JPH0629533A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPH0629533A
JPH0629533A JP18354192A JP18354192A JPH0629533A JP H0629533 A JPH0629533 A JP H0629533A JP 18354192 A JP18354192 A JP 18354192A JP 18354192 A JP18354192 A JP 18354192A JP H0629533 A JPH0629533 A JP H0629533A
Authority
JP
Japan
Prior art keywords
gate electrode
film
forming
insulating film
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18354192A
Other languages
Japanese (ja)
Inventor
Yutaka Maruo
豊 丸尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP18354192A priority Critical patent/JPH0629533A/en
Publication of JPH0629533A publication Critical patent/JPH0629533A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To reduce stress at the part of a gate insulation film by increasing the thickness of an insulation film on a gate electrode side surface and an edge part as compared with the gate insulation film on the gate electrode surface. CONSTITUTION:A silicon oxide film 202 which is 10-500nm is formed on a silicon substrate 201. A polycrystalline silicon film is deposited by 100-400nm and then BF2 ions are implanted, thus forming a high-concentration impurity layer. After patterning, the polycrystalline silicon is etched, thus forming a gate electrode 203 of a thin-film transistor. After a silicon oxide film is deposited on the entire wafer surface by 100nm-1mum, anisotropic etching is performed, thus providing a gate electrode on a side wall 204. Then, a silicon oxide film which becomes a gate oxide film 205 is thermally oxidized for forming 10-100nm silicon oxide film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置及び、その
製造方法に関し、特にMIS型半導体基板上に形成され
る薄膜トランジスタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device and its manufacturing method, and more particularly to a thin film transistor formed on a MIS type semiconductor substrate.

【0002】[0002]

【従来の技術】従来のMIS型半導体基板上に形成され
る薄膜トランジスタにおいては、ゲート電極を囲むゲー
ト絶縁膜は、ゲート電極表面上及びゲート電極側面に同
時に形成していた。
2. Description of the Related Art In a conventional thin film transistor formed on a MIS type semiconductor substrate, a gate insulating film surrounding a gate electrode is formed on the gate electrode surface and the gate electrode side surface at the same time.

【0003】[0003]

【発明が解決しようとする課題】しかし、このようなM
IS型半導体基板上に形成される薄膜トランジスタで
は、ゲート電極を囲むゲート絶縁膜は、半導体基板の対
し水平なゲート電極表面上のゲート絶縁膜の膜厚と半導
体基板の対し垂直な前記ゲート電極側面の絶縁膜の膜厚
が同等または、薄かった。
However, such an M
In a thin film transistor formed on an IS type semiconductor substrate, a gate insulating film surrounding a gate electrode has a thickness of a gate insulating film on a surface of the gate electrode which is horizontal to the semiconductor substrate and a side surface of the gate electrode which is vertical to the semiconductor substrate. The film thickness of the insulating film was equal or thin.

【0004】そのため、ゲート電極側面の絶縁膜また
は、ゲート電極エッヂ部分の絶縁膜が絶縁破壊を起こし
易いということと、ゲート電極側面に位置する領域に注
入されるイオンが入り難く、不純物濃度のバラツキが大
きく、薄膜トランジスタの特性が安定しないという課題
がある。本発明は、かかる課題を解決し、高歩留りかつ
信頼性の高い半導体装置および、その製造方法を提供す
ることにある。
Therefore, the insulating film on the side surface of the gate electrode or the insulating film on the edge portion of the gate electrode is liable to cause dielectric breakdown, and it is difficult for ions to be implanted in the region located on the side surface of the gate electrode, and the impurity concentration varies. However, there is a problem that the characteristics of the thin film transistor are not stable. An object of the present invention is to solve the above problems and provide a semiconductor device with high yield and high reliability, and a method for manufacturing the same.

【0005】[0005]

【課題を解決するための手段】本発明は、少なくとも二
層以上の多結晶シリコン膜または、アモルファス・シリ
コン膜を具備し、下層多結晶シリコンをゲート電極と
し、上層多結晶シリコンをチャンネル、ソース、ドレイ
ンとした薄膜トランジスタにおいて、ゲート電極を囲む
ゲート絶縁膜は、前記ゲート電極側面の半導体基板面に
対して垂直方向の絶縁膜の膜厚より前記ゲート電極表面
上の半導体基板面に対して水平方向の前記ゲート絶縁膜
が厚いことを特徴とする。
The present invention comprises at least two or more layers of polycrystalline silicon film or amorphous silicon film, wherein the lower layer polycrystalline silicon is used as a gate electrode and the upper layer polycrystalline silicon is used as a channel, a source, In the thin film transistor serving as the drain, the gate insulating film surrounding the gate electrode has a thickness in the horizontal direction with respect to the semiconductor substrate surface on the gate electrode surface that is greater than the thickness of the insulating film in the vertical direction with respect to the semiconductor substrate surface on the side surface of the gate electrode. The gate insulating film is thick.

【0006】また、半導体基板上に第一の絶縁膜を形成
する工程と、前記第一の絶縁膜上に第一の多結晶シリコ
ン膜または、アモルファス・シリコン膜から成るゲート
電極を形成する工程と、前記ゲート電極を高濃度不純物
層とする工程と、前記ゲート電極の側面に側壁を形成す
る工程と、前記ゲート電極上と前記ゲート電極の側面の
側壁を覆う第二の絶縁膜を形成する工程と、前記第二の
絶縁膜上に第二の多結晶シリコン膜または、アモルファ
ス・シリコン膜を形成する工程と、イオン注入によりチ
ャンネル、ソース、ドレイン領域を形成する工程を含む
ことを特徴とする。
Further, a step of forming a first insulating film on the semiconductor substrate, and a step of forming a gate electrode made of a first polycrystalline silicon film or an amorphous silicon film on the first insulating film. A step of forming the gate electrode as a high concentration impurity layer, a step of forming a side wall on a side surface of the gate electrode, and a step of forming a second insulating film on the gate electrode and a side wall of a side surface of the gate electrode. And a step of forming a second polycrystalline silicon film or an amorphous silicon film on the second insulating film, and a step of forming a channel, a source and a drain region by ion implantation.

【0007】[0007]

【作用】本発明の半導体装置および、その製造方法にお
いては、ゲート電極側面及び、エッヂ部分の絶縁膜がゲ
ート電極表面上のゲート絶縁膜と比較して厚くなるた
め、ゲート電極側面及び、エッヂ部分の絶縁膜に印加さ
れる電界は、ゲート電極表面上のゲート絶縁膜に印加さ
れる電界と比較して低く、ゲート絶縁膜に加わるストレ
スが小さくなる。
In the semiconductor device and the method for manufacturing the same according to the present invention, the insulating film on the side surface of the gate electrode and the edge portion is thicker than the gate insulating film on the surface of the gate electrode. The electric field applied to the insulating film is lower than the electric field applied to the gate insulating film on the surface of the gate electrode, and the stress applied to the gate insulating film is small.

【0008】また、ゲート電極側面に側壁があるため、
ゲート電極上に形成されるチャンネル、ソース、ドレイ
ン領域を形成する導電膜は急峻な段差をもたないため、
ゲート電極側面に位置する領域に注入されるイオンは従
来に比べてが入り易く、不純物濃度のバラツキが小さく
なる。
Since the side surface of the gate electrode has a side wall,
Since the conductive film forming the channel, source, and drain regions formed on the gate electrode does not have a steep step,
Ions injected into the region located on the side surface of the gate electrode are more likely to enter than in the conventional case, and the variation in impurity concentration is reduced.

【0009】[0009]

【実施例】以下、本発明について、実施例に基づき、詳
細に説明する。
EXAMPLES The present invention will be described in detail below based on examples.

【0010】図1は本発明の実施例の半導体装置の断面
図である。また、図2は本発明の実施例を工程順に示し
た半導体装置の断面図である。ここで、101,201
は半導体基板、102,202はシリコン酸化膜、10
3,203はゲート電極、104,204は側壁、10
5,205はゲート酸化膜、106,206は薄膜トラ
ンジスタのチャンネル領域、107,207は薄膜トラ
ンジスタのソース領域、108,208は薄膜トランジ
スタのドレイン領域である。
FIG. 1 is a sectional view of a semiconductor device according to an embodiment of the present invention. 2 is a sectional view of a semiconductor device showing an embodiment of the present invention in the order of steps. Here, 101, 201
Is a semiconductor substrate, 102 and 202 are silicon oxide films, 10
3, 203 are gate electrodes, 104, 204 are side walls, 10
5, 205 are gate oxide films, 106, 206 are channel regions of thin film transistors, 107, 207 are source regions of thin film transistors, and 108, 208 are drain regions of thin film transistors.

【0011】これから、図2の本発明の実施例である半
導体装置の断面図により工程順に説明する。
Now, the process steps will be described with reference to the sectional view of the semiconductor device according to the embodiment of the present invention shown in FIG.

【0012】まず、シリコン基板201上にCVD法ま
たは、熱酸化により10nm〜500nmの膜厚のシリ
コン酸化膜202を形成する。(図2(a)) 次に、CVD法により温度600℃〜650℃のモノシ
ラン雰囲気中で多結晶シリコン膜を100nm〜400
nm堆積した後、全面にP型不純物であるBF2のイオ
ンまたは、N型不純物であるAs(砒素)、P(リン)
のイオンをエネルギー30keV〜120keV、ドー
ズ量1×1014cmー2以上の条件下で注入を行い、高濃
度不純物拡散層を形成する。それから、写真食刻法によ
り、パターニングを行った後、フロン123とO2 及び
SF6 の混合ガスを用い、数mTorrの圧力下でゲー
ト電極材である多結晶シリコンのエッチングを行い、ゲ
ート電極を形成し、薄膜トランジスタのゲート電極20
3を形成する。(図2(b)) ついで、ウェハー全面にCVD法によりシリコン酸化膜
を100nm〜1μm堆積した後、反応ガスCHF3
よりシリコン酸化膜を平坦部に堆積したシリコン酸化膜
の膜厚分だけ異方性エッチングすることによりゲ−ト電
極に側壁204を設ける。(図2(c)) つづいて、ゲート酸化膜205となるシリコン酸化膜を
熱酸化または、CVD法により、10nm〜100nm
のシリコン酸化膜を形成する。(図2(d)) 次に、CVD法により温度600℃〜650℃のモノシ
ラン雰囲気中で多結晶シリコン膜206を20nm〜5
00nm堆積した後、全面に薄膜トランジスタのしきい
値電圧を調整するP型不純物であるBF2のイオンまた
は、N型不純物であるAs(砒素)、P(リン)のイオ
ンを行い、薄膜トランジスタのチャンネル領域を形成す
る。(図2(e)) それから、写真食刻法により薄膜トランジスタのソース
207および、ドレイン208領域を開孔し、レジスト
209をマスクとしてP型不純物であるBF2のイオン
または、N型不純物であるAs(砒素)、P(リン)の
イオン210をエネルギー30keV〜120keV、
ドーズ量1×1014cmー2以上の条件下で注入を行い、
高濃度不純物拡散層を形成する。(図2(f)) 次に、写真食刻法によりパターニングを行った後、フロ
ン123とO2 及びSF6 の混合ガスを用い、数mTo
rrの圧力下で薄膜トランジスタのチャンネル、ソース
及び、ドレインとなる多結晶シリコンのエッチングを行
う。(図2(g)) 以降の工程は、通常の方法に従って、ウェハー全面に層
間絶縁膜としてNSG膜を約100nm程度堆積し、写
真食刻法によりソースおよびドレインの引出し用のコン
タクト・ホールを形成したのち、電極配線用のアルミニ
ウムまたは、その合金をスパッタして、写真食刻法によ
りアルミニウム配線のパターニングを行い、アルミ配線
を形成する。
First, a silicon oxide film 202 having a thickness of 10 nm to 500 nm is formed on a silicon substrate 201 by a CVD method or thermal oxidation. (FIG. 2 (a)) Next, a polycrystalline silicon film having a thickness of 100 nm to 400 is formed by a CVD method in a monosilane atmosphere at a temperature of 600 ° C. to 650 ° C.
nm after being deposited, ions of BF 2 which is a P-type impurity or As (arsenic) and P (phosphorus) which are N-type impurities are deposited on the entire surface.
Ion energy 30KeV~120keV, a dose of 1 × 10 14 is implanted in cm -2 or more conditions to form a high concentration impurity diffusion layer. Then, after patterning by the photo-etching method, the polycrystalline silicon which is the gate electrode material is etched under a pressure of several mTorr using a mixed gas of Freon 123 and O 2 and SF 6 to form a gate electrode. Formed and thin film transistor gate electrode 20
3 is formed. (FIG. 2 (b)) Next, a silicon oxide film is deposited on the entire surface of the wafer by a CVD method to a thickness of 100 nm to 1 μm, and then the reaction gas CHF 3 is used to form the silicon oxide film in an anisotropic thickness corresponding to the film thickness of the silicon oxide film. Side wall 204 is provided on the gate electrode by performing a positive etching. (FIG. 2C) Next, the silicon oxide film to be the gate oxide film 205 is thermally oxidized or 10 nm to 100 nm by CVD method.
Forming a silicon oxide film. (FIG. 2 (d)) Next, the polycrystalline silicon film 206 is formed by a CVD method in a monosilane atmosphere at a temperature of 600 ° C. to 650 ° C. to a thickness of 20 nm to 5 nm.
After being deposited to a thickness of 00 nm, ions of BF 2 which is a P-type impurity or ions of As (arsenic) and P (phosphorus) which are N-type impurities for adjusting the threshold voltage of the thin film transistor are formed on the entire surface to form a channel region of the thin film transistor. To form. (FIG. 2E) Then, the source 207 and drain 208 regions of the thin film transistor are opened by a photolithography method, and ions of BF 2 which is a P-type impurity or As which is an N-type impurity are formed using the resist 209 as a mask. (Arsenic) and P (phosphorus) ions 210 with an energy of 30 keV to 120 keV,
Dosing is performed under the condition of a dose amount of 1 × 10 14 cm −2 or more,
A high concentration impurity diffusion layer is formed. (FIG. 2F) Next, after patterning by photolithography, a mixed gas of Freon 123, O 2 and SF 6 was used for several mTo.
Under the pressure of rr, etching is performed on the polycrystalline silicon which will be the channel, source and drain of the thin film transistor. (FIG. 2 (g)) In the subsequent steps, an NSG film as an interlayer insulating film of about 100 nm is deposited on the entire surface of the wafer according to a usual method, and contact holes for extracting the source and the drain are formed by photolithography. After that, aluminum or its alloy for electrode wiring is sputtered, and the aluminum wiring is patterned by the photolithography method to form the aluminum wiring.

【0013】そして、パッシベーション膜としてシリコ
ン酸化膜をCVD法を用いて堆積し、写真食刻法によ
り、パッドを開孔した後、弗酸を含む溶液により、パッ
シベーション膜を除去し、電極引出し口を形成する。
Then, a silicon oxide film is deposited as a passivation film by the CVD method, the pad is opened by the photo-etching method, the passivation film is removed by a solution containing hydrofluoric acid, and the electrode lead-out port is formed. Form.

【0014】このように形成された半導体装置では、ゲ
ート電極側面及び、エッヂ部分の絶縁膜がゲート電極表
面上のゲート絶縁膜と比較して厚くなるため、ゲート電
極側面及び、エッヂ部分の絶縁膜に印加される電界は、
ゲート電極表面上のゲート絶縁膜に印加される電界と比
較して低い。
In the semiconductor device thus formed, the insulating film on the side surface of the gate electrode and the edge portion is thicker than the gate insulating film on the surface of the gate electrode, and therefore the insulating film on the side surface of the gate electrode and the insulating film on the edge portion is formed. The electric field applied to
It is lower than the electric field applied to the gate insulating film on the surface of the gate electrode.

【0015】したがって、従来、絶縁破壊を起こし易い
ゲート絶縁膜の部分のストレスを軽減し、薄膜トランジ
スタの不良を防ぐことが出来る。
Therefore, conventionally, it is possible to reduce the stress in the portion of the gate insulating film which is apt to cause dielectric breakdown and prevent the defect of the thin film transistor.

【0016】また、ゲート電極側面に側壁を設け、ゲー
ト電極上に形成されるチャンネル、ソース、ドレイン領
域を形成する多結晶シリコン膜が急峻な段差がないた
め、ゲート電極側面に位置する領域に注入されるイオン
は従来に比べてが入り易く、不純物濃度のバラツキが小
さくなる。
Further, since the side wall is provided on the side surface of the gate electrode and the polycrystalline silicon film forming the channel, source and drain regions formed on the gate electrode does not have a steep step, it is injected into the region located on the side surface of the gate electrode. The generated ions are more likely to enter than in the conventional case, and variations in impurity concentration are reduced.

【0017】したがって、薄膜トランジスタの電圧、電
流特性は、安定する。
Therefore, the voltage and current characteristics of the thin film transistor are stable.

【0018】よって、特性の安定した、高信頼性の半導
体装置および、その製造方法を提供できる。
Therefore, it is possible to provide a highly reliable semiconductor device having stable characteristics and a manufacturing method thereof.

【0019】[0019]

【発明の効果】以上、述べたように本発明の半導体装置
および、その製造方法では、不良の起き易い領域のゲー
ト絶縁膜を厚くすることにより、印加される電界を小さ
くし、ストレスを低減できる。それにより、半導体装置
として高歩留り且つ、高信頼性のデバイスを提供するこ
とができる。
As described above, in the semiconductor device and the manufacturing method thereof according to the present invention, the applied electric field can be reduced and the stress can be reduced by increasing the thickness of the gate insulating film in the region where the defect easily occurs. . As a result, it is possible to provide a high-yield and highly reliable device as a semiconductor device.

【0020】また、ゲート電極側面に側壁を設けること
により、ゲート電極上に形成されるチャンネル、ソー
ス、ドレイン領域を形成する導電膜が急峻な段差をもた
ないようにし、ゲート電極側面に位置する領域に注入さ
れるイオンは従来に比べてが入り易く、不純物濃度のバ
ラツキが小さくなる。それにより、薄膜トランジスタの
電圧、電流特性は、安定する。
Further, by providing the side wall on the side surface of the gate electrode, the conductive film forming the channel, source and drain regions formed on the gate electrode is prevented from having a steep step and is located on the side surface of the gate electrode. Ions implanted into the region are more likely to enter than in the conventional case, and variations in impurity concentration are reduced. This stabilizes the voltage and current characteristics of the thin film transistor.

【0021】したがって、ゲート絶縁膜の不良を低減
し、薄膜トランジスタの特性を安定させ、半導体装置と
して高歩留り且つ、高信頼性のデバイスを提供すること
ができる。
Therefore, it is possible to reduce the defects of the gate insulating film, stabilize the characteristics of the thin film transistor, and provide a high yield and high reliability device as a semiconductor device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の半導体装置の断面図である。FIG. 1 is a cross-sectional view of a semiconductor device according to an embodiment of the present invention.

【図2】本発明の実施例の半導体装置の製造方法に沿っ
た断面図である。
FIG. 2 is a cross-sectional view of the method for manufacturing the semiconductor device according to the exemplary embodiment of the present invention.

【図3】従来の半導体装置の断面図である。FIG. 3 is a cross-sectional view of a conventional semiconductor device.

【符号の説明】[Explanation of symbols]

101,201,301 半導体基板 102,202,302 シリコン酸化膜 103,203,303 ゲート電極 104,204, 側壁 105,205,304 ゲート酸化膜 106,206,305 薄膜トランジスタのチャン
ネル領域 107,207,306 薄膜トランジスタのソース
領域 108,208,307 薄膜トランジスタのドレイ
ン領域 209 レジスト 210 BF2、As(砒素)また
は、P(リン)のイオン
101,201,301 Semiconductor substrate 102,202,302 Silicon oxide film 103,203,303 Gate electrode 104,204, Side wall 105,205,304 Gate oxide film 106,206,305 Thin film transistor channel region 107,207,306 Thin film transistor Source region 108, 208, 307 of the thin film transistor drain region 209 resist 210 BF 2 , As (arsenic) or P (phosphorus) ions

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】少なくとも二層以上の多結晶シリコン膜ま
たは、アモルファス・シリコン膜を具備し、下層多結晶
シリコンをゲート電極とし、上層多結晶シリコンをチャ
ンネル、ソース、ドレインとした薄膜トランジスタにお
いて、ゲート電極を囲むゲート絶縁膜は、前記ゲート電
極側面の半導体基板面に対して垂直方向の絶縁膜の膜厚
より前記ゲート電極表面上の半導体基板面に対して水平
方向の前記ゲート絶縁膜が厚いことを特徴とする半導体
装置。
1. A thin film transistor comprising at least two or more layers of polycrystalline silicon film or amorphous silicon film, wherein the lower layer polycrystalline silicon is used as a gate electrode and the upper layer polycrystalline silicon is used as a channel, source and drain. The gate insulating film surrounding the gate insulating film is thicker in the horizontal direction with respect to the semiconductor substrate surface on the gate electrode surface than the film thickness of the insulating film on the side surface of the gate electrode in the vertical direction with respect to the semiconductor substrate surface. Characteristic semiconductor device.
【請求項2】半導体基板上に第一の絶縁膜を形成する工
程と、前記第一の絶縁膜上に第一の多結晶シリコン膜ま
たは、アモルファス・シリコン膜から成るゲート電極を
形成する工程と、前記ゲート電極を高濃度不純物層とす
る工程と、前記ゲート電極の側面に側壁を形成する工程
と、前記ゲート電極上と前記ゲート電極の側面の側壁を
覆う第二の絶縁膜を形成する工程と、前記第二の絶縁膜
上に第二の多結晶シリコン膜または、アモルファス・シ
リコン膜を形成する工程と、イオン注入によりチャンネ
ル、ソース、ドレイン領域を形成する工程を含むことを
特徴とする半導体装置の製造方法。
2. A step of forming a first insulating film on a semiconductor substrate, and a step of forming a gate electrode made of a first polycrystalline silicon film or an amorphous silicon film on the first insulating film. A step of forming the gate electrode as a high concentration impurity layer, a step of forming a side wall on a side surface of the gate electrode, and a step of forming a second insulating film on the gate electrode and a side wall of a side surface of the gate electrode. And a step of forming a second polycrystalline silicon film or an amorphous silicon film on the second insulating film, and a step of forming a channel, a source and a drain region by ion implantation. Device manufacturing method.
JP18354192A 1992-07-10 1992-07-10 Semiconductor device and its manufacture Pending JPH0629533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18354192A JPH0629533A (en) 1992-07-10 1992-07-10 Semiconductor device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18354192A JPH0629533A (en) 1992-07-10 1992-07-10 Semiconductor device and its manufacture

Publications (1)

Publication Number Publication Date
JPH0629533A true JPH0629533A (en) 1994-02-04

Family

ID=16137625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18354192A Pending JPH0629533A (en) 1992-07-10 1992-07-10 Semiconductor device and its manufacture

Country Status (1)

Country Link
JP (1) JPH0629533A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6704148B2 (en) 2000-05-25 2004-03-09 Sharp Kabushiki Kaisha Omnidirectional visual angle system and retainer for the system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6704148B2 (en) 2000-05-25 2004-03-09 Sharp Kabushiki Kaisha Omnidirectional visual angle system and retainer for the system

Similar Documents

Publication Publication Date Title
US4149307A (en) Process for fabricating insulated-gate field-effect transistors with self-aligned contacts
KR19980018751A (en) SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME
JPH0532911B2 (en)
US4640000A (en) Method of manufacturing semiconductor device
JPH098135A (en) Manufacture of semiconductor device
JPH0629533A (en) Semiconductor device and its manufacture
JPH0666327B2 (en) MOS semiconductor device and method of manufacturing the same
JP3001588B2 (en) Semiconductor device and manufacturing method thereof
JPH0298939A (en) Manufacture of semiconductor device
JPH07273183A (en) Semiconductor device and its fabrication
JPH05226466A (en) Manufacture of semiconductor device
JPS63305566A (en) Semiconductor device and manufacture thereof
JPH01251669A (en) Manufacture of field effect transistor
JP3127483B2 (en) Method for manufacturing semiconductor device
JPH07226502A (en) Mos transistor and manufacture thereof
JPH1098111A (en) Mos semiconductor device and manufacture thereof
JPH0252859B2 (en)
JPH04186733A (en) Semiconductor device and manufacture thereof
JPH07283300A (en) Semiconductor device and manufacture thereof
KR100243021B1 (en) Method for manufacturing semiconductor device
JPH02143461A (en) Semiconductor device and its manufacture
KR100250748B1 (en) Method for fabricating a stacked capacitor of semiconductor device
JPH0629531A (en) Manufacture of semiconductor device
JPS60133755A (en) Manufacture of semiconductor device
JPS5834951B2 (en) Manufacturing method of semiconductor device