JPS63107894A - Formation of thin semiconductor film - Google Patents

Formation of thin semiconductor film

Info

Publication number
JPS63107894A
JPS63107894A JP25304086A JP25304086A JPS63107894A JP S63107894 A JPS63107894 A JP S63107894A JP 25304086 A JP25304086 A JP 25304086A JP 25304086 A JP25304086 A JP 25304086A JP S63107894 A JPS63107894 A JP S63107894A
Authority
JP
Japan
Prior art keywords
film
seed
semiconductor
opening
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25304086A
Other languages
Japanese (ja)
Other versions
JPH0643278B2 (en
Inventor
Shuichi Saito
修一 齋藤
Hidekazu Okabayashi
岡林 秀和
Hiromitsu Namita
博光 波田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61253040A priority Critical patent/JPH0643278B2/en
Publication of JPS63107894A publication Critical patent/JPS63107894A/en
Publication of JPH0643278B2 publication Critical patent/JPH0643278B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To form a thin semiconductor film of a large area from a seed in one direction when a so-called SOI film is formed, by radiating energy beams on the seed in part of an insulating film in one direction to deposit a semiconductor film and by carrying out epitaxial growth on the film. CONSTITUTION:A sample having an opening (seed) 3 in part of an insulating film (oxide film) 2 formed on a single crystal semiconductor substrate (silicon substrate) 1 is put in a gas contg. semiconductor atoms for forming a film. Energy beams (ion beams) 5 are radiated on the opening 3 in the insulating film 2 in one direction under heating to deposit a semiconductor film 4 on the film 2 from the opening 3. A semiconductor film is further formed on the film 4 by epitaxial growth.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は非晶質絶縁膜上に単結晶半導体薄膜を形成する
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for forming a single crystal semiconductor thin film on an amorphous insulating film.

[従来の技術] 絶縁膜上に単結晶膜、いわゆるSOI膜を形成する場合
に、絶縁膜の一部に開口部を設け、単結晶基板からの結
晶情報を伝えるためのいわゆるシードを設ける方法がS
OI膜の結晶方位の制御には効果的である。
[Prior Art] When forming a single crystal film, a so-called SOI film, on an insulating film, there is a method of forming an opening in a part of the insulating film and providing a so-called seed for transmitting crystal information from a single crystal substrate. S
This is effective in controlling the crystal orientation of the OI film.

[発明が解決しようとする問題点] しかしながらたとえば、単結晶3i基板上に絶縁膜とし
て酸化膜を形成し、その一部に開口部を設け、その上に
非晶質Siを付着させ、500〜600℃の低温で熱処
理を行ない、該開口部すなわちシード部から絶縁膜上に
横方向に同相成長させる場合、シードから横方向に単結
晶成長する距離は、非晶質3i中に不純物が導入されて
いない場合、約10卯程度にすぎないという問題がある
(参考文献、 H,l5hivara et al ;
 Extended Abstractsof the
 18th Conference on 5olid
 5tateDevices and Materia
ls、 Tokyo、 1986 p553 )。
[Problems to be Solved by the Invention] However, for example, if an oxide film is formed as an insulating film on a single-crystal 3i substrate, an opening is formed in a part of the oxide film, and amorphous Si is deposited thereon, When heat treatment is performed at a low temperature of 600° C. and the in-phase growth is performed laterally from the opening, that is, the seed portion, on the insulating film, the distance from the seed to the laterally growing single crystal is determined by the distance that impurities are introduced into the amorphous 3i. If it is not, there is a problem that it is only about 10 μ (References, H, 15 Hibara et al;
Extended Abstracts of the
18th Conference on 5olid
5tateDevices and Materia
ls, Tokyo, 1986 p553).

本発明の目的は上記のような問題点を解決し、SOI結
晶を成長させるに際し、シードから一方向に大面積にわ
たり単結晶薄膜の形成を可能ならしめた半導体薄膜形成
方法を提供することにある。
An object of the present invention is to solve the above-mentioned problems and provide a method for forming a semiconductor thin film that enables the formation of a single crystal thin film over a large area in one direction from a seed when growing an SOI crystal. .

[問題点を解決するための手段] 本発明は単結晶半導体基板上に形成した絶縁膜の一部に
開口部を有する試料を、膜形成を行なう半導体原子を含
むガス中に導入し、該試料を加熱しつつ、該絶縁膜の開
口部より一方向にエネルギービームを照射し、該絶縁膜
上に該開口部より半導体膜を付着させる工程と、前記工
程により形成した試料上に半導体膜をエピタキシャル成
長させる工程とを含むことを特徴とする半導体薄膜形成
方法でおる。
[Means for Solving the Problems] The present invention introduces a sample having an opening in a part of an insulating film formed on a single crystal semiconductor substrate into a gas containing semiconductor atoms for film formation, and irradiating an energy beam in one direction from an opening in the insulating film while heating the insulating film, and depositing a semiconductor film on the insulating film through the opening, and epitaxially growing the semiconductor film on the sample formed in the above step. A semiconductor thin film forming method is characterized in that it includes a step of forming a semiconductor thin film.

[作 用] 絶縁膜上に付着した非晶質膜をシードから横方向に固相
成長させる場合に、シードからの横方向成長する距離に
制限が生じる理由は、非晶質膜全体が固相成長温度に加
熱されているため、部分的に多結晶の核成長が生じ、成
長した多結晶と同相成長した膜とがぶつかり合い、そこ
で同相成長が阻止されるからである。従って、シードか
らの横方向成長距離を大きくするために、絶縁膜上に一
度に全面に膜を付着させ、その後結晶化させるのではな
く、シードから順次、膜を成長ざぜてゆけば良い。その
方法として、膜形成原子を含んだガス中に、低温に加熱
した試料を入れ、シード部から一方向に、電子ビーム、
レーザビームあるいはイオンビームなどのエネルギービ
ームを照射し、ビームが照射された個所にのみ膜を成長
させる方法がある。しかし、この方法では1uM程度の
厚みを有する膜の形成には時間がかかり、また、表面状
態も悪くなるため、まず前記の方法で数10nm程度の
膜を形成し、次にその膜上にエピタキシャル成長させる
ことにより表面状態の良いかつ任意の膜厚を有するSO
I膜の形成が可能となる。
[Function] When an amorphous film attached to an insulating film is grown in a solid phase in the lateral direction from a seed, the reason why there is a limit to the distance that the amorphous film can grow in the lateral direction from the seed is because the entire amorphous film is grown in a solid phase. Because it is heated to the growth temperature, polycrystalline nuclei grow locally, and the grown polycrystals collide with the in-phase grown film, thereby blocking in-phase growth. Therefore, in order to increase the lateral growth distance from the seed, instead of depositing a film all over the insulating film at once and then crystallizing it, it is sufficient to grow the film sequentially from the seed. In this method, a sample heated to a low temperature is placed in a gas containing film-forming atoms, and an electron beam is emitted in one direction from the seed part.
There is a method of irradiating an energy beam, such as a laser beam or an ion beam, and growing a film only in the area irradiated with the beam. However, with this method, it takes time to form a film with a thickness of about 1 μM, and the surface condition deteriorates, so first a film with a thickness of several tens of nanometers is formed using the method described above, and then epitaxial growth is performed on the film. SO with good surface condition and arbitrary film thickness can be formed by
It becomes possible to form an I film.

[実施例] 以下、本発明を実施例に基いて、より詳細な説明を行な
う。第1図は本発明に用いた試料構造を示す。図におい
て、(100)方位のシリコン基板1上に熱酸化膜2を
1卯形成する。次にシード部3は選択的にシリコン単結
晶を埋込んで平坦化する。
[Examples] Hereinafter, the present invention will be explained in more detail based on Examples. FIG. 1 shows the sample structure used in the present invention. In the figure, one layer of thermal oxide film 2 is formed on a silicon substrate 1 in the (100) orientation. Next, the seed portion 3 is selectively filled with silicon single crystal and planarized.

試料は基板加熱装置6により350℃に加熱する。The sample is heated to 350° C. by the substrate heating device 6.

ここに、シランとアルゴンの混合ガスを導入し、次にイ
オンビーム5をシード3より一方向に酸化膜2上を移動
させる。イオンビームとしては、Sl を用いた。イオ
ンビーム5がまずシード3上に照射されると、シード3
上に存在するシランガスが分解され、シリコンがシード
3上に付着する。シード領域は同時に照射されるイオン
ビーム5によるイオンの効果も加わり、シリコンはシー
ド3上にエピタキシャル成長する。次にイオンビーム5
を徐々にシード3から移動させると、同様にシリコンが
イオンビーム5が照射された領域にのみ付着する。この
時、基板温度が高いと多結晶の成長速度が速いため、条
件によっては、多結晶シリコン膜が成長してしまうが、
基板温度を低(することで、多結晶核の成長速度を遅く
することにより、シリコン原子は成長層4にエピタキシ
ャル成長し、横方向成長することになる。本発明の場合
、膜厚は数1 onmと薄い。もっとも時間をかければ
厚い膜の形成も可能である。しかし、その場合、 :表
面状態は悪化し凹凸が激しくなる。そこで、数100n
m程度の膜厚を得るには、まず、イオンビー  ;ムを
照射し、数10nmの膜厚のシリコン層を形成す  。
A mixed gas of silane and argon is introduced here, and then the ion beam 5 is moved from the seed 3 in one direction over the oxide film 2. Sl was used as the ion beam. When the ion beam 5 is first irradiated onto the seed 3, the seed 3
The silane gas present above is decomposed and silicon is deposited on the seeds 3. The effect of ions from the ion beam 5 simultaneously irradiated on the seed region is also added, and silicon grows epitaxially on the seed 3. Next, ion beam 5
When the ion beam 5 is gradually moved from the seed 3, similarly, silicon adheres only to the area irradiated with the ion beam 5. At this time, if the substrate temperature is high, the growth rate of polycrystals is fast, so depending on the conditions, a polycrystalline silicon film may grow.
By lowering the substrate temperature (by lowering the growth rate of polycrystalline nuclei), silicon atoms grow epitaxially and laterally in the growth layer 4. In the case of the present invention, the film thickness is several 1 onm. However, it is possible to form a thick film if it takes a long time.However, in that case, the surface condition deteriorates and the unevenness becomes severe.
In order to obtain a film thickness of approximately 100 nm, first, an ion beam is irradiated to form a silicon layer with a thickness of several tens of nanometers.

る。次に、その上にシリコンをエピタキシャル成長させ
て所定の膜厚とすることにより短時間で成長し、かつ表
面状態の良いシリコン膜を形成できた。また、同様な効
果は、レーザビームや電子ビームを用いても得られ、エ
ネルギービームが膜形成に有効であることが分かった。
Ru. Next, silicon was epitaxially grown on the film to a predetermined thickness, thereby forming a silicon film that grew in a short time and had a good surface condition. Furthermore, similar effects can be obtained using a laser beam or an electron beam, and it has been found that energy beams are effective for film formation.

さらに、エネルギービームを線状化することにより、高
スループツトが実現できる。実際、電子ビームを用いた
場合、約4〜5#程度の長さの線状電子ビームを取り出
すことが可能でおり、この様なビームを用いることによ
り、ウェーハの処理を従来法に比して約50倍程度短縮
できた。
Furthermore, by linearizing the energy beam, high throughput can be achieved. In fact, when using an electron beam, it is possible to extract a linear electron beam with a length of approximately 4 to 5 cm, and by using such a beam, wafer processing can be performed more easily than with conventional methods. It was possible to shorten the time by about 50 times.

[発明の効果] 以上のように本発明の方法を用いることによりシードか
ら一方向に大面積の半導体薄膜を形成でき、またエネル
ギービームはビーム形状の整形が容易であるため、線状
ビームを形成し、その線状ビームを用いることによりウ
ェーハ処理時間を入隅に短縮できる効果を有するもので
ある。
[Effects of the Invention] As described above, by using the method of the present invention, a semiconductor thin film with a large area can be formed in one direction from a seed, and since the beam shape of the energy beam can be easily shaped, a linear beam can be formed. However, the use of the linear beam has the effect of shortening the wafer processing time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本実施例に用−7いた試料の断面図でおる。 FIG. 1 is a sectional view of the sample used in this example.

Claims (1)

【特許請求の範囲】[Claims] (1)単結晶半導体基板上に形成された絶縁膜の一部に
開口部を有する試料を、膜形成を行なう半導体原子を含
むガス中に導入し、該試料を加熱しつつ該絶縁膜の開口
部より一方向にエネルギービームを照射し、該絶縁膜上
に該開口部より半導体膜を付着させる工程と、前記工程
により形成した試料上に半導体膜をエピタキシャル成長
させる工程とを含むことを特徴とする半導体薄膜形成方
法。
(1) A sample having an opening in a part of an insulating film formed on a single crystal semiconductor substrate is introduced into a gas containing semiconductor atoms for film formation, and while heating the sample, the insulating film is opened. irradiating an energy beam in one direction from the opening to deposit a semiconductor film on the insulating film through the opening; and epitaxially growing the semiconductor film on the sample formed in the step. Method for forming semiconductor thin films.
JP61253040A 1986-10-23 1986-10-23 Semiconductor thin film forming method Expired - Lifetime JPH0643278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61253040A JPH0643278B2 (en) 1986-10-23 1986-10-23 Semiconductor thin film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61253040A JPH0643278B2 (en) 1986-10-23 1986-10-23 Semiconductor thin film forming method

Publications (2)

Publication Number Publication Date
JPS63107894A true JPS63107894A (en) 1988-05-12
JPH0643278B2 JPH0643278B2 (en) 1994-06-08

Family

ID=17245640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61253040A Expired - Lifetime JPH0643278B2 (en) 1986-10-23 1986-10-23 Semiconductor thin film forming method

Country Status (1)

Country Link
JP (1) JPH0643278B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60235795A (en) * 1984-05-04 1985-11-22 Hitachi Ltd Preparation of single crystal membrane

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60235795A (en) * 1984-05-04 1985-11-22 Hitachi Ltd Preparation of single crystal membrane

Also Published As

Publication number Publication date
JPH0643278B2 (en) 1994-06-08

Similar Documents

Publication Publication Date Title
US5278093A (en) Method for forming semiconductor thin film
JPS58130517A (en) Manufacture of single crystal thin film
JP2670453B2 (en) Crystal formation method
JP2743370B2 (en) Method of forming polycrystalline film
JPS63107894A (en) Formation of thin semiconductor film
JPH0810669B2 (en) Method of forming SOI film
JP2737152B2 (en) SOI forming method
JP2615406B2 (en) Method for manufacturing silicon substrate having silicon carbide buried layer
EP0420516B1 (en) Method for forming semiconductor thin film
JPH02105517A (en) Manufacture of semiconductor device
JPS5893223A (en) Preparation of semiconductor device
JPH01149483A (en) Solar cell
JPS6163018A (en) Manufacture of semiconductor thin film crystal layer
JP3210410B2 (en) Semiconductor device and method of manufacturing the same
JPS60164316A (en) Formation of semiconductor thin film
JPH0752715B2 (en) Method for forming polycrystalline silicon thin film
JP2680114B2 (en) Method for forming crystalline semiconductor thin film
JPH01239093A (en) Method for crystal growth
JPH0334533A (en) Manufacture of semiconductor crystal layer
JPH0374838A (en) Epitaxial growth method
JPS59228713A (en) Manufacture of semiconductor device
JPH01723A (en) 3-Group V compound crystal article and method for forming the same
JPS59171114A (en) Manufacture of semiconductor single crystal film
JPS60235795A (en) Preparation of single crystal membrane
JPH01294336A (en) Manufacture of electron emitting element