JPH06329469A - 炭素質予備成形体、および電極基板の製造方法 - Google Patents

炭素質予備成形体、および電極基板の製造方法

Info

Publication number
JPH06329469A
JPH06329469A JP5142838A JP14283893A JPH06329469A JP H06329469 A JPH06329469 A JP H06329469A JP 5142838 A JP5142838 A JP 5142838A JP 14283893 A JP14283893 A JP 14283893A JP H06329469 A JPH06329469 A JP H06329469A
Authority
JP
Japan
Prior art keywords
electrode substrate
fibers
fiber
carbon fiber
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5142838A
Other languages
English (en)
Inventor
Hiroyuki Tajiri
博幸 田尻
Yoshiteru Nakagawa
喜照 中川
Satoru Hamaoka
覚 浜岡
Kazuo Okamoto
一夫 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP5142838A priority Critical patent/JPH06329469A/ja
Publication of JPH06329469A publication Critical patent/JPH06329469A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Ceramic Products (AREA)
  • Inert Electrodes (AREA)

Abstract

(57)【要約】 【目的】 燃料電池用電極基板において、均質性、ガス
透過性、電気伝導性、熱伝導性及び機械的強度を高め
る。 【構成】 炭素繊維化可能な繊維及び/又は炭素繊維1
00重量部に対して、フェノール樹脂などの炭化収率4
0〜75重量%の結合剤20〜200重量部、および炭
化収率50重量%以上のメソフェーズピッチ10〜25
0重量部を含むスラリーを吸引成形し、抄紙構造を有す
る炭素質予備成形体を作製する。前記繊維は、炭素繊維
化可能な繊維10〜90重量%および炭素繊維10〜9
0重量%の割合で構成できる。予備成形体を加熱加圧成
形し、炭化又は黒鉛化することにより、電極基板が得ら
れる。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、リン酸型燃料電池など
の電極板を得る上で有用な炭素質予備成形体、および電
極基板の製造方法に関する。
【0002】
【従来の技術】燃料電池は、他の発電装置と異なり、S
Ox 、NOx 及び粉塵などの公害物質の発生が極めて少
なく、騒音発生源も少ないなどの特徴を有している。こ
のような燃料電池のうちリン酸型燃料電池は、電解液の
両側にポーラスな陰極と陽極を設けて単位セルを構成
し、各単位セルをセパレータを介して積層した構造を有
する。
【0003】前記陰極および陽極には、電気エネルギー
への変換効率を高めるため、細孔分布を任意にコントロ
ールでき、ガス透過性が高いことが要求される。さら
に、電気伝導性、熱伝導性、機械的強度および作動温度
における耐リン酸液性などが要求される。
【0004】従来、燃料電池電極板の製造方法として、
フェノール樹脂などの結合剤と、炭素繊維と、粉粒状の
熱可塑性樹脂を特定の割合で乾式混合し、混合物を熱ロ
ールや熱プレスによりシート状に加圧成形し、炭化又は
黒鉛化処理する方法が採用されている(特公平1−36
670号公報)。
【0005】しかし、この方法では、炭素繊維と、結合
剤及び熱可塑性樹脂とが、混合性の悪い繊維状と粉粒状
であるため、乾式混合する際、炭素繊維と結合剤及び熱
可塑性樹脂とが偏析し易く、均質な混合物を得るのが困
難である。また、粉末状混合物の加圧成形により、偏析
した結合剤及び熱可塑性樹脂が凝集し、成形物がさらに
不均質となり易い。さらに、加熱加圧成形により、偏析
した熱可塑性樹脂が軟化するだけでなく、炭化又は黒鉛
化処理する際に、熱可塑性樹脂が再び軟化する。そのた
め、結合剤及び熱可塑性樹脂の偏析と、熱可塑性樹脂の
二度に亘る軟化とにより、電極基板の均質性が低下す
る。そして、この不均質性に起因するためか、結合剤、
炭素繊維、及び粉粒状の熱可塑性樹脂を用いて得られた
電極基板は、熱伝導率が小さいだけでなく、曲げ強度、
圧縮強度およびガス透過性も電極基板の部位によって変
動する。
【0006】特開平3−174359号公報には、炭素
繊維とバインダー粒子とを混合し、抄紙して得られたシ
ート状物を加圧成形した後、炭化又は黒鉛化する方法が
開示されている。しかし、この方法では、気孔率60〜
80%を確保するためには、加圧加熱成形時に低圧で成
形する必要がある。一方、低圧で成形すると、繊維同志
の接合強度が低下し、焼成により得られる電極材の曲げ
強度が、1kgf/mm2 以下、圧縮強度が、0.4k
gf/mm2 以下に低下し、リン酸型燃料電池用電極材
の要求性能を充足できない。また、電極基板の厚み方向
の体積抵抗率も大きく、熱伝導率も小さい。
【0007】特開平3−76821号公報には、炭素繊
維製造用の有機繊維とパルプとバインダーとしての有機
高分子物質などを混合し、抄紙した得られたシートを成
形した後、焼成し、電極材を得る方法が開示されてい
る。この方法では、有機繊維を用いるため、繊維として
炭素繊維だけを用いた場合よりも高密度に成形できる。
しかし、焼成時における有機繊維の炭化収率(残炭率)
が10〜30%と小さい。そのため、得られた電極材
は、成形体に比べて著しく収縮し、厚み1〜3mm、大
きさ1m角の電極板を製造しても、割り、反り、捩れな
どが生じ、均一性に乏しい。また、厚み方向の収縮率が
大きいため、ガス透過性、体積抵抗率が電極材の部位に
よって変動し、不均質となる。
【0008】
【発明が解決しようとする課題】従って、本発明の目的
は、均質性、ガス透過性、電気伝導性、熱伝導性および
機械的強度に優れる電極基板を得る上で有用な炭素質予
備成形体を提供することにある。
【0009】本発明の他の目的は、前記の如き優れた特
性を有する電極基板の製造方法を提供することにある。
【0010】
【発明の構成】本発明者らは、前記目的を達成するため
鋭意検討の結果、炭素繊維化可能な繊維及び/又は炭素
繊維、結合剤、およびメソフェーズピッチを含む抄紙構
造の炭素質予備成形体を圧縮成形し、かつ炭化又は黒鉛
化する場合には、ガス透過性、電気伝導性、熱伝導性お
よび機械的強度に優れた炭素質基板が得られることを見
いだし、本発明を完成した。
【0011】すなわち、本発明は、炭素繊維化可能な繊
維及び/又は炭素繊維、炭化収率40〜75重量%の結
合剤、およびメソフェーズピッチを含む抄紙構造の炭素
質予備成形体を提供する。
【0012】本発明の方法では、前記炭素質予備成形体
を圧縮成形し、炭化又は黒鉛化し、電極基板を製造す
る。
【0013】なお、本明細書において、炭化とは、炭素
化可能な成分を、例えば、450〜1500℃程度の温
度で焼成処理することを言う。黒鉛化とは、例えば、1
500〜3000℃程度の温度で焼成することを言い、
黒鉛の結晶構造を有していないときでも黒鉛化の概念に
含める。また、炭化収率とは、炭素化可能な成分を炭化
又は黒鉛化したときの残炭率を言う。
【0014】炭素繊維とは炭化又は黒鉛化された繊維を
言う。耐炎化処理とは、ピッチ系繊維以外の繊維を、例
えば、酸素存在下、200〜450℃程度の温度で加熱
して表面に耐熱層を形成し、焼成時の溶融を防止する処
理を言う。不融化処理とは、例えば、ピッチ系繊維を、
酸素存在下、200〜450℃程度の温度で加熱して表
面に耐熱層を形成し、焼成時の溶融を防止する処理を言
う。
【0015】本発明の主たる特徴は、(a)炭素質予備
成形体が均質性に優れる抄紙構造を有する点、(b)抄
紙構造の炭素質予備成形体を用い、電極基板の均質性、
ガス透過性、電気伝導性および機械的強度を高める点、
(c)メソフェーズピッチを用いることにより、電極基
板の熱伝導性を高める点にある。
【0016】本発明の炭素質予備成形体において、炭素
繊維化可能な繊維としては、炭素繊維の素材となり得る
種々の繊維、例えば、ポリアクリロニトリル繊維、フェ
ノール樹脂繊維、再生セルロース繊維(例えばレーヨ
ン、ポリノジック繊維など)、セルロース系繊維などの
有機繊維、ピッチ系繊維などが挙げられる。炭素繊維化
可能な繊維は、耐炎化処理又は不融化処理されていても
よい。炭素繊維化可能な繊維は、一種又は二種以上使用
できる。
【0017】炭素繊維化可能な繊維の繊維直径は、例え
ば、10〜50μm、好ましくは15〜45μm程度で
ある。繊維径が10μm未満であると、ガス透過性が低
下し易く、50μmを越えると、電極基板の気孔径が大
きくなり、リン酸などの電解液が気孔を塞ぎ、ガス透過
性が低下し易い。
【0018】なお、炭素繊維化可能な繊維の残炭率は、
例えば、10〜50%程度である。そのため、炭化又は
黒鉛化に伴なって、上記繊維が、補強材として機能する
炭素繊維となると共に、例えば30〜70%程度の体積
収縮に伴なって、炭化又は黒鉛化した結合剤のマトリッ
クス内に間隙が生成し、ガス透過性が向上する。
【0019】炭素繊維としては、前記炭素繊維化可能な
繊維を炭化又は黒鉛化した繊維が挙げられる。炭素繊維
も、一種又は二種以上使用できる。炭素繊維の繊維径
は、例えば、5〜30μm、好ましくは10〜25μm
程度である。繊維径が5μm未満であるとガス透過性が
低下し易く、30μmを越えると電極基板の気孔径が大
きくなり易い。なお、電極基板における平均気孔径は、
例えば、10〜40μm程度であるのが好ましい。
【0020】前記炭素繊維は、電極基板の曲げ強度、圧
縮強度を向上させる補強材として機能すると共に、炭化
又は黒鉛化に伴なって電極基板が面方向に収縮するのを
抑制する。
【0021】炭素繊維化可能な繊維および炭素繊維とし
ては、通常、短繊維が用いられる。短繊維の繊維長は、
例えば0.05mm〜10mm、好ましくは0.5mm
〜3mm程度である。炭素繊維の繊維長は、電極基板の
曲げ強度、電気伝導性や熱伝導度に大きく寄与する。繊
維長が10mmを越えると細孔径分布をコントロールし
にくくなり、0.05mm未満では強度などが低下し易
い。
【0022】炭素繊維化可能な繊維と炭素繊維とは単独
で用いてもよいが、少なくとも炭素繊維を含むのが好ま
しい。また、炭素繊維化可能な繊維と炭素繊維とを併用
すると、ガス透過性および強度が向上する。炭素繊維化
可能な繊維と炭素繊維との割合は、電極基板の強度や導
電性などに応じて選択でき、例えば、炭素繊維化可能な
繊維/炭素繊維=10〜90/90〜10(重量%)、
好ましくは25〜75/75〜25(重量%)、さらに
好ましくは30〜70/70〜30(重量%)程度であ
る。炭素繊維の割合が10重量%未満では、電極基板の
機械的強度が低下すると共に、収縮が大きくなる傾向を
示し、90重量%を越えると、ガス透過性が低下し易
い。
【0023】結合剤としては、例えば、フェノール樹
脂、フラン樹脂、コプナ樹脂などの熱硬化性樹脂;ポリ
アクリロニトリルなどの熱可塑性樹脂;石炭又は石油ピ
ッチなどが使用できる。これらの結合剤のうち、熱硬化
性樹脂、特にフェノール樹脂が好ましい。結合剤の炭化
収率は、電極基板の機械的強度の低下を防止し、気孔率
を調整するため、40〜75重量%、好ましくは50〜
75重量%程度である。なお、前記フェノール樹脂の炭
化収率は、通常65〜75重量%程度と大きい。これら
の結合剤は少なくとも一種使用できる。
【0024】結合剤の割合は、電極基板の強度などに応
じて適当に選択でき、例えば、前記炭素繊維化可能な繊
維および炭素繊維で構成された繊維100重量部に対し
て、20〜250重量部、好ましくは25〜200重量
部程度である。結合剤の割合が20重量部未満である
と、電極基板の機械的強度が低下し易く、250重量部
を越えるとガス透過性が低下し易い。
【0025】本発明の炭素質予備成形体は、メソフェー
ズピッチを含んでいる。このメソフェーズピッチによ
り、電極基板の熱伝導性が著しく向上する。メソフェー
ズピッチは、圧縮成形された炭素質予備成形体の焼成時
に、軟化しマトリックス内で溶融すると共に、空隙部に
流入し、発生する分解ガスにより、炭素繊維化可能な繊
維と結合剤との間に生成した空隙部や流路を通じて外部
と連通し、連続気泡を形成するようである。また、メソ
フェーズピッチ成分が前記空隙部の内面で硬化し、炭化
又は黒鉛化するものと推測される。そのため、メソフェ
ーズピッチを用いない電極基板に比べて、電極基板のガ
ス透過性、厚み方向の熱伝導率および電気伝導率が顕著
に向上する。
【0026】メソフェーズピッチは、例えば、石油系及
び石炭系のいずれのメソフェーズピッチであってもよ
く、炭化収率50重量%以上、好ましくは70重量%以
上のメソフェーズピッチが使用できる。炭化収率が50
重量%未満では電極基板の熱伝導性を高めるのが困難で
ある。また、メソフェーズピッチの軟化点は、150〜
400℃、好ましくは200〜400℃程度である。な
お、前記炭素繊維化可能な繊維を用いる場合、前記炭素
繊維化可能な繊維よりも約25〜100℃以上高い軟化
点を有するメソフェーズピッチを用いる場合が多い。
【0027】メソフェーズピッチの使用量は、熱伝導性
を高めることができる範囲、例えば、前記繊維100重
量部に対して、10〜250重量部、好ましくは25〜
200重量部程度である。メソフェーズピッチの割合が
10重量部未満であると、電極基板の熱伝導率、気孔率
およびガス透過性が低下し易く、250重量部を越える
と、メソフェーズピッチの分解ガスによる膨れや割れが
生じ易く、気孔とその分布が不均一となり易い。
【0028】メソフェーズピッチは、通常、粉粒状、例
えば、100μm以下の粉末状で使用できる。メソフェ
ーズピッチの粒径が100μmを越えると、焼成に伴な
って、電極基板の表面に焼け、膨れなどの欠陥が生じ易
い。
【0029】前記炭素質予備成形体は、抄紙構造を有す
る。抄紙構造とは、和紙の如く、繊維がランダムに配向
している構造を意味する。このような予備成形体は、例
えば、吸引成形法により得ることができる。前記吸引成
形法としては、例えば、(1)前記成分を含むスラリー
を多数の吸引孔が形成された吸引成形型により吸引し、
吸引成形型の表面に前記成分を堆積させる方法、(2)
吸引成形型内にスラリーを注入して吸引する方法などが
採用できる。吸引成形法により得られた吸引成形体の密
度は、吸引圧により容易にコントロールできる。
【0030】なお、スラリーの調製に際しては、炭素繊
維化可能な繊維及び/又は炭素繊維を叩解し、前記短繊
維としてもよい。スラリーの固形分濃度は、吸引成形性
を損わない範囲で選択でき、例えば、0.1〜2重量%
程度である。また、スラリーには、前記繊維、結合剤お
よびメソフェーズピッチを均一に分散させるため、分散
剤、安定剤、粘度調整剤、沈降防止剤などを添加しても
よく、増粘剤、紙力増強剤、凝集作用を有する界面活性
剤、特に高分子凝集剤や歩留り向上剤などの種々の添加
剤を添加してもよい。
【0031】吸引成形型から脱型した炭素質予備成形体
は、通常、加熱乾燥される。湿潤状態の炭素質予備成形
体の加熱乾燥は、常圧又は減圧下50〜200℃程度の
温度で行うことができる。
【0032】前記のような吸引成形法によると、従来の
乾式混合法では均一に混合することが困難な繊維状物質
などを用いても、繊維状物質などが偏析せず、均質な炭
素質予備成形体が得られる。また、炭素質予備成形体を
圧縮成形しても、成形体の均質性は維持される。従っ
て、成形体や電極基板の反りや膨れを著しく抑制でき、
成形体や電極基板の均一性を高めることができる。
【0033】また、炭素質予備成形体を圧縮成形する場
合には、厚みが1mm未満であっても組成、密度及び厚
みが均質な成形体が得られる。特に、前記結合剤として
熱硬化性樹脂を使用する場合には、炭素質予備成形体が
プリプレグとして機能し、加熱加圧成形により、硬化し
て一体化する。そのため、厚みが1mm未満であっても
均質で均一な成形体が得られる。
【0034】また、繁雑な乾式混合の工程が不要である
ため、吸引成形により予備成形体を簡易に製造できる。
さらに、予備成形体を圧縮成形する場合、粉粒状の混合
物を金型内に均一に装填する必要がなく、シート状の予
備成形体を成形金型へ装填すればよく、装填作業が容易
であり、成形サイクルを短縮でき、成形効率、ひいては
電極基板の生産効率を高めることができる。
【0035】本発明の電極基板は、前記炭素質予備成形
体を圧縮成形、好ましくは加熱加圧成形し、炭化又は黒
鉛化することにより製造できる。前記圧縮成形により、
成形体の均質性がさらに高まる。
【0036】炭素質予備成形体の圧縮成形は、慣用の方
法、例えば、金型プレス又はローラーによるプレス等の
方法で行なうことができる。圧縮成形は成形体の均一性
を高めるため加熱下で行うのが好ましい。加熱温度は、
適当に選択できるが、通常、100〜250℃程度であ
る。成形圧は、所望する電極板の密度や厚みなどに応じ
て選択でき、例えば、30〜750kgf/cm2 、好
ましくは50〜500kgf/cm2 程度である。
【0037】炭素質予備成形体を、圧縮成形した後、成
形体は炭化又は黒鉛化する焼成工程に供される。焼成温
度は、800℃以上、好ましくは1000〜3000℃
程度である。焼成は、真空下または不活性ガス雰囲気中
で行われる。不活性ガスとしては、窒素、ヘリウム、ア
ルゴンなどが使用できる。
【0038】このようにして得られた炭素質の電極基板
は、予備成形体が均質であるため、厚みが1mm未満で
あっても気孔径が均一であり、機械的強度も大きく、ま
た優れたガス透過性、導電性および熱伝導性を有する。
特に、メソフェーズピッチを含む前記組成の炭素質予備
成形体を用いて得られた電極基板は、熱伝導性に優れて
いる。
【0039】前記炭素質予備成形体の焼成に際して、各
成分は、次のように機能すると推測される。すなわち、
予備成形体を加熱加圧成形すると、結合剤が溶融して固
化又は硬化し、成形体が生成する。この成形体を焼成す
ると、炭素繊維化可能な繊維を含む場合には、炭素繊維
化可能な繊維が、例えば150℃以上の温度で分解ガス
を発生し、繊維が収縮する。また、結合剤も分解ガスを
発生する。そのため、繊維の収縮、結合剤の焼成に伴な
って、成形体の繊維と結合剤との界面に沿って空隙及び
/又は流路が生成し始める。炭素繊維化可能な繊維は、
例えば、700℃まで分解ガスを発生し、収縮する。ま
た、焼成温度が、メソフェーズピッチの軟化又は分解開
始温度以上、例えば、200℃以上となると、メソフェ
ーズピッチも軟化しガスを発生し、軟化部や空隙部を通
じて分解ガスが外部へ放出され、外部へ通じる流路が形
成される。そして、前記繊維と結合剤との界面に形成さ
れた空隙及び/又は流路とメソフェーズピッチにより形
成された流路とが連通した網目状の気孔が形成され、ガ
ス透過性が顕著に向上する。また、繊維の収縮に伴なっ
て生じる空隙及び/又は流路にメソフェーズピッチ成分
が流入し、例えば、450℃を越えると、メソフェーズ
ピッチが固化する。このようにして生成した電極基板の
気孔は、少なくとも厚み方向に連続して貫通しているよ
うであり、その気孔の内面は、熱伝導性を高める上で有
用なメソフェーズピッチ成分の炭化物でコートされるよ
うである。そして、高温、例えば、2000℃以上、特
に2400℃以上で焼成することにより、電極基板とし
て優れたガス透過性、熱伝導性および電気伝導性を発現
する。そのため、例えば、ガス透過率700ml・mm
/cm2 ・hr・mmAq以上、熱伝導率7W/mK以
上という高いガス透過性および熱伝導性を有する電極基
板を得ることもできる。
【0040】生成した電極基板は、焼成前の炭素質予備
成形体が均質であるため、前記炭素繊維化可能な繊維に
より形成された炭素繊維により補強されると共に、炭素
繊維によっても補強された均質な構造を有する。しか
も、炭素繊維により電極基板の面方向及び厚み方向に収
縮するのを抑制でき、均一な電極基板を得ることができ
る。
【0041】
【発明の効果】本発明の炭素質予備成形体は、前記特定
の成分を含む抄紙構造を有しているので、均質性に優れ
る。そのため、均質性、寸法安定性、ガス透過性、電気
伝導性、熱伝導性および機械的強度に優れる電極基板を
得ることができる。
【0042】また、本発明の方法によると、前記の如き
優れた特性を有する電極基板を生産性よく製造できる。
【0043】
【実施例】以下に、実施例に基づいて本発明をより詳細
に説明する。
【0044】実施例1〜9 炭素繊維化可能な繊維としてのレーヨン繊維(大和紡績
(株)製、15デニール×3mm)又はポリアクリロニ
トリル繊維(東邦レーヨン(株)製、HTA−03,直
径7μm×3mm)、汎用型炭素繊維((株)ドナック
製、直径13μm×3mm)、結合剤としてのフェノー
ル樹脂(鐘紡(株)製、ベルパールS−899、炭化収
率65重量%)およびメソフェーズピッチ(大阪瓦斯
(株)製、軟化点330℃、200メッシュ粉砕品、炭
化収率80重量%)を表1に示す割合で水中に分散さ
せ、均一なスラリーを調製した。このスラリーを用いて
吸引成形法により湿式抄紙し、抄紙体(300mm×3
00mm×厚み10mm、嵩密度0.2g/cm3 )を
作製した。
【0045】抄紙体を105℃で3時間加熱乾燥し、1
70℃で20分間加熱プレスして硬化させ、嵩密度0.
8〜1.0g/cm3 の成形体を得た。得られた成形体
を、窒素ガス雰囲気中、2700℃で焼成し、電極基板
を作製した。
【0046】そして、電極基板から任意に10カ所をサ
ンプリングし、電極基板の特性を測定した。結果を表1
に示す。
【0047】
【表1】 比較例1〜9 メソフェーズピッチの粉末を混合することなく、実施例
1〜9と同様にして、電極基板を作製し、得られた電極
基板の特性を測定した。結果を表2に示す。
【0048】
【表2】 表1と表2との対比から明らかなように、実施例1〜9
で得られた電極基板は、比較例1〜9の電極基板に比べ
て、厚み方向の熱伝導率が極めて高い。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡本 一夫 大阪市中央区平野町四丁目1番2号 大阪 瓦斯株式会社内

Claims (4)

    【特許請求の範囲】
  1. 【請求項1】 炭素繊維化可能な繊維及び/又は炭素繊
    維、炭化収率40〜75重量%の結合剤、およびメソフ
    ェーズピッチを含む抄紙構造の炭素質予備成形体。
  2. 【請求項2】 炭素質予備成形体が、繊維100重量部
    に対して、結合剤20〜250重量部、およびメソフェ
    ーズピッチ10〜250重量部を含む請求項1記載の炭
    素質予備成形体。
  3. 【請求項3】 メソフェーズピッチの軟化点が150〜
    400℃である請求項1記載の炭素質予備成形体。
  4. 【請求項4】 請求項1記載の炭素質予備成形体を圧縮
    成形し、炭化又は黒鉛化する電極基板の製造方法。
JP5142838A 1993-05-21 1993-05-21 炭素質予備成形体、および電極基板の製造方法 Pending JPH06329469A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5142838A JPH06329469A (ja) 1993-05-21 1993-05-21 炭素質予備成形体、および電極基板の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5142838A JPH06329469A (ja) 1993-05-21 1993-05-21 炭素質予備成形体、および電極基板の製造方法

Publications (1)

Publication Number Publication Date
JPH06329469A true JPH06329469A (ja) 1994-11-29

Family

ID=15324795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5142838A Pending JPH06329469A (ja) 1993-05-21 1993-05-21 炭素質予備成形体、および電極基板の製造方法

Country Status (1)

Country Link
JP (1) JPH06329469A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003509329A (ja) * 1999-09-21 2003-03-11 ユーティ―バテル エルエルシー 粒子を有するピッチ系発泡体
JP2011113768A (ja) * 2009-11-25 2011-06-09 Univ Of Tsukuba 燃料電池用ガス拡散層
JP2011530480A (ja) * 2008-08-13 2011-12-22 コーニング インコーポレイテッド 規則性メソ多孔質の独立炭素フィルムおよび形状因子

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003509329A (ja) * 1999-09-21 2003-03-11 ユーティ―バテル エルエルシー 粒子を有するピッチ系発泡体
JP2011530480A (ja) * 2008-08-13 2011-12-22 コーニング インコーポレイテッド 規則性メソ多孔質の独立炭素フィルムおよび形状因子
JP2011113768A (ja) * 2009-11-25 2011-06-09 Univ Of Tsukuba 燃料電池用ガス拡散層

Similar Documents

Publication Publication Date Title
US5648027A (en) Porous carbonaceous material and a method for producing the same
US20080057303A1 (en) Method for Manufacturing Carbon Fiber Reinforced Carbon Composite Material Suitable for Semiconductor Heat Sink
CN101803074B (zh) 高导热率电极衬底
US20060027792A1 (en) Carbon composite near-net-shape molded part and method of making
JPH082979A (ja) 多孔質炭素材およびその製造方法
JP3142587B2 (ja) 炭素質組成物、燃料電池用炭素材およびその製造方法
JPH02106876A (ja) 燃料電池用多孔性炭素電極基板の製造方法
JP2000021421A (ja) 固体高分子型燃料電池用セパレータ部材及びその製造方法
JPS6332863A (ja) 炭素−黒鉛リザ−バ層及びその製造方法
JPH06135770A (ja) 炭素質予備成形体とその製造方法並びに電極基板の製造方法
JPH05325984A (ja) 炭素質予備成形体とその製造方法並びに燃料電池用電極基板の製造方法
JPH06329469A (ja) 炭素質予備成形体、および電極基板の製造方法
JPH0757741A (ja) 炭素質予備成形体、および電極基板の製造方法
JPH09278558A (ja) 炭素質多孔体およびその製造方法
JPH11185771A (ja) 抄紙体および燃料電池用多孔質炭素板の製造方法
JPH05205750A (ja) 炭素質予備成形体及び燃料電池用電極基板の製造方法
JPH11263681A (ja) 燃料電池用炭素質多孔体の製造方法
JPH0644978A (ja) 燃料電池電極板の製造方法
JPH0543320A (ja) 炭素質成形体の製造方法
JPH04284363A (ja) 炭素板の製造方法
JPH0517260A (ja) 炭素質多孔体の製造方法
JPH09157065A (ja) 炭素質多孔体及び多孔質複合シートの製造方法
JPH06263558A (ja) 多孔質炭素板の製法および多孔質炭素電極材
JPH09110407A (ja) 炭素質多孔体及びその製造方法
JPH04285067A (ja) 炭素板の製造方法