JPH0643278B2 - Semiconductor thin film forming method - Google Patents

Semiconductor thin film forming method

Info

Publication number
JPH0643278B2
JPH0643278B2 JP61253040A JP25304086A JPH0643278B2 JP H0643278 B2 JPH0643278 B2 JP H0643278B2 JP 61253040 A JP61253040 A JP 61253040A JP 25304086 A JP25304086 A JP 25304086A JP H0643278 B2 JPH0643278 B2 JP H0643278B2
Authority
JP
Japan
Prior art keywords
film
seed
semiconductor
insulating film
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61253040A
Other languages
Japanese (ja)
Other versions
JPS63107894A (en
Inventor
修一 齋藤
秀和 岡林
博光 波田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP61253040A priority Critical patent/JPH0643278B2/en
Publication of JPS63107894A publication Critical patent/JPS63107894A/en
Publication of JPH0643278B2 publication Critical patent/JPH0643278B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は非晶質絶縁膜上に単結晶半導体薄膜を形成する
方法に関する。
The present invention relates to a method for forming a single crystal semiconductor thin film on an amorphous insulating film.

[従来の技術] 絶縁膜上に単結晶膜、いわゆるSOI膜を形成する場合
に、絶縁膜の一部に開口部を設け、単結晶基板からの結
晶情報を伝えるためのいわゆるシードを設ける方法がS
OI膜の結晶方位の制御には効果的である。
[Prior Art] When forming a single crystal film, a so-called SOI film, on an insulating film, there is a method of providing an opening in a part of the insulating film and providing a so-called seed for transmitting crystal information from the single crystal substrate. S
It is effective for controlling the crystal orientation of the OI film.

[発明が解決しようとする問題点] しかしながらたとえば、単結晶Si基板上に絶縁膜とし
て酸化膜を形成し、その一部に開口部を設け、その上に
非晶質Siを付着させ、500〜600℃の低温で熱処理を行
ない、該開口部すなわちシード部から絶縁膜上に横方向
に固相成長させる場合、シードから横方向に単結晶成長
する距離は、非結晶Si中に不純物が導入されていない
場合、約10μm程度にすぎないという問題がある(参考
文献,H.Ishiwara et al;Extended Abstracts of the 1
8th Conference on Solid State Devices and Material
s,Tokyo,1986 p553)。
[Problems to be Solved by the Invention] However, for example, an oxide film is formed as an insulating film on a single-crystal Si substrate, an opening is provided in a part thereof, and amorphous Si is adhered thereon, When heat treatment is performed at a low temperature of 600 ° C. and solid phase growth is performed in the lateral direction on the insulating film from the opening, that is, the seed portion, the distance for single crystal growth in the lateral direction from the seed is such that impurities are introduced into amorphous Si. If not, there is a problem that it is only about 10 μm (Reference, H. Ishiwara et al; Extended Abstracts of the 1
8th Conference on Solid State Devices and Material
s, Tokyo, 1986 p553).

本発明の目的は上記のような問題点を解決し、SOI結
晶を成長させるに際し、シードから一方向に大面積にわ
たり単結晶薄膜の形成を可能ならしめた半導体薄膜形成
方法を提供することにある。
An object of the present invention is to solve the above problems and to provide a semiconductor thin film forming method capable of forming a single crystal thin film over a large area in one direction from a seed when growing an SOI crystal. .

[問題点を解決するための手段] 本発明は単結晶半導体基板上に形成した絶縁膜の一部に
開口部を有する試料を、膜形成を行なう半導体原子を含
むガス中に導入し、該試料を加熱しつつ、該絶縁膜の開
口部より一方向にイオンビームまたは電子ビームを照射
し、該絶縁膜上に該開口部より半導体膜を付着させる工
程と、前記工程により形成した試料上に半導体膜をエピ
タキシャル成長させる工程とを含むことを特徴とする半
導体薄膜形成方法である。
[Means for Solving the Problems] The present invention introduces a sample having an opening in a part of an insulating film formed on a single crystal semiconductor substrate into a gas containing semiconductor atoms for film formation, While heating the insulating film, irradiating an ion beam or an electron beam in one direction from the opening of the insulating film to attach a semiconductor film from the opening to the insulating film, and a semiconductor formed on the sample formed by the process. And a step of epitaxially growing the film.

[作用] 絶縁膜上に付着した非晶質膜をシードから横方向に固相
成長させる場合に、シードからの横方向成長する距離に
制限が生じる理由は、非晶質膜全体が固相成長温度に加
熱されているため、部分的に多結晶の核成長が生じ、成
長した多結晶と固相成長した膜とがぶつかり合い、そこ
で固相成長が阻止されるからである。従って、シードか
らの横方向成長距離を大きくするために、絶縁膜上に一
度に全面に膜を付着させ、その後結晶化させるのではな
く、シードから順次、膜を成長させてゆけば良い。その
方法として、膜形成原子を含んだガス中に、低温に加熱
した試料を入れ、シード部から一方向に、電子ビームあ
るいはイオンビームなどのエネルギービームを照射し、
ビームが照射された個所にのみ膜を成長させる方法があ
る。しかし、この方法では1μm程度の厚みを有する膜
の形成には時間がかかり、また、表面状態も悪くなるた
め、まず前記の方法で数10μm程度の膜を形成し、次に
その膜上にエピタキシャル成長させることにより表面状
態の良いかつ任意の膜厚を有するSOI膜の形成が可能
となる。
[Function] When an amorphous film deposited on an insulating film is laterally solid-phase grown from a seed, the reason why the lateral growth distance from the seed is limited is that the entire amorphous film is solid-phase grown. This is because the polycrystal nuclei are partially grown because of being heated to the temperature, the grown polycrystal and the solid phase grown film collide with each other, and the solid phase growth is blocked there. Therefore, in order to increase the lateral growth distance from the seed, the film may be sequentially grown from the seed instead of adhering the film all over the insulating film at once and then crystallizing it. As a method, a sample heated at a low temperature is put in a gas containing film-forming atoms, and an energy beam such as an electron beam or an ion beam is irradiated from the seed portion in one direction,
There is a method of growing a film only on a portion irradiated with a beam. However, with this method, it takes time to form a film having a thickness of about 1 μm, and the surface condition deteriorates. Therefore, first, a film of about several tens of μm is formed by the above method, and then epitaxial growth is performed on the film. By doing so, it becomes possible to form an SOI film having a good surface condition and an arbitrary film thickness.

[実施例] 以下、本発明を実施例に基いて、より詳細な説明を行な
う。第1図は本発明に用いた試料構造を示す。図におい
て、(100)方位のシリコン基板1上に熱酸化膜2を1μ
m形成する。次にシード部3は選択的にシリコン単結晶
を埋込んで平坦化する。試料は基板加熱装置6により35
0℃に加熱する。ここに、シランとアルゴンの混合ガス
を導入し、次にイオンビーム5をシード3より一方向に
酸化膜2上を移動させる。イオンビームとしては、Si
を用いた。イオンビーム5がまずシード3上に照射さ
れると、シード3上に存在するシランガスが分解され、
シリコンがシード3上に付着するシード領域は同時に照
射されるイオンビーム5によるイオンの効果も加わり、
シリコンはシード3上にエピタキシャル成長する。次に
イオンビーム5を徐々にシード3から移動させると、同
様にシリコンがイオンビーム5が照射された領域にのみ
付着する。この時、基板温度が高いと多結晶の成長速度
が速いため、条件によっては、多結晶シリコン膜が成長
してしまうが、基板温度を低くすることで、多結晶核の
成長速度を遅くすることにより、シリコン原子は成長層
4にエピタキシャル成長し、横方向成長することにな
る。本発明の場合、膜厚は数10nmと薄い。もっとも時間
をかければ厚い膜の形成も可能である。しかし、その場
合、表面状態は悪化し凹凸が激しくなる。そこで、数10
0nm程度の膜厚を得るには、まず、イオンビームを照射
し、数10nmの膜厚のシリコン層を形成する。次に、その
上にシリコンをエピタキシャル成長させて所定の膜厚と
することにより短時間で成長し、かつ表面状態の良いシ
リコン膜を形成できた。また、同様な効果は、電子ビー
ムを用いても得られ、エネルギービームが膜形成に有効
であることが分かった。さらに、イオンビームまたは電
子ビームを線状化することにより、高スループットが実
現できる。実際、電子ビームを用いた場合、約4〜5mm
程度の長さの線状電子ビームを取り出すことが可能であ
り、この様なビームを用いることにより、ウェーハの処
理を従来法に比して約50倍程度短縮できた。
EXAMPLES Hereinafter, the present invention will be described in more detail based on examples. FIG. 1 shows a sample structure used in the present invention. In the figure, a thermal oxide film 2 of 1 μm is formed on a silicon substrate 1 of (100) orientation.
m. Next, the seed part 3 is selectively embedded with a silicon single crystal to be planarized. The sample is 35 by the substrate heating device 6.
Heat to 0 ° C. A mixed gas of silane and argon is introduced here, and then the ion beam 5 is moved from the seed 3 in one direction on the oxide film 2. As the ion beam, Si
+ Was used. When the ion beam 5 is first irradiated onto the seed 3, the silane gas existing on the seed 3 is decomposed,
The seed region where silicon adheres to the seed 3 also has the effect of ions by the ion beam 5 that is simultaneously irradiated,
Silicon is epitaxially grown on the seed 3. Next, when the ion beam 5 is gradually moved from the seed 3, silicon is similarly attached only to the region irradiated with the ion beam 5. At this time, if the substrate temperature is high, the polycrystalline silicon growth rate is fast, so the polycrystalline silicon film may grow under some conditions. However, by lowering the substrate temperature, it is possible to slow the growth rate of the polycrystalline nuclei. As a result, silicon atoms are epitaxially grown on the growth layer 4 and laterally grown. In the case of the present invention, the film thickness is as thin as several tens of nm. If it takes the longest time, a thick film can be formed. However, in that case, the surface condition deteriorates and the unevenness becomes severe. So the number 10
In order to obtain a film thickness of about 0 nm, first, irradiation with an ion beam is performed to form a silicon layer having a film thickness of several 10 nm. Next, silicon was epitaxially grown on it to a predetermined film thickness, so that a silicon film that was grown in a short time and had a good surface condition could be formed. Also, the same effect was obtained by using an electron beam, and it was found that the energy beam is effective for film formation. Further, by linearizing the ion beam or the electron beam, high throughput can be realized. In fact, when using an electron beam, it is about 4-5 mm
It is possible to extract a linear electron beam with a length of about 50%, and by using such a beam, the wafer processing can be shortened by about 50 times compared with the conventional method.

[発明の効果] 以上のように本発明の方法を用いることによりシードか
ら一方向に大面積の半導体薄膜を形成でき、またイオン
ビームまたは電子ビームはビーム形状の整形が容易であ
るため、線状ビームを形成し、その線状ビームを用いる
ことによりウェーハ処理時間を大幅に短縮できる効果を
有するものである。
[Advantages of the Invention] As described above, by using the method of the present invention, a semiconductor thin film having a large area can be formed in one direction from a seed, and an ion beam or an electron beam can be easily shaped into a linear shape. By forming a beam and using the linear beam, the wafer processing time can be significantly shortened.

【図面の簡単な説明】[Brief description of drawings]

第1図は本実施例に用いた試料の断面図である。 1……シリコン基板、2……酸化膜 3……シード、4……成長膜 5……イオンビーム、6……基板加熱装置 FIG. 1 is a cross-sectional view of the sample used in this example. 1 ... Silicon substrate, 2 ... Oxide film 3 ... Seed, 4 ... Growth film 5 ... Ion beam, 6 ... Substrate heating device

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−235795(JP,A) 特開 昭61−4224(JP,A) 特開 昭59−16337(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (56) Reference JP-A-60-235795 (JP, A) JP-A-61-2224 (JP, A) JP-A-59-16337 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】単結晶半導体基板上に形成された絶縁膜の
一部に開口部を有する試料を、膜形成を行なう半導体原
子を含むガス中に導入し、該試料を加熱しつつ該絶縁膜
の開口部より一方向にイオンビームまたは電子ビームを
照射し、該絶縁膜上に該開口部より半導体膜を付着させ
る工程と、前記工程により形成した試料上に半導体膜を
エピタキシャル成長させる工程とを含むことを特徴とす
る半導体薄膜形成方法。
1. A sample having an opening in a part of an insulating film formed on a single crystal semiconductor substrate is introduced into a gas containing semiconductor atoms for film formation, and the insulating film is heated while heating the sample. Of irradiating an ion beam or an electron beam in one direction from the opening of the semiconductor device to attach a semiconductor film on the insulating film through the opening, and a step of epitaxially growing the semiconductor film on the sample formed by the process. A method for forming a semiconductor thin film, comprising:
JP61253040A 1986-10-23 1986-10-23 Semiconductor thin film forming method Expired - Lifetime JPH0643278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61253040A JPH0643278B2 (en) 1986-10-23 1986-10-23 Semiconductor thin film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61253040A JPH0643278B2 (en) 1986-10-23 1986-10-23 Semiconductor thin film forming method

Publications (2)

Publication Number Publication Date
JPS63107894A JPS63107894A (en) 1988-05-12
JPH0643278B2 true JPH0643278B2 (en) 1994-06-08

Family

ID=17245640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61253040A Expired - Lifetime JPH0643278B2 (en) 1986-10-23 1986-10-23 Semiconductor thin film forming method

Country Status (1)

Country Link
JP (1) JPH0643278B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60235795A (en) * 1984-05-04 1985-11-22 Hitachi Ltd Preparation of single crystal membrane

Also Published As

Publication number Publication date
JPS63107894A (en) 1988-05-12

Similar Documents

Publication Publication Date Title
JPS58130517A (en) Manufacture of single crystal thin film
JPS5918196A (en) Preparation of thin film of single crystal
JPS6158879A (en) Preparation of silicon thin film crystal
JP2743370B2 (en) Method of forming polycrystalline film
JPH0643278B2 (en) Semiconductor thin film forming method
JPS58182816A (en) Recrystallizing method of silicon family semiconductor material
JP3333187B2 (en) Method for manufacturing thin film semiconductor device
JP2615406B2 (en) Method for manufacturing silicon substrate having silicon carbide buried layer
JP2737152B2 (en) SOI forming method
JPH0810669B2 (en) Method of forming SOI film
JPH0752715B2 (en) Method for forming polycrystalline silicon thin film
JPH02105517A (en) Manufacture of semiconductor device
EP0420516B1 (en) Method for forming semiconductor thin film
JPH0284772A (en) Manufacture of semiconductor device
JPH01187873A (en) Manufacture of semiconductor device
JPH0272669A (en) Thin film semiconductor device and manufacture thereof
JPH02238617A (en) Crystal growth of semiconductor thin film
JP2867402B2 (en) Method for manufacturing semiconductor device
JP2875493B2 (en) Method for manufacturing thin-film polycrystalline semiconductor
JPH0311618A (en) Crystalline semiconductor film and forming method thereof
JP2680114B2 (en) Method for forming crystalline semiconductor thin film
JPS60164316A (en) Formation of semiconductor thin film
JPH04373171A (en) Forming method of semiconductor crystal article
JPS61261285A (en) Production of substrate for semiconductor device
JPH0334847B2 (en)