷電流が流れるので、変
圧器15の電流定格は100%必要であるが、本実施例
の構成では変圧器巻線にはフィルタ用コンデンサの電流
しか流れないので(PWMインバータのフィルタ用コン
デンサは一般に10〜40%程度)、変圧器15のコス
トを低くできる。
例を示すブロック図であり、図8において、図1と対応
する部分には同一符号を付し、その詳細説明は省略す
る。本実施例は、上記実施例4に対して、変圧器15の
2次側を交流出力フィルタ用コンデンサ3に直列に接続
している点であり、その他は実施例4と同様である。実
施例4の場合は変圧器15に負荷電流が流れるので、変
圧器15の電流定格は100%必要であるが、本実施例
の構成では変圧器巻線にはフィルタ用コンデンサの電流
しか流れないので(PWMインバータのフィルタ用コン
デンサは一般に10〜40%程度)、変圧器15のコス
トを低くできる。
【0021】実施例9.図9はこの発明の更に他の実施
例を示すブロック図であり、図9において、図1と対応
する部分には同一符号を付し、その詳細説明は省略す
る。本実施例は、低周波インバータ1、高周波インバー
タ11が、ともに電流制御マイナーループを持っている
場合であり、高周波インバータ11の出力をリアクトル
12を介してリアクトル2とコンデンサ3の接続点に接
続する。又、PWM変調回路301、501の前に電流
制御回路305,505をそれぞれ設け、各電流指令と
電流センサ102,202の検出値の差をそれぞれ加減
算器402,601にて求め、この差が小さくなるよう
制御している。低周波インバータ1では、電圧制御回路
302から、出力電圧を出力電圧基準と一致させるため
に必要な電流指令が、電流制御マイナーループに与えら
れる。
例を示すブロック図であり、図9において、図1と対応
する部分には同一符号を付し、その詳細説明は省略す
る。本実施例は、低周波インバータ1、高周波インバー
タ11が、ともに電流制御マイナーループを持っている
場合であり、高周波インバータ11の出力をリアクトル
12を介してリアクトル2とコンデンサ3の接続点に接
続する。又、PWM変調回路301、501の前に電流
制御回路305,505をそれぞれ設け、各電流指令と
電流センサ102,202の検出値の差をそれぞれ加減
算器402,601にて求め、この差が小さくなるよう
制御している。低周波インバータ1では、電圧制御回路
302から、出力電圧を出力電圧基準と一致させるため
に必要な電流指令が、電流制御マイナーループに与えら
れる。
【0022】高周波インバータ11では、加減算器40
1にて求められた電圧偏差を帯域通過フィルタ504を
通して、電圧偏差の補正周波数帯域成分を求め、これを
電圧/電流換算を行う伝達関数G(s)503により、
電流指令値に換算する。伝達関数G(s)503は、G
(s)=Cp・sとなる(Cpはコンデンサ3のキャパ
シタンス値、sはラプラス演算子)。従って、高周波イ
ンバータが電流指令値に追従し電流を流すことにより、
コンデンサ3には、電圧歪みに比例した電圧が逆相で発
生し、低周波インバータ1のみで給電している場合よ
り、電圧偏差が減少する。また、高周波インバータは、
電圧歪みを補正するだけなので、僅かな出力容量でよ
く、例えば、電圧歪みが10%程度ならば、10kVA
×10%=1kVAとなる。本実施例では、変圧値が不
要であるので回路が簡単になる。
1にて求められた電圧偏差を帯域通過フィルタ504を
通して、電圧偏差の補正周波数帯域成分を求め、これを
電圧/電流換算を行う伝達関数G(s)503により、
電流指令値に換算する。伝達関数G(s)503は、G
(s)=Cp・sとなる(Cpはコンデンサ3のキャパ
シタンス値、sはラプラス演算子)。従って、高周波イ
ンバータが電流指令値に追従し電流を流すことにより、
コンデンサ3には、電圧歪みに比例した電圧が逆相で発
生し、低周波インバータ1のみで給電している場合よ
り、電圧偏差が減少する。また、高周波インバータは、
電圧歪みを補正するだけなので、僅かな出力容量でよ
く、例えば、電圧歪みが10%程度ならば、10kVA
×10%=1kVAとなる。本実施例では、変圧値が不
要であるので回路が簡単になる。
【0023】実施例10.図10はこの発明の他の実施
例を示すブロック図であり、図10において、図1と対
応する部分には同一符号を付し、その詳細説明は省略す
る。本実施例は、上記実施例9に対して、帯域通過フィ
ルタ504の入力を電圧センサ101からの入力とし、
帯域通過フィルタ504にて基本波分も除去させ、負荷
端電圧歪みの補正周波数帯域成分を出力電圧から直接検
出している。この検出信号は上記実施例9と逆極性であ
るので、伝達関数G(s)503の極性は負となる。本
実施例では、低周波インバータ1の制御回路から高周波
インバータ11の制御回路へ微小なレベルの電圧偏差信
号を送る必要がなくなるので、実施例9よりもノイズ耐
量が上がる。
例を示すブロック図であり、図10において、図1と対
応する部分には同一符号を付し、その詳細説明は省略す
る。本実施例は、上記実施例9に対して、帯域通過フィ
ルタ504の入力を電圧センサ101からの入力とし、
帯域通過フィルタ504にて基本波分も除去させ、負荷
端電圧歪みの補正周波数帯域成分を出力電圧から直接検
出している。この検出信号は上記実施例9と逆極性であ
るので、伝達関数G(s)503の極性は負となる。本
実施例では、低周波インバータ1の制御回路から高周波
インバータ11の制御回路へ微小なレベルの電圧偏差信
号を送る必要がなくなるので、実施例9よりもノイズ耐
量が上がる。
【0024】実施例11.図11はこの発明の他の実施
例を示すブロック図であり、図11において、図1と対
応する部分には同一符号を付し、その詳細説明は省略す
る。本実施例は、上記実施例9に対して、加減算器40
2の出力する電流偏差を帯域通過フィルタ504を通
し、電流偏差の補正周波数帯域成分を求め、この信号を
増幅器503にてK倍し、高周波インバータ11の電流
指令値としている。低周波インバータ1の電流マイナー
ループの偏差は、高周波インバータ11により、約1/
Kに減少する。よって、電圧制御偏差も減少し、電圧歪
みが補正される。実施例9では、503が微分回路であ
るが、本実施例では503は比例ゲインでよいので、回
路が簡単になる。
例を示すブロック図であり、図11において、図1と対
応する部分には同一符号を付し、その詳細説明は省略す
る。本実施例は、上記実施例9に対して、加減算器40
2の出力する電流偏差を帯域通過フィルタ504を通
し、電流偏差の補正周波数帯域成分を求め、この信号を
増幅器503にてK倍し、高周波インバータ11の電流
指令値としている。低周波インバータ1の電流マイナー
ループの偏差は、高周波インバータ11により、約1/
Kに減少する。よって、電圧制御偏差も減少し、電圧歪
みが補正される。実施例9では、503が微分回路であ
るが、本実施例では503は比例ゲインでよいので、回
路が簡単になる。
【0025】
【発明の効果】以上のように、この発明によれば、電力
変換器の出力電圧に、別の電力変換器の出力電圧を合成
することにより、電圧歪みを少なくできる効果がある。
変換器の出力電圧に、別の電力変換器の出力電圧を合成
することにより、電圧歪みを少なくできる効果がある。
【図1】この発明の実施例1を示すブロック図である。
【図2】この発明の実施例2を示すブロック図である。
【図3】この発明の実施例3を示すブロック図である。
【図4】この発明の実施例4を示すブロック図である。
【図5】この発明の実施例5を示すブロック図である。
【図6】この発明の実施例6を示すブロック図である。
【図7】この発明の実施例7を示すブロック図である。
【図8】この発明の実施例8を示すブロック図である。
【図9】この発明の実施例9を示すブロック図である。
【図10】この発明の実施例10を示すブロック図であ
る。
る。
【図11】この発明の実施例11を示すブロック図であ
る。
る。
【図12】従来の電力変換装置を示すブロック図であ
る。
る。
【図13】PWM変調回路を示すブロック図である。
1 電力変換器 5 負荷 11 電力変換器 15 変圧器
Claims (2)
- 【請求項1】 負荷に交流電力を供給する変換器のう
ち、この変換器を構成するスイッチング素子が半サイク
ルの内に複数回のスイッチングを行い、任意の交流出力
を発生するように構成された電力変換器システムにおい
て、上記電力変換器とは別の電力変換器の出力電圧を、
上記電力変換器の電力歪みに応じた電圧とし、変圧器を
介して上記電力変換器の出力電圧と合成するようにした
ことを特徴とする電力変換器。 - 【請求項2】 負荷に交流電力を供給する変換器のう
ち、この変換器を構成するスイッチング素子が半サイク
ルの内に複数回のスイッチングを行い、任意の交流出力
を発生するように構成された電力変換器システムにおい
て、上記電力変換器とは別の電力変換器の出力電流を、
上記電力変換器の電力歪みに応じた電流とし、リアクト
ルを介して上記電力変換器の出力電圧と合成するように
したことを特徴とする電力変換器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4195276A JP2783069B2 (ja) | 1992-07-22 | 1992-07-22 | 電力変換器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4195276A JP2783069B2 (ja) | 1992-07-22 | 1992-07-22 | 電力変換器 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0646565A true JPH0646565A (ja) | 1994-02-18 |
JP2783069B2 JP2783069B2 (ja) | 1998-08-06 |
Family
ID=16338472
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4195276A Expired - Fee Related JP2783069B2 (ja) | 1992-07-22 | 1992-07-22 | 電力変換器 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2783069B2 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017085848A (ja) * | 2015-10-30 | 2017-05-18 | 日産自動車株式会社 | 電源装置 |
JP2018026993A (ja) * | 2016-08-03 | 2018-02-15 | 株式会社三社電機製作所 | 試験用電源装置 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10008854B2 (en) | 2015-02-19 | 2018-06-26 | Enphase Energy, Inc. | Method and apparatus for time-domain droop control with integrated phasor current control |
-
1992
- 1992-07-22 JP JP4195276A patent/JP2783069B2/ja not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017085848A (ja) * | 2015-10-30 | 2017-05-18 | 日産自動車株式会社 | 電源装置 |
JP2018026993A (ja) * | 2016-08-03 | 2018-02-15 | 株式会社三社電機製作所 | 試験用電源装置 |
JP2018198530A (ja) * | 2016-08-03 | 2018-12-13 | 株式会社三社電機製作所 | 試験用電源装置 |
JP2019004700A (ja) * | 2016-08-03 | 2019-01-10 | 株式会社三社電機製作所 | 試験用電源の生成方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2783069B2 (ja) | 1998-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3123079B2 (ja) | Pwm制御変換器の制御装置 | |
JPH06502294A (ja) | 高力率倍電圧整流器 | |
JPH04190633A (ja) | インバータの並列運転方法および並列運転インバータ装置 | |
JPH0759351A (ja) | 電力変換器の制御装置 | |
JP2527911B2 (ja) | Pwmコンバ―タ | |
JP2783069B2 (ja) | 電力変換器 | |
JP3082849B2 (ja) | 無停電電源装置 | |
JPH11164481A (ja) | アクティブフィルタの制御方法 | |
JP2004032962A (ja) | 複合型交流電源装置 | |
JP2000276243A (ja) | 半導体スイッチの制御装置 | |
JP3167314B2 (ja) | インバータ装置 | |
JP2003032897A (ja) | 太陽光発電装置 | |
JP3915977B2 (ja) | 直並列式電源装置の制御回路 | |
JP2658620B2 (ja) | 電力変換器の制御回路 | |
JPH04334930A (ja) | 直列形アクティブフィルタ | |
JPH0382338A (ja) | 高調波電圧抑制装置 | |
JPH11225477A (ja) | フィルタリング機能付き正弦波コンバータ | |
JPS63136968A (ja) | 変換器の制御回路 | |
JPH0715345Y2 (ja) | 三相インバ−タ | |
JPH1066344A (ja) | 電力変換装置の制御回路 | |
JPH05184150A (ja) | 直列式電圧補償装置 | |
JPH0736473Y2 (ja) | インバータの制御装置 | |
JP3133772B2 (ja) | インバータ装置 | |
JP2000172351A (ja) | スイッチング電源装置 | |
JPS63245268A (ja) | 電流形pwm変換器の制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |