JPH0635008B2 - 板材のタンデム圧延におけるキヤンバ制御方法 - Google Patents
板材のタンデム圧延におけるキヤンバ制御方法Info
- Publication number
- JPH0635008B2 JPH0635008B2 JP60259202A JP25920285A JPH0635008B2 JP H0635008 B2 JPH0635008 B2 JP H0635008B2 JP 60259202 A JP60259202 A JP 60259202A JP 25920285 A JP25920285 A JP 25920285A JP H0635008 B2 JPH0635008 B2 JP H0635008B2
- Authority
- JP
- Japan
- Prior art keywords
- stand
- camber
- rolling
- wedge
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/68—Camber or steering control for strip, sheets or plates, e.g. preventing meandering
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Control Of Metal Rolling (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、板材のタンデム圧延におけるキャンバ制御方
法、具体的には被圧延材のキャンバとウエッジを同時に
修正する方法に関するものである。
法、具体的には被圧延材のキャンバとウエッジを同時に
修正する方法に関するものである。
(従来の技術) 一般に板材のタンデム圧延においては、しばしば圧延機
及び被圧延材の作業側と駆動側(以下、この両側を総称
して左右という。)についての種々の非対称が起因して、
被圧延材の先端にキャンバが生じることがある。これ
は、左右圧下位置差,左右入側板厚差,左右板温度差,左
右ミル剛性差及び板中心とミル中心とのずれなどの要因
が複合して左右圧下率差を生じ、被圧延材に先端キャン
バが発生するのである。
及び被圧延材の作業側と駆動側(以下、この両側を総称
して左右という。)についての種々の非対称が起因して、
被圧延材の先端にキャンバが生じることがある。これ
は、左右圧下位置差,左右入側板厚差,左右板温度差,左
右ミル剛性差及び板中心とミル中心とのずれなどの要因
が複合して左右圧下率差を生じ、被圧延材に先端キャン
バが発生するのである。
このような先端のキャンバがホットストリップミルの仕
上圧延で生じると、通板不良等の圧延トラブルや歩留り
低下の原因となる。また、ホットストリップミルでは圧
延トラブルに至らなくても、冷間圧延時に通板不良とな
る場合もある。
上圧延で生じると、通板不良等の圧延トラブルや歩留り
低下の原因となる。また、ホットストリップミルでは圧
延トラブルに至らなくても、冷間圧延時に通板不良とな
る場合もある。
このような場合、作業者がスタンド間の被圧延材の形状
の左右非対称を目視観察してキャンバの方向と量を推測
し、圧延機の左右圧下位置を手動で修正することによっ
てキャンバを制御することが可能であるが、キャンバに
対する定量的な把握ができず、また圧下位置修正量も必
ずしも最適値とはならないため、確実な制御がなされな
い場合が多い。そこで、従来よりキャンバを制御するた
めに種々の方法が提案されている。例えば、刻々の左右
圧延荷重差を検出し、レベリングを制御してキャンバの
発生を防止する方法や、前スタンドでのキャンバを実測
して当該スタンドの圧下位置を調整し、次のスタンドで
キャンバを修正する方法がある。
の左右非対称を目視観察してキャンバの方向と量を推測
し、圧延機の左右圧下位置を手動で修正することによっ
てキャンバを制御することが可能であるが、キャンバに
対する定量的な把握ができず、また圧下位置修正量も必
ずしも最適値とはならないため、確実な制御がなされな
い場合が多い。そこで、従来よりキャンバを制御するた
めに種々の方法が提案されている。例えば、刻々の左右
圧延荷重差を検出し、レベリングを制御してキャンバの
発生を防止する方法や、前スタンドでのキャンバを実測
して当該スタンドの圧下位置を調整し、次のスタンドで
キャンバを修正する方法がある。
(発明が解決しようとする問題点) しかしながら、前者は一旦発生したキャンバを修正出来
ず、後者はキャンバは修正できてもウエッジが残るた
め、続く圧延スタンドあるいは次工程で圧延加工を行う
場合に再びキャンバが発生するという問題点を有してい
る。
ず、後者はキャンバは修正できてもウエッジが残るた
め、続く圧延スタンドあるいは次工程で圧延加工を行う
場合に再びキャンバが発生するという問題点を有してい
る。
本発明は、斯かる問題点に鑑みてなされたもので、被圧
延材の先端のキャンバとウエッジを同時に修正可能で、
当該圧延工程及び次圧延工程においてキャンバが再発す
る等のトラブルが解消され、高い歩留りを達成しうる板
材のタンデム圧延におけるキャンバ制御方法を提供する
ことを目的とする。
延材の先端のキャンバとウエッジを同時に修正可能で、
当該圧延工程及び次圧延工程においてキャンバが再発す
る等のトラブルが解消され、高い歩留りを達成しうる板
材のタンデム圧延におけるキャンバ制御方法を提供する
ことを目的とする。
(問題点を解決するための手段) 前記問題点を解決するため、本発明は、最終2スタンド
を除く任意の第iスタンドでの2以上の任意の時点にて
計測した左右圧延荷重差の時間的変化量δPdfiを求
め、この時間的変化量δPdfiから、当該スタンドでの
左右圧下位置差の適性値Sdfi*からのズレ量ΔSdfiを
推定し、このズレ量ΔSdfiから当該スタンド出側のウ
エッジ率φiを推定し、このウエッジ率φiからキャンバ
曲率ρiを推定するか、或は最終2スタンドを除く任意
の第iスタンドでのウエッジ率φi,キャンバ曲率ρi内
の少なくともいずれか一方を実測データから算出し、一
方のみが実測データに基づく場合には、他方をウエッジ
率φi,キャンバ曲率ρi間の関係式から推定するステッ
プと、前記ウエッジ率φi,キャンバ曲率ρi、および第
(i+1)スタンド以降のパススケジュールから、第(i
+1)スタンドの目標ウエッジ率φi+1,目標キャンバ曲
率ρi+1を決定するステップと、目標ウエッジ率φi+1,
目標キャンバ曲率ρi+1を用いて左右圧下位置差の修正
量ΔSdfi+1−ΔSdfiを計算するステップと、第(i+
1)スタンドにおける初期設定の左右圧下位置を
SDi+1,Swi+1として、第(i+1)スタンドにおける修
正左右圧下位置S′Di+1,S′wi+1を設定するステップ
と、第(i+2)スタンドにおける左右圧下位置ΔSdf
i+2=0として、第(i+2)スタンドにおける左右圧下
位置差の修正量を求めて、前ステップと同様にして左右
圧下位置を設定するステップと、設定された前記左右圧
下位置の値に基づいて第(i+1),第(i+2)ステップ
の各圧延機の左右圧下位置を制御するようにした。
を除く任意の第iスタンドでの2以上の任意の時点にて
計測した左右圧延荷重差の時間的変化量δPdfiを求
め、この時間的変化量δPdfiから、当該スタンドでの
左右圧下位置差の適性値Sdfi*からのズレ量ΔSdfiを
推定し、このズレ量ΔSdfiから当該スタンド出側のウ
エッジ率φiを推定し、このウエッジ率φiからキャンバ
曲率ρiを推定するか、或は最終2スタンドを除く任意
の第iスタンドでのウエッジ率φi,キャンバ曲率ρi内
の少なくともいずれか一方を実測データから算出し、一
方のみが実測データに基づく場合には、他方をウエッジ
率φi,キャンバ曲率ρi間の関係式から推定するステッ
プと、前記ウエッジ率φi,キャンバ曲率ρi、および第
(i+1)スタンド以降のパススケジュールから、第(i
+1)スタンドの目標ウエッジ率φi+1,目標キャンバ曲
率ρi+1を決定するステップと、目標ウエッジ率φi+1,
目標キャンバ曲率ρi+1を用いて左右圧下位置差の修正
量ΔSdfi+1−ΔSdfiを計算するステップと、第(i+
1)スタンドにおける初期設定の左右圧下位置を
SDi+1,Swi+1として、第(i+1)スタンドにおける修
正左右圧下位置S′Di+1,S′wi+1を設定するステップ
と、第(i+2)スタンドにおける左右圧下位置ΔSdf
i+2=0として、第(i+2)スタンドにおける左右圧下
位置差の修正量を求めて、前ステップと同様にして左右
圧下位置を設定するステップと、設定された前記左右圧
下位置の値に基づいて第(i+1),第(i+2)ステップ
の各圧延機の左右圧下位置を制御するようにした。
(実施例) 次に、本発明の一実施例を第1図に示すフローチャート
に従って説明する。
に従って説明する。
まず任意の第iスタンドの圧延において、ステップ1と
して、当該スタンドでの噛み込みから第i+1スタンド
での噛み込みまでの間、左右圧延荷重差Pdfiを2以上
の任意の時点で測定し、測定時点の時間間隔とその間で
の左右圧延荷重差の変化量δPdfiを求める。なお、添
え字dfは左右の差を表し、駆動側に蛇行する方向を正と
する。
して、当該スタンドでの噛み込みから第i+1スタンド
での噛み込みまでの間、左右圧延荷重差Pdfiを2以上
の任意の時点で測定し、測定時点の時間間隔とその間で
の左右圧延荷重差の変化量δPdfiを求める。なお、添
え字dfは左右の差を表し、駆動側に蛇行する方向を正と
する。
次にステップ2として、この時間間隔と左右圧延荷重差
の変化量δPdfiから、当該スタンドでの左右圧下位置
差の適性値Sdfi*からのズレ量ΔSdfiを実験式又は理
論式により推定する。
の変化量δPdfiから、当該スタンドでの左右圧下位置
差の適性値Sdfi*からのズレ量ΔSdfiを実験式又は理
論式により推定する。
第2図は左右圧下位置差のズレ量ΔSdfとある時間間隔
での左右圧延荷重差の変化量δPdfの関係をアルミニウ
ム板を用いた実験で求めたものであり、両者はほぼ比例
関係にある。従って、前以てこの関係を実験により求め
ておけば、δPdfiを測定してΔSdfiを推定することが
可能である。
での左右圧延荷重差の変化量δPdfの関係をアルミニウ
ム板を用いた実験で求めたものであり、両者はほぼ比例
関係にある。従って、前以てこの関係を実験により求め
ておけば、δPdfiを測定してΔSdfiを推定することが
可能である。
また、δPdfiから理論的にΔSdfiを計算することもで
きる。左右圧延荷重差の変化は主として被圧延材の蛇行
によって生じ、ある時刻AからBの間の左右圧延荷重差
がPdfAからPdfBになり、第3図で表される蛇行量がyA
からyBになったとすると、両者の関係は力とモーメント
のつり合いから次式で表される。
きる。左右圧延荷重差の変化は主として被圧延材の蛇行
によって生じ、ある時刻AからBの間の左右圧延荷重差
がPdfAからPdfBになり、第3図で表される蛇行量がyA
からyBになったとすると、両者の関係は力とモーメント
のつり合いから次式で表される。
ここで、Pは左右圧延荷重の和、Lはバックアップロー
ルの支点間距離である。蛇行量の圧延の進行に伴う変化
は次式で表される。
ルの支点間距離である。蛇行量の圧延の進行に伴う変化
は次式で表される。
ここで、y0は噛み込み時のオフセンター量は、xは圧延
長さ、γは圧延機の仕様及び圧延条件から求まる定数で
ある。f(z)は種々の左右非対称要因の影響項であり、例
えば左右非対称要因のひとつとして左右ミル定数差Mdf
を考えると、次式で表される。
長さ、γは圧延機の仕様及び圧延条件から求まる定数で
ある。f(z)は種々の左右非対称要因の影響項であり、例
えば左右非対称要因のひとつとして左右ミル定数差Mdf
を考えると、次式で表される。
ここで、Mは左右ミル定数の和である。式から明らか
なように噛み込み時に被圧延材がオフセンターしていな
ければ(y0=0)、f(z)=0のとき蛇行は生じない。従っ
て、蛇行を生じないための左右圧下位置差の適正値Sdf
*は式でf(z)=0とおいて求められる。
なように噛み込み時に被圧延材がオフセンターしていな
ければ(y0=0)、f(z)=0のとき蛇行は生じない。従っ
て、蛇行を生じないための左右圧下位置差の適正値Sdf
*は式でf(z)=0とおいて求められる。
左右圧下位置差が適正値Sdf*からズレているとき、f
(z)は適正値からのズレ量ΔSdfによって次のように表
される。
(z)は適正値からのズレ量ΔSdfによって次のように表
される。
f(z)は他の左右非対称要因についても式と同じくそれ
ぞれの項の一次結合で表されるので、どのような非対称
要因についても左右圧下位置差の適正値Sdf*が存在
し、適正値からのズレ量ΔSdfがあるとき蛇行が生じ
る。式に式から求まるyA及びyBを代入すると、 式に式を代入し、y0=0とおくと、 となり、δPdfとΔSdfが比例関係にあることがわか
る。従って、δPdfを実測すれば式を用いてΔSdfを
計算することができる。
ぞれの項の一次結合で表されるので、どのような非対称
要因についても左右圧下位置差の適正値Sdf*が存在
し、適正値からのズレ量ΔSdfがあるとき蛇行が生じ
る。式に式から求まるyA及びyBを代入すると、 式に式を代入し、y0=0とおくと、 となり、δPdfとΔSdfが比例関係にあることがわか
る。従って、δPdfを実測すれば式を用いてΔSdfを
計算することができる。
第4図は左右圧延荷重差の変化量を実際のΔSdfから計
算した値(δPdf)cと実測値(δPdf)Mの関係を調べたも
のである。両者はほぼ比例関係にあるが、実測値のほう
が計算値より若干小さい。これを補うため修正係数を導
入して、 (δPdf)M=α・(δPdf)c … と表すことができる。ここで、αは実験によって求めら
れる修正係数である。式と式より、実測の圧延荷重
差の変化量(δPdf)Mから当該スタンドの左右圧下位置
差のズレ量ΔSdfは次式で求めることができる。
算した値(δPdf)cと実測値(δPdf)Mの関係を調べたも
のである。両者はほぼ比例関係にあるが、実測値のほう
が計算値より若干小さい。これを補うため修正係数を導
入して、 (δPdf)M=α・(δPdf)c … と表すことができる。ここで、αは実験によって求めら
れる修正係数である。式と式より、実測の圧延荷重
差の変化量(δPdf)Mから当該スタンドの左右圧下位置
差のズレ量ΔSdfは次式で求めることができる。
次にステップ3として、左右圧下位置差のズレ量ΔSdf
iから当該スタンド出側のウエッジ率φiを推定する。ウ
エッジ率がワークロールの傾きにならって生じるとすれ
ば、幾何学的関係からウエッジ量hdfとΔSdfの関係は
次式で表される。
iから当該スタンド出側のウエッジ率φiを推定する。ウ
エッジ率がワークロールの傾きにならって生じるとすれ
ば、幾何学的関係からウエッジ量hdfとΔSdfの関係は
次式で表される。
ここで、Bは板幅である。ウエッジ率φを次式で定義す
る。
る。
ここで、hは平均の出側板厚である。式と式よりΔ
Sdfとφの関係は次式で表される。
Sdfとφの関係は次式で表される。
式によって左右圧下位置差のズレ量ΔSdfからウエッ
ジ率φを推定することができる。なお、式から第iス
タンドと第(i−1)スタンドの間でのΔSdfの変更量と
hdfの変化量の関係は次式で求めることができる。
ジ率φを推定することができる。なお、式から第iス
タンドと第(i−1)スタンドの間でのΔSdfの変更量と
hdfの変化量の関係は次式で求めることができる。
第5図は式を確認するために行った実験結果であり、
hdfi−hdfi-1とΔSdfi−ΔSdfi-1は比例関係にあり、
式が正しいことがわかる。ただし、この場合ウエッジ
を板幅端から10mm位置の板厚で定義しているので、図
中理論式は式おいてBをB−20としている。
hdfi−hdfi-1とΔSdfi−ΔSdfi-1は比例関係にあり、
式が正しいことがわかる。ただし、この場合ウエッジ
を板幅端から10mm位置の板厚で定義しているので、図
中理論式は式おいてBをB−20としている。
次にステップ4として、ウエッジ率φiからキャンバ曲
率ρiを推定する。第iスタンドと第(i−1)スタンドの
ウエッジ率とキャンバ曲率の関係は、平面歪み状態を仮
定すれば次式で表される。
率ρiを推定する。第iスタンドと第(i−1)スタンドの
ウエッジ率とキャンバ曲率の関係は、平面歪み状態を仮
定すれば次式で表される。
ここで、λiは第iスタンドの伸び率(λi=hi-1/hi)で
あり、ウエッジ率が変化しなくてもキャンバ曲率は伸び
の分だけ小さくなることがわかる。しかし実際には3次
元変元が生じるため、ウエッジ率の変化ほどキャンバ曲
率は変化しない。第6図はウエッジ率変化とキャンバ曲
率変化の関係を実験により求めたものである。両者は板
厚に拘わらずほぼ一定の比例関係にあるが、平面歪みを
仮定した場合(傾き45゜の直線)に比べて実際のキャン
バ曲率の変化は小さい。ここで、実際の両者の比例関係
を表す直線の傾きをキャンバ変化係数ξと定義する。第
7図は圧下率rとキャンバ変化係数ξの関係を実験で求
めたものである。圧下率rが大きいほどキャンバ変化係
数ξは小さい。従って、実際のウエッジ率変化とキャン
バ曲率変化の関係は次式で表される。
あり、ウエッジ率が変化しなくてもキャンバ曲率は伸び
の分だけ小さくなることがわかる。しかし実際には3次
元変元が生じるため、ウエッジ率の変化ほどキャンバ曲
率は変化しない。第6図はウエッジ率変化とキャンバ曲
率変化の関係を実験により求めたものである。両者は板
厚に拘わらずほぼ一定の比例関係にあるが、平面歪みを
仮定した場合(傾き45゜の直線)に比べて実際のキャン
バ曲率の変化は小さい。ここで、実際の両者の比例関係
を表す直線の傾きをキャンバ変化係数ξと定義する。第
7図は圧下率rとキャンバ変化係数ξの関係を実験で求
めたものである。圧下率rが大きいほどキャンバ変化係
数ξは小さい。従って、実際のウエッジ率変化とキャン
バ曲率変化の関係は次式で表される。
従ってξ(r)をあらかじめ実験によつて求めておけば、
式でρi-1=0,φi-1=0とすることによって第iス
タンド出側のウエッジ率φiから第iスタンド出側のキャ
ンバ曲率ρiが求められる。
式でρi-1=0,φi-1=0とすることによって第iス
タンド出側のウエッジ率φiから第iスタンド出側のキャ
ンバ曲率ρiが求められる。
次にステップ5として、ステップ3およびステップ4に
おいて推定した第iスタンド出側のウエッジ率φi及びキ
ャンバ曲率ρiと第(i+1)スタンド以降のパススケジ
ュールから、第(i+1)スタンド出側のウエッジ率φ
i+1及びキャンバ曲率ρi+1の目標値を決定する。以下、
この決定方法を第8図に示す制御概念図によって説明す
る。
おいて推定した第iスタンド出側のウエッジ率φi及びキ
ャンバ曲率ρiと第(i+1)スタンド以降のパススケジ
ュールから、第(i+1)スタンド出側のウエッジ率φ
i+1及びキャンバ曲率ρi+1の目標値を決定する。以下、
この決定方法を第8図に示す制御概念図によって説明す
る。
今、第iスタンド出側のウエッジ率φi及びキャンバ曲率
ρiが上記の推定によって既知とする。ここでφi及びρ
iは縦軸にキャンバ曲率,横軸にウエッジ率をとった座
標上の点Aで表される。
ρiが上記の推定によって既知とする。ここでφi及びρ
iは縦軸にキャンバ曲率,横軸にウエッジ率をとった座
標上の点Aで表される。
次の第(i+1)スタンドで、ウエッジ率及びキャンバ曲
率は式に従って変化するが、この過程を左右均一圧下
によりウエッジ率が変化しない成分と、左右不均一圧下
によりウエッジ率が変化する成分に分けて考える。まず
キャンバ曲率が左右均一圧下によりρiからρi/▲λ2
i+1▼(ただし、λi+1=hi/hi+1)になった状態が座標上
の点A′であり、左右不均一圧下によりウエッジ率とキ
ャンバ曲率がそれぞれφiからφi+1に、ρi/▲λ2 i+1▼
からρi+1になった状態が点Bである。即ち、点Bは点
A′を通って傾きξ(ri+1)の直線l1上の点である。
率は式に従って変化するが、この過程を左右均一圧下
によりウエッジ率が変化しない成分と、左右不均一圧下
によりウエッジ率が変化する成分に分けて考える。まず
キャンバ曲率が左右均一圧下によりρiからρi/▲λ2
i+1▼(ただし、λi+1=hi/hi+1)になった状態が座標上
の点A′であり、左右不均一圧下によりウエッジ率とキ
ャンバ曲率がそれぞれφiからφi+1に、ρi/▲λ2 i+1▼
からρi+1になった状態が点Bである。即ち、点Bは点
A′を通って傾きξ(ri+1)の直線l1上の点である。
同様に第(i+2)スタンドでは、ウエッジ率及びキャン
バ曲率は点B(φi+1,ρi+1)から点B′(φi+1,ρi+1/▲
λ2 i+2▼)を経て点C(φi+2,ρi+2)になる。ここで点
B′は第(i+1)スタンドでの点A′と同様に点Bの縦
軸の値が1/▲λ2 i+2▼になる点である。点Bは傾きξ
(ri+1)の直線l1上にあるから、点B′は直線l1と横軸
の交点(ρi+1=ρi+1/▲λ2 i+2▼=0)を通り、傾きξ
(ri+1)/▲λ2 i+2▼の直線l2上にある。
バ曲率は点B(φi+1,ρi+1)から点B′(φi+1,ρi+1/▲
λ2 i+2▼)を経て点C(φi+2,ρi+2)になる。ここで点
B′は第(i+1)スタンドでの点A′と同様に点Bの縦
軸の値が1/▲λ2 i+2▼になる点である。点Bは傾きξ
(ri+1)の直線l1上にあるから、点B′は直線l1と横軸
の交点(ρi+1=ρi+1/▲λ2 i+2▼=0)を通り、傾きξ
(ri+1)/▲λ2 i+2▼の直線l2上にある。
一方、第(i+2)スタンド出側ではキャンバ,ウエッジ
とも零とすることが目標であるから、第(i+2)スタン
ド出側の状態(点C)は原点になければならない。従っ
て、点B′は原点を通って傾きξ(ri+2)の直線l3上にあ
ることが必要である。よって目標を達成するための点
B′はl2と直線l3の交点として決まり、点B′から縦軸
に平行におろした線と直線l1の交点が目標とする点B、
即ち第(i+1)スタンド出側のウェッジ率φi+1及びキ
ャンバ曲率ρi+1である。
とも零とすることが目標であるから、第(i+2)スタン
ド出側の状態(点C)は原点になければならない。従っ
て、点B′は原点を通って傾きξ(ri+2)の直線l3上にあ
ることが必要である。よって目標を達成するための点
B′はl2と直線l3の交点として決まり、点B′から縦軸
に平行におろした線と直線l1の交点が目標とする点B、
即ち第(i+1)スタンド出側のウェッジ率φi+1及びキ
ャンバ曲率ρi+1である。
次にステップ6として、ステップ5において決定した第
(i+1)スタンド出側のウェッジ率φi+1の目標値を用
いて、式から式から得られる次式により第(i+1)
スタンドでの左右圧下位置差の修正量を求める。
(i+1)スタンド出側のウェッジ率φi+1の目標値を用
いて、式から式から得られる次式により第(i+1)
スタンドでの左右圧下位置差の修正量を求める。
ΔSdfi+1−ΔSdfi=L(hi+1φi+1−hiφi) … 次にステップ7において、初期設定の左右圧下位置をS
Di+1及びSWi+1として、第(i+1)スタンドにおける修
正左右圧下位置▲S′ Di+1▼及び▲S′ Wi+1▼を次式に
より求める。
Di+1及びSWi+1として、第(i+1)スタンドにおける修
正左右圧下位置▲S′ Di+1▼及び▲S′ Wi+1▼を次式に
より求める。
そして、式より求めた左右圧下位置に従って圧下位置
を設定する。
を設定する。
次にステップ8として、第(i+1)スタンドと同様に第
(i+2)スタンドの左右圧下位置差の修正量を求める。
ここで第(i+2)スタンド出側のウェッジを零とするた
め、式から第(i+2)スタンドの左右圧下位置差のズ
レ量は ΔSdfi+2=0 … となる。すなわち、第(i+2)スタンドではウエッジを
零とするため、左右圧下位置差の適正値Sdf*i+2から
のズレ量をなくすようにして圧延することになる。な
お、左右圧下位置差の適正値Sdf*i+2は前述したよう
に、例えば、左右のミル定数差がある場合は式から求
めことができる。そして式,式に従って第(i+2)
スタンドの修正左右圧下位置を求め、これに基づいて圧
下位置を設定する。
(i+2)スタンドの左右圧下位置差の修正量を求める。
ここで第(i+2)スタンド出側のウェッジを零とするた
め、式から第(i+2)スタンドの左右圧下位置差のズ
レ量は ΔSdfi+2=0 … となる。すなわち、第(i+2)スタンドではウエッジを
零とするため、左右圧下位置差の適正値Sdf*i+2から
のズレ量をなくすようにして圧延することになる。な
お、左右圧下位置差の適正値Sdf*i+2は前述したよう
に、例えば、左右のミル定数差がある場合は式から求
めことができる。そして式,式に従って第(i+2)
スタンドの修正左右圧下位置を求め、これに基づいて圧
下位置を設定する。
最後に、ステップ7,ステップ8により圧下位置を設定
した後、第(i+1)スタンド及び第(i+2)スタンドの
圧延を順次行なう。
した後、第(i+1)スタンド及び第(i+2)スタンドの
圧延を順次行なう。
なお、前記実施例では任意の第iスタンドでキャンバと
ウェッジを検出して後続する2スタンドでこれらを修正
するようにしたが、同じ原理に基づいて後続する3スタ
ンド以上でキャンバとウェッジを修正することも可能で
ある。
ウェッジを検出して後続する2スタンドでこれらを修正
するようにしたが、同じ原理に基づいて後続する3スタ
ンド以上でキャンバとウェッジを修正することも可能で
ある。
また、前記実施例は特別なセンサーを必要とせず、左右
圧延荷重差の変化量からウエッジ率及びキャンバ曲率を
推定する方法であるが、センサー等により被圧延材のウ
エッジ量及びキャンバ量を実測してウエッジ率及びキャ
ンバ曲率を算出してもよい。あるいは、ウエッジ量は又
はキャンバ量のいずれか一方を実測して、他方は前記
式によって推定することも可能である。
圧延荷重差の変化量からウエッジ率及びキャンバ曲率を
推定する方法であるが、センサー等により被圧延材のウ
エッジ量及びキャンバ量を実測してウエッジ率及びキャ
ンバ曲率を算出してもよい。あるいは、ウエッジ量は又
はキャンバ量のいずれか一方を実測して、他方は前記
式によって推定することも可能である。
次に、本発明に係るキャンバ制御方法を下記仕様の熱延
仕上ミルに適用した場合の実施例について説明する。
仕上ミルに適用した場合の実施例について説明する。
バックアップロール寸法:1450〜1600φmm×2134mm ワークロール寸法:700〜800φmm×2186mm バックアップロール支点間距離:3150mm ミル定数:470〜510 TON/mm 上記仕様の仕上ミルにおいて、厚さ30mm,幅1214
mmのラフバーを本発明に係る方法を第5から第7スタン
ドに適用して7スタンドで厚さ3.25mmに圧延した。
圧下スケジュールは次の通りである。
mmのラフバーを本発明に係る方法を第5から第7スタン
ドに適用して7スタンドで厚さ3.25mmに圧延した。
圧下スケジュールは次の通りである。
第9図は第5から第7スタンドまでの各スタンドのウェ
ッジ率とキャンバ曲率であり、以下本図に基づいて説明
を行なう。
ッジ率とキャンバ曲率であり、以下本図に基づいて説明
を行なう。
ラフバー状態でのキャンバ曲率及びウェッジ率はほぼ零
であったが、第5スタンドの圧延を行なったところ、キ
ャンバが発生し、この時の左右圧延荷重差の変化量は圧
延開始から0.5秒間で約15tonであった。この左右
圧延荷重差の変化量からキャンバ曲率ρ1及びウェッジ
率φ1を推定すると図中に示すように、ρ1=6.0×1
0-6(1/mm),φ1=9.4×10-6(1/mm)となった。また
本発明に係る方法に従って計算を行なえば第6スタンド
出側の目標キャンバ曲率ρ2及び目標ウェッジ率φ2は図
中に示すようにρ2=−9.4×10-6(1/mm),φ2=−
9.0×10-6(1/mm)となり、目標を達成するための左
右圧下位置差の修正量は−0.23mmとなった。この左
右圧下位置差に従って左右圧下位置を設定して第6スタ
ンドの圧延を行ない、逆キャンバを発生させた。続いて
左右圧下位置差のズレ量が零となるように圧下位置を設
定して第7スタンドの圧延を行なったところ、キャン
バ,ウェッジともほぼ零の成品が得られた。
であったが、第5スタンドの圧延を行なったところ、キ
ャンバが発生し、この時の左右圧延荷重差の変化量は圧
延開始から0.5秒間で約15tonであった。この左右
圧延荷重差の変化量からキャンバ曲率ρ1及びウェッジ
率φ1を推定すると図中に示すように、ρ1=6.0×1
0-6(1/mm),φ1=9.4×10-6(1/mm)となった。また
本発明に係る方法に従って計算を行なえば第6スタンド
出側の目標キャンバ曲率ρ2及び目標ウェッジ率φ2は図
中に示すようにρ2=−9.4×10-6(1/mm),φ2=−
9.0×10-6(1/mm)となり、目標を達成するための左
右圧下位置差の修正量は−0.23mmとなった。この左
右圧下位置差に従って左右圧下位置を設定して第6スタ
ンドの圧延を行ない、逆キャンバを発生させた。続いて
左右圧下位置差のズレ量が零となるように圧下位置を設
定して第7スタンドの圧延を行なったところ、キャン
バ,ウェッジともほぼ零の成品が得られた。
(発明の効果) 以上の説明から明らかなように、本発明によれば、タン
デム圧延における被圧延材の先端のキャンバとウェッジ
を同時に修正することができ、歩留りの向上および当該
工程と次工程の圧延トラブルを著しく減少させることが
できる。
デム圧延における被圧延材の先端のキャンバとウェッジ
を同時に修正することができ、歩留りの向上および当該
工程と次工程の圧延トラブルを著しく減少させることが
できる。
第1図は本発明に係るキャンバ制御方法のフローチャー
ト、第2図は左右圧下位置差と左右圧延荷重差の変化量
の関係図、第3図は蛇行量の説明図、第4図は左右圧延
荷重差の変化量の計算値と実測値の関係図、第5図は左
右圧下位置差の修正量とウェッジの変化量の関係図、第
6図はウェッジ率変化とキャンバ曲率変化の関係図、第
7図は圧下率とキャンバ変化係数の関係図、第8図は本
発明に係るキャンバ制御方法の概念図、第9図は熱延仕
上ミルでの本発明の実施例である。
ト、第2図は左右圧下位置差と左右圧延荷重差の変化量
の関係図、第3図は蛇行量の説明図、第4図は左右圧延
荷重差の変化量の計算値と実測値の関係図、第5図は左
右圧下位置差の修正量とウェッジの変化量の関係図、第
6図はウェッジ率変化とキャンバ曲率変化の関係図、第
7図は圧下率とキャンバ変化係数の関係図、第8図は本
発明に係るキャンバ制御方法の概念図、第9図は熱延仕
上ミルでの本発明の実施例である。
Claims (1)
- 【請求項1】最終2スタンドを除く任意の第iスタンド
での2以上の任意の時点にて計測した左右圧延荷重差の
時間的変化量δPdfiを求め、この時間的変化量δPdfi
から、当該スタンドでの左右圧下位置差の適性値Sdfi
*からのズレ量ΔSdfiを推定し、このズレ量ΔSdfiか
ら当該スタンド出側のウエッジ率φiを推定し、このウ
エッジ率φiからキャンバ曲率ρiを推定するか、或は最
終2スタンドを除く任意の第iスタンドでのウエッジ率
φi,キャンバ曲率ρi内の少なくともいずれか一方を実
測データから算出し、一方のみが実測データに基づく場
合には、他方をウエッジ率φi,キャンバ曲率ρi間の関
係式から推定するステップと、前記ウエッジ率φi,キ
ャンバ曲率ρi、および第(i+1)スタンド以降のパス
スケジュールから、第(i+1)スタンドの目標ウエッジ
率φi+1,目標キャンバ曲率ρi+1を決定するステップ
と、目標ウエッジ率φi+1,目標キャンバ曲率ρi+1を用
いて左右圧下位置差の修正量ΔSdfi+1−ΔSdfiを計算
するステップと、第(i+1)スタンドにおける初期設定
の左右圧下位置をSDi+1,Swi+1として、第(i+1)ス
タンドにおける修正左右圧下位置S′Di+1,S′wi+1を
設定するステップと、第(i+2)スタンドにおける左右
圧下位置ΔSdfi+2=0として、第(i+2)スタンドに
おける左右圧下位置差の修正量を求めて、前ステップと
同様にして左右圧下位置を設定するステップと、設定さ
れた前記左右圧下位置の値に基づいて第(i+1),第
(i+2)ステップの各圧延機の左右圧下位置を制御する
ことを特徴とする板材のタンデム圧延におけるキャンバ
制御方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60259202A JPH0635008B2 (ja) | 1985-11-18 | 1985-11-18 | 板材のタンデム圧延におけるキヤンバ制御方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60259202A JPH0635008B2 (ja) | 1985-11-18 | 1985-11-18 | 板材のタンデム圧延におけるキヤンバ制御方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62118908A JPS62118908A (ja) | 1987-05-30 |
JPH0635008B2 true JPH0635008B2 (ja) | 1994-05-11 |
Family
ID=17330802
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60259202A Expired - Lifetime JPH0635008B2 (ja) | 1985-11-18 | 1985-11-18 | 板材のタンデム圧延におけるキヤンバ制御方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0635008B2 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100417517B1 (ko) * | 1999-10-22 | 2004-02-05 | 주식회사 포스코 | 후판 사상압연시에 발생하는 캠버 제어방법 |
-
1985
- 1985-11-18 JP JP60259202A patent/JPH0635008B2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS62118908A (ja) | 1987-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU632719B2 (en) | Method of controlling edge drop in cold rolling of steel | |
Khramshin et al. | Control methods and systems providing reduced consumption index at rolled product manufacture at plate mill | |
WO1995007776A1 (en) | Snaking control method and tandem plate rolling mill facility line | |
JP3443036B2 (ja) | ローラレベラーのクラウニング補正方法およびクラウニング装置 | |
JP4267609B2 (ja) | 金属板材の圧延方法および圧延装置 | |
US3630055A (en) | Workpiece shape control | |
JPH0521648B2 (ja) | ||
JPH0635008B2 (ja) | 板材のタンデム圧延におけるキヤンバ制御方法 | |
JP2795551B2 (ja) | 熱間圧延機におけるキャンバー制御方法 | |
JPS6029563B2 (ja) | 工作物の形状を制御する方法 | |
JPH1110215A (ja) | 熱間圧延材のウエッジ制御方法 | |
JPS62197209A (ja) | 板材の熱間圧延におけるキヤンバ制御方法 | |
JPS649086B2 (ja) | ||
WO2024042936A1 (ja) | 冷間圧延方法及び冷間圧延設備 | |
JPH105808A (ja) | 圧延方法及び圧延システム | |
JPH0698366B2 (ja) | 板材の形状制御方法 | |
JPH06339717A (ja) | 熱間圧延におけるキャンバー蛇行制御方法 | |
JPS5923882B2 (ja) | 熱間圧延機の板幅制御方法 | |
JPH10156415A (ja) | 熱間仕上圧延におけるウェッジ制御方法 | |
JPH0234241B2 (ja) | ||
JPH082457B2 (ja) | タンデムミルの制御方法及び装置 | |
JP3350294B2 (ja) | タンデムミルの制御方法および制御装置 | |
JPS61296912A (ja) | 厚板圧延における圧延材のキヤンバ−制御方法 | |
JP3466523B2 (ja) | 板厚制御方法 | |
JPS6390309A (ja) | 板材圧延機における平面形状制御方法 |