JPH06275313A - リチウム電池 - Google Patents

リチウム電池

Info

Publication number
JPH06275313A
JPH06275313A JP5088158A JP8815893A JPH06275313A JP H06275313 A JPH06275313 A JP H06275313A JP 5088158 A JP5088158 A JP 5088158A JP 8815893 A JP8815893 A JP 8815893A JP H06275313 A JPH06275313 A JP H06275313A
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
sulfur
solid electrolyte
ion conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5088158A
Other languages
English (en)
Inventor
Kazunori Takada
和典 高田
Kazuya Iwamoto
和也 岩本
Noboru Aotani
登 青谷
Shigeo Kondo
繁雄 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5088158A priority Critical patent/JPH06275313A/ja
Publication of JPH06275313A publication Critical patent/JPH06275313A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

(57)【要約】 【目的】 充電が可能で自己放電の少ないリチウム電池
を提供する。 【構成】 硫黄あるいは多硫化リチウムを正極活物質と
し、電解質層として、リチウムイオン導電性固体電解質
を用いる。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、硫黄あるいは多硫化リ
チウムを正極活物質として用いたリチウム電池に関す
る。
【0002】
【従来の技術】近年、パーソナルコンピュータ・携帯電
話等のポータブル機器の開発にともない、その電源とし
て電池の需要は非常に大きなものとなっている。特に、
リチウム電池は、リチウムが小さな原子量を持ちかつイ
オン化エネルギーが大きな物質であることから、高エネ
ルギー密度を得ることができる電池として各方面で盛ん
に研究が行われている。このようなリチウム電池に用い
られる正極活物質としては、MnO2、NiO2、V25
等の遷移金属酸化物、MoS2等の遷移金属硫化物等
が、また負極活物質としては、金属リチウムをはじめL
i−Al合金あるいは黒鉛層間化合物等がそれぞれ検討
されている。それに対し、硫黄あるいは多硫化リチウム
(LiSn)を正極活物質、金属リチウムを負極活物質
として用いるリチウム/硫黄電池は、電池起電力は約2
Vと低いものの、正極活物質の硫黄が安価で電気化学当
量の小さなものであり高い理論容量密度を有していると
ともに、環境汚染物質を含まない等の利点を有してお
り、現在各方面で研究が進められている。
【0003】
【発明が解決しようとする課題】しかしながら、硫黄あ
るいは多硫化リチウムを正極活物質として用いた電池
は、以下のような解決すべき課題を有していた。第1の
課題は、硫黄が電解質に用いられる非水溶媒中に溶ける
点である。その溶解度は低いものの、溶解した硫黄が負
極まで拡散すると、負極活物質として用いられる金属リ
チウムと反応し、多硫化リチウムを生じる。その結果、
非水溶媒中で成立していた化1で表される平衡状態が右
に移動し、さらに硫黄の溶解を促進し、電池を開放状態
としている間においても正極活物質である硫黄と負極活
物質である金属リチウムの消費が起こり、電池の自己放
電をなくすることが困難となるという課題を有してい
た。
【0004】
【化1】
【0005】また、もう一つの課題は、放電生成物であ
る多硫化リチウムが非水溶媒中によく溶け、放電生成物
を正極に保持することができない点である。したがっ
て、電池を放電することは可能でも、電池を充電するこ
とが困難となるという課題を有していた。本発明は、以
上の課題を解決し、自己放電が少なく、さらに充電の可
能な、硫黄あるいは硫化リチウムを正極活物質として用
いたリチウム電池を提供することを目的とする。
【0006】
【課題を解決するための手段】本発明は、硫黄あるいは
硫化リチウムを正極活物質とし、電解質層にリチウムイ
オン導電性固体電解質を用いることを特徴とする。さら
に、硫化リチウムとしては、多硫化リチウムを用いる。
またさらに、リチウムイオン導電性固体電解質として
は、硫化物系固体電解質を用いる。
【0007】
【作用】リチウムイオン導電性固体電解質は、固体中を
Li+イオンのみが動くことができるイオン選択性を有
している。したがって、リチウムイオン導電性固体電解
質を電解質層として用いることにより、従来の課題であ
った硫黄の電解質への溶解が起こらなくなる。その結
果、硫黄を正極活物質として用いたリチウム電池の自己
放電を小さなものとすることができる。また同様に、多
硫化リチウムの溶解もなくすことができることから、充
電可能なリチウム電池とすることができる。また、正極
での充放電にともなう反応は化2で表すことができる。
【0008】
【化2】
【0009】放電の際に生成するLiSnがLi2Sであ
る場合には、充電反応が生じ難くなる。したがって、正
極活物質として用いられる硫化リチウムとしては、多硫
化リチウムが好ましく用いられる。またさらに、化2で
示したように充放電に関与する物質は硫黄とリチウムで
あるため、リチウムイオン導電性固体電解質に硫化物系
固体電解質を用いることで、電気化学反応界面における
リチウム濃度、硫黄濃度を高いものとすることができる
結果、電池の充放電反応を円滑に進めることができる。
したがって、リチウムイオン導電性固体電解質として
は、硫化物系固体電解質が特に好ましく用いられる。
【0010】
【実施例】以下、本発明について実施例を用いて詳細に
説明する。 [実施例1]本実施例においては、正極活物質として硫
黄を、負極活物質として金属リチウムを用い、固体電解
質として硫化物系リチウムイオン導電性固体電解質の一
つである0.6Li2S−0.4SiS2で表されるリチ
ウムイオン導電性非晶質固体電解質を用い、下記のよう
にリチウム電池を構成しその特性を評価した。まず硫化
物系リチウムイオン導電性固体電解質0.6Li2S−
0.4SiS2は、以下のように合成した。硫化リチウ
ム(Li2S)と硫化ケイ素(SiS2)をモル比で3:
2の割合で混合し、その混合物をガラス状カーボンの坩
堝中に入れた。その坩堝を縦型炉中に入れアルゴン気流
中で950℃まで加熱し、混合物を溶融状態とした。2
時間加熱の後、坩堝を液体窒素中に落とし込んで急冷
し、0.6Li2S−0.4SiS2で表されるリチウム
イオン導電性非晶質固体電解質を得た。
【0011】リチウム電池の正極材料は以下の方法で得
た。まず硫黄を二硫化炭素に溶解し、この溶液中に高表
面積の炭素材料を浸漬した。但し、高表面積の炭素材料
としてはアセチレンブラックを用いた。この混合液を濾
過し、室温で減圧乾燥することにより導電材である炭素
材料に硫黄を担持した複合物を得た。このようにして得
た硫黄を担持した炭素材料と、上記で得たリチウムイオ
ン導電性固体電解質を重量比で1:1の割合で混合し正
極材料を得た。負極としては、金属リチウム箔(厚み
0.5mm)を直径10mmの円板状に打ち抜いたもの
を用いた。構成したリチウム電池の断面図を図1に示
す。上記で得た正極材料1と、金属リチウム箔2を、固
体電解質(0.6Li2S−0.4SiS2)層3を介し
て直径10mmの円柱状に一体に加圧成形した。但し、
その際の正極重量は200mgとした。その後、正極リ
ード端子4、負極リード端子5をカーボンペースト6、
7により接着し、さらに電池素子全体をエポキシ樹脂層
8で封じて本発明によるリチウム電池を得た。
【0012】このようにして得たリチウム電池を、20
μAの電流値で1.5Vまで放電し、続いて2.5Vま
で同じ電流値で充電した。その後、同様の充放電サイク
ルを続けた。この充放電試験の3サイクル目に得られた
充放電曲線を図2に示す。この充放電曲線より、この電
池の充放電効率はほぼ100%であり、正極活物質とし
て硫黄を用いた電池が極めて充放電効率の高いリチウム
二次電池であることがわかった。次に、上記で得たリチ
ウム電池を60℃で30日保存し、その後上記と同様の
電流値で放電した。その結果得られた放電曲線を図3に
示す。この結果得られた放電容量は、上記の充放電サイ
クル試験で得られた放電容量とほぼ等しく、本発明によ
ると、硫黄を正極活物質として用いた自己放電の少ない
リチウム電池が得られることがわかった。以上のように
本発明によると、硫黄を正極活物質として用い、自己放
電が少なくかつ充電の可能なリチウム電池が得られるこ
とがわかった。
【0013】[実施例2]本実施例においては、電解質
として実施例1で用いた0.6Li2S−0.4SiS2
に代えて、同じく硫化物系リチウムイオン導電性固体電
解質の一つである0.6Li2S−0.4P25で表さ
れるリチウムイオン導電性非晶質固体電解質を用いた以
外は、実施例1と同様の方法でリチウム電池を構成し、
その特性を評価した。その結果、実施例1とほぼ同様の
特性を示した。
【0014】[実施例3]本実施例においては、電解質
として実施例1で用いた0.6Li2S−0.4SiS2
に代えて、同じく硫化物系リチウムイオン導電性固体電
解質の一つである0.5Li2S−0.5B23で表さ
れるリチウムイオン導電性非晶質固体電解質を用いた以
外は、実施例1と同様の方法でリチウム電池を構成し、
その特性を評価した。その結果、実施例1とほぼ同様の
特性を示した。
【0015】[実施例4]本実施例においては、電解質
として実施例1で用いた0.6Li2S−0.4SiS2
に代えて、同じく硫化物系リチウムイオン導電性固体電
解質の一つである0.02Li3PO4−0.59Li2
S−0.39SiS2で表されるリチウムイオン導電性
非晶質固体電解質を用いた以外は、実施例1と同様の方
法でリチウム電池を構成し、その特性を評価した。その
結果、実施例1とほぼ同様の特性を示した。
【0016】[実施例5]本実施例においては、電解質
として実施例1で用いた0.6Li2S−0.4SiS2
に代えて、同じく硫化物系リチウムイオン導電性固体電
解質の一つである0.30LiI−0.35Li2S−
0.35SiS2で表されるリチウムイオン導電性非晶
質固体電解質を用いた以外は、実施例1と同様の方法で
リチウム電池を構成し、その特性を評価した。その結
果、実施例1とほぼ同様の特性を示した。
【0017】[実施例6]本実施例においては、電解質
として実施例1で用いた0.6Li2S−0.4SiS2
に代えて、リチウムイオン導電性固体電解質の一つであ
るLi4SiO4−Li3BO3系リチウムイオン導電性非
晶質固体電解質を用い、薄膜リチウム電池を構成し、そ
の特性を評価した。構成した薄膜リチウム電池の断面図
を図4に示す。まず、石英基板9上に正極集電体として
ITO膜10を高周波スパッタ法により形成した。その
後、正極である硫黄薄膜11を加熱蒸着法により形成し
た。続いて、固体電解質層12を高周波スパッタ法によ
り形成し、最後に負極である金属リチウム層13を加熱
蒸着法により形成した。ただし、固体電解質層を形成す
る際のスパッタターゲットはLi4SiO4とLi3BO3
をモル比で4:6の割合で混合し焼結したものを用い
た。14および15はそれぞれカーボンペースト16,
17により取り付けた正極および負極リード端子であ
る。18は高周波スパッタ法により形成したガラス層
で、電池素子を密封するものである。このようにして得
たリチウム電池の特性を実施例1と同様の方法で評価し
た。その結果、充放電サイクル試験においてはほぼ10
0%の充放電効率を示し、本実施例における電池が充電
可能な電池であることがわかった。また、保存後の放電
試験においても放電容量の低下はなく、本実施例におけ
る電池が自己放電の少ない電池であることがわかった。
以上のように、硫黄を正極活物質として用い、自己放電
が少なくかつ充電の可能なリチウム電池が得られること
がわかった。
【0018】[実施例7]本実施例においては、正極活
物質として実施例1で用いた硫黄に代えて多硫化リチウ
ムを用いた以外は実施例1と同様の方法でリチウム電池
を構成しその特性を評価した。多硫化リチウムを正極活
物質とする正極は、以下の方法で得た。まず、金属リチ
ウムと硫黄をモル比で1:6の割合でテトラヒドロフラ
ン中で反応させ、Li212の組成の多硫化リチウムを
得た。この溶液中に高表面積の炭素材料を浸漬した。但
し、高表面積の炭素材料としては実施例1と同様にアセ
チレンブラックを用いた。この混合液を濾過し、室温で
減圧乾燥することにより導電材である炭素材料に多硫化
リチウムを担持した複合物を得た。このようにして得た
硫黄を担持した炭素材料と、上記で得たリチウムイオン
導電性固体電解質を重量比で1:1の割合で混合し正極
材料を得た。このようにして得た正極材料を用いた以外
は、実施例1と同様の方法で本発明によるリチウム電池
を得た。
【0019】このようにして得たリチウム電池を、20
μAの電流値で1.5Vまで放電し、続いて3.0Vま
で同じ電流値で充電した。その後、同様の充放電サイク
ルを続けた。この充放電試験の3サイクル目に得られた
充放電曲線を図5に示す。この充放電曲線より、この電
池の充放電効率はほぼ100%であり、本発明によると
硫黄を正極活物質として用いた充電が可能なリチウム電
池が得られることがわかった。次に、このリチウム電池
の自己放電を以下の方法で評価した。上記で得たリチウ
ム電池を2.5Vの定電圧で24時間充電した。その後
電池を60℃で30日保存し、その後実施例1と同様に
20μAの定電流で放電した。その結果得られた放電容
量は、上記の充放電サイクル試験で得られた放電容量と
ほぼ等しく、本発明によると硫黄を正極活物質として用
いた自己放電の少ないリチウム電池が得られることがわ
かった。以上のように本発明によると、多硫化リチウム
を正極活物質として用い、自己放電が少なくかつ充電の
可能なリチウム電池が得られることがわかった。
【0020】なお本発明の実施例においては、負極活物
質として金属リチウムを用いたもののみについて説明し
たが、その他リチウム−黒鉛化合物などの他の負極活物
質を用いた場合も同様の効果が得られることはいうまで
もなく、本発明のリチウム電池は、負極活物質として金
属リチウムを用いたもののみに限定されるものではな
い。また、本発明の実施例においては、固体電解質とし
て0.6Li2S−0.4SiS2、0.6Li2S−
0.4P25、0.5Li2S−0.5B23、0.0
2Li3PO4−0.59Li2S−0.39SiS2
0.30LiI−0.35Li2S−0.35SiS2
Li4SiO4−Li3BO3系リチウムイオン導電性非晶
質固体電解質についてのみ説明をしたが、0.5Li2
S−0.5SiS2その他の組成の固体電解質、LiI
−Li2S−SiS2−P25などの擬4成分系、あるい
はLi4SiO4−Li3PO4等の他の成分を用いたもの
でも同様の効果が得られることもいうまでもなく、本発
明は固体電解質として上記実施例に示したもののみに限
定されるものではない。また、本発明の実施例において
は、多硫化リチウムとしてLi212の組成の多硫化リ
チウムのみについて説明したが、その他の組成の多硫化
リチウムを用いた場合も同様の効果が得られることもい
うまでもなく、本発明は多硫化リチウムとしてLi2
12の組成の多硫化リチウムのみに限定されるものではな
い。
【0021】
【発明の効果】以上のように、本発明によれば、硫黄あ
るいは硫化リチウムを正極活物質とし、電解質層にリチ
ウムイオン導電性固体電解質を用いることにより、自己
放電が少なく、充電の可能なリチウム電池を得ることが
できる。
【図面の簡単な説明】
【図1】本発明の一実施例におけるリチウム電池の素電
池の縦断面図である。
【図2】本発明の一実施例におけるリチウム電池の充放
電特性図である。
【図3】本発明の一実施例におけるリチウム電池の保存
後の放電特性図である。
【図4】本発明の一実施例における薄膜リチウム電池の
縦断面図である。
【図5】本発明の一実施例におけるリチウム電池の充放
電特性図である。
【符号の説明】
1 正極 2 負極(金属リチウム箔) 3 固体電解質層 4 正極リード端子 5 負極リード端子 6 カーボンペースト 7 カーボンペースト 8 樹脂層 9 石英基板 10 正極集電体(ITO) 11 正極(硫黄薄膜) 12 固体電解質層 13 負極(リチウム薄膜) 14 正極リード端子 15 負極リード端子 16 カーボンペースト 17 カーボンペースト 18 ガラス層
フロントページの続き (72)発明者 近藤 繁雄 大阪府門真市大字門真1006番地 松下電器 産業株式会社内

Claims (3)

    【特許請求の範囲】
  1. 【請求項1】 硫黄あるいは硫化リチウムを活物質とす
    る正極と、リチウムイオン導電性固体電解質層とを具備
    することを特徴とするリチウム電池。
  2. 【請求項2】 硫化リチウムが、多硫化リチウムである
    請求項1記載のリチウム電池。
  3. 【請求項3】 リチウムイオン導電性固体電解質が、硫
    化物系固体電解質である請求項1または請求項2記載の
    リチウム電池。
JP5088158A 1993-03-22 1993-03-22 リチウム電池 Pending JPH06275313A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5088158A JPH06275313A (ja) 1993-03-22 1993-03-22 リチウム電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5088158A JPH06275313A (ja) 1993-03-22 1993-03-22 リチウム電池

Publications (1)

Publication Number Publication Date
JPH06275313A true JPH06275313A (ja) 1994-09-30

Family

ID=13935122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5088158A Pending JPH06275313A (ja) 1993-03-22 1993-03-22 リチウム電池

Country Status (1)

Country Link
JP (1) JPH06275313A (ja)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5686201A (en) * 1994-11-23 1997-11-11 Polyplus Battery Company, Inc. Rechargeable positive electrodes
US5814420A (en) * 1994-11-23 1998-09-29 Polyplus Battery Company, Inc. Rechargeable positive electrodes
US6017651A (en) * 1994-11-23 2000-01-25 Polyplus Battery Company, Inc. Methods and reagents for enhancing the cycling efficiency of lithium polymer batteries
US6030720A (en) * 1994-11-23 2000-02-29 Polyplus Battery Co., Inc. Liquid electrolyte lithium-sulfur batteries
US6200704B1 (en) 1998-09-01 2001-03-13 Polyplus Battery Company, Inc. High capacity/high discharge rate rechargeable positive electrode
US6210832B1 (en) 1998-09-01 2001-04-03 Polyplus Battery Company, Inc. Mixed ionic electronic conductor coatings for redox electrodes
EP1182717A2 (en) * 1994-11-23 2002-02-27 Polyplus Battery Company Rechargeable positive electrode
US6358643B1 (en) 1994-11-23 2002-03-19 Polyplus Battery Company Liquid electrolyte lithium-sulfur batteries
US6376123B1 (en) 1994-11-23 2002-04-23 Polyplus Battery Company Rechargeable positive electrodes
US6537701B1 (en) 1998-09-03 2003-03-25 Polyplus Battery Company, Inc. Coated lithium electrodes
KR100398468B1 (ko) * 2001-02-13 2003-09-19 임수근 리튬전지용 유황 양전극 및 그의 제조방법
US6632573B1 (en) 2001-02-20 2003-10-14 Polyplus Battery Company Electrolytes with strong oxidizing additives for lithium/sulfur batteries
US6641863B2 (en) 2000-12-13 2003-11-04 Sumitomo Electric Industries, Ltd. Method of forming thin film of inorganic solid electrolyte
US6692870B2 (en) 2000-04-25 2004-02-17 Sanyo Electric Co., Ltd. Electrode active material and lithium secondary battery
US6709787B2 (en) * 2000-02-09 2004-03-23 Hitachi Maxell, Ltd. Polycarbon sulfide, process for preparing the same and nonaqueous electrolyte battery comprising the same
JP2005093276A (ja) * 2003-09-18 2005-04-07 Matsushita Electric Ind Co Ltd 非水電解質二次電池
US6955866B2 (en) 1998-09-03 2005-10-18 Polyplus Battery Company Coated lithium electrodes
JP2007518231A (ja) * 2004-01-06 2007-07-05 サイオン パワー コーポレイション リチウム硫黄セルを充電する方法
JP2009009905A (ja) * 2007-06-29 2009-01-15 Sumitomo Electric Ind Ltd 薄膜リチウム二次電池およびその製造方法
JP2010095390A (ja) * 2008-09-16 2010-04-30 Tokyo Institute Of Technology メソポーラス炭素複合材料およびこれを用いた二次電池
US7790315B2 (en) 1996-05-22 2010-09-07 Sion Power Corporation Composite cathodes, electrochemical cells comprising novel composite cathodes, and processes for fabricating same
JP2013080637A (ja) * 2011-10-04 2013-05-02 Idemitsu Kosan Co Ltd 複合電極材料及びその製造方法、並びに該複合電極材料を用いたリチウム電池
JP2013139371A (ja) * 2011-12-28 2013-07-18 Qinghua Univ 硫黄−グラフェン複合材料の製造方法
CN103270641A (zh) * 2010-12-29 2013-08-28 罗伯特·博世有限公司 基于固体电解质的锂-硫-电池
JP2014500584A (ja) * 2010-11-04 2014-01-09 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング リチウム・硫黄系電池のためのカソード材料
JP2014017241A (ja) * 2012-06-13 2014-01-30 Nagase Chemtex Corp 薄膜硫黄被覆導電性カーボンの製造方法、薄膜硫黄被覆導電性カーボン、正極合材及び全固体型リチウム硫黄電池
JP2014017240A (ja) * 2012-06-13 2014-01-30 Nagase Chemtex Corp 薄膜硫黄被覆導電性カーボン、正極合材及び全固体型リチウム硫黄電池
JP2014029791A (ja) * 2012-07-31 2014-02-13 Tdk Corp リチウムイオン二次電池
JP2015088232A (ja) * 2013-10-28 2015-05-07 ナガセケムテックス株式会社 薄膜硫黄被覆活性炭の製造方法、薄膜硫黄被覆活性炭、正極合材及び全固体型リチウム硫黄電池
JP2015088231A (ja) * 2013-10-28 2015-05-07 ナガセケムテックス株式会社 薄膜硫黄被覆活性炭、正極合材及び全固体型リチウム硫黄電池
JP2016038985A (ja) * 2014-08-06 2016-03-22 日本特殊陶業株式会社 リチウム電池
US9337476B2 (en) 2008-09-24 2016-05-10 National Institute Of Advanced Industrial Science And Technology Lithium sulfide-carbon complex, process for producing the complex, and lithium ion secondary battery utilizing the complex
JP2016100088A (ja) * 2014-11-18 2016-05-30 株式会社サムスン日本研究所 リチウム二次電池
US9716291B2 (en) 2004-01-06 2017-07-25 Sion Power Corporation Electrolytes for lithium sulfur cells
US9847550B2 (en) 2011-09-07 2017-12-19 Sion Power Corporation Lithium sulfur electrochemical cell including insoluble nitrogen-containing compound and battery including the cell
US9859588B2 (en) 2004-01-06 2018-01-02 Sion Power Corporation Electrolytes for lithium sulfur cells
US10050308B2 (en) 2012-12-17 2018-08-14 Sion Power Corporation Lithium-ion electrochemical cell, components thereof, and methods of making and using same
US10186730B2 (en) 2015-07-15 2019-01-22 Samsung Electronics Co., Ltd. Electrolyte solution for secondary battery and secondary battery
US10297827B2 (en) 2004-01-06 2019-05-21 Sion Power Corporation Electrochemical cell, components thereof, and methods of making and using same
US10879513B2 (en) 2013-04-29 2020-12-29 Optodot Corporation Nanoporous composite separators with increased thermal conductivity
CN113321485A (zh) * 2021-05-28 2021-08-31 中南大学 一种硫银锗矿型硫化物固态电解质的制备方法
US11705555B2 (en) 2010-08-24 2023-07-18 Sion Power Corporation Electrolyte materials for use in electrochemical cells

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1182717A3 (en) * 1994-11-23 2003-11-19 Polyplus Battery Company Rechargeable positive electrode
EP1182717A2 (en) * 1994-11-23 2002-02-27 Polyplus Battery Company Rechargeable positive electrode
US5814420A (en) * 1994-11-23 1998-09-29 Polyplus Battery Company, Inc. Rechargeable positive electrodes
US6017651A (en) * 1994-11-23 2000-01-25 Polyplus Battery Company, Inc. Methods and reagents for enhancing the cycling efficiency of lithium polymer batteries
US6030720A (en) * 1994-11-23 2000-02-29 Polyplus Battery Co., Inc. Liquid electrolyte lithium-sulfur batteries
US5789108A (en) * 1994-11-23 1998-08-04 Polyplus Battery Company, Inc. Rechargeable positive electrodes
US5686201A (en) * 1994-11-23 1997-11-11 Polyplus Battery Company, Inc. Rechargeable positive electrodes
US6376123B1 (en) 1994-11-23 2002-04-23 Polyplus Battery Company Rechargeable positive electrodes
US6358643B1 (en) 1994-11-23 2002-03-19 Polyplus Battery Company Liquid electrolyte lithium-sulfur batteries
US7790315B2 (en) 1996-05-22 2010-09-07 Sion Power Corporation Composite cathodes, electrochemical cells comprising novel composite cathodes, and processes for fabricating same
US7939198B2 (en) 1996-05-22 2011-05-10 Sion Power Corporation Composite cathodes, electrochemical cells comprising novel composite cathodes, and processes for fabricating same
US6210832B1 (en) 1998-09-01 2001-04-03 Polyplus Battery Company, Inc. Mixed ionic electronic conductor coatings for redox electrodes
US6200704B1 (en) 1998-09-01 2001-03-13 Polyplus Battery Company, Inc. High capacity/high discharge rate rechargeable positive electrode
US6537701B1 (en) 1998-09-03 2003-03-25 Polyplus Battery Company, Inc. Coated lithium electrodes
US6955866B2 (en) 1998-09-03 2005-10-18 Polyplus Battery Company Coated lithium electrodes
US6709787B2 (en) * 2000-02-09 2004-03-23 Hitachi Maxell, Ltd. Polycarbon sulfide, process for preparing the same and nonaqueous electrolyte battery comprising the same
US6692870B2 (en) 2000-04-25 2004-02-17 Sanyo Electric Co., Ltd. Electrode active material and lithium secondary battery
US6641863B2 (en) 2000-12-13 2003-11-04 Sumitomo Electric Industries, Ltd. Method of forming thin film of inorganic solid electrolyte
KR100398468B1 (ko) * 2001-02-13 2003-09-19 임수근 리튬전지용 유황 양전극 및 그의 제조방법
US6632573B1 (en) 2001-02-20 2003-10-14 Polyplus Battery Company Electrolytes with strong oxidizing additives for lithium/sulfur batteries
JP2005093276A (ja) * 2003-09-18 2005-04-07 Matsushita Electric Ind Co Ltd 非水電解質二次電池
US10297827B2 (en) 2004-01-06 2019-05-21 Sion Power Corporation Electrochemical cell, components thereof, and methods of making and using same
US10985403B2 (en) 2004-01-06 2021-04-20 Sion Power Corporation Electrolytes for lithium sulfur cells
JP2007518231A (ja) * 2004-01-06 2007-07-05 サイオン パワー コーポレイション リチウム硫黄セルを充電する方法
US9859588B2 (en) 2004-01-06 2018-01-02 Sion Power Corporation Electrolytes for lithium sulfur cells
US9716291B2 (en) 2004-01-06 2017-07-25 Sion Power Corporation Electrolytes for lithium sulfur cells
JP2009009905A (ja) * 2007-06-29 2009-01-15 Sumitomo Electric Ind Ltd 薄膜リチウム二次電池およびその製造方法
JP2010095390A (ja) * 2008-09-16 2010-04-30 Tokyo Institute Of Technology メソポーラス炭素複合材料およびこれを用いた二次電池
US9337476B2 (en) 2008-09-24 2016-05-10 National Institute Of Advanced Industrial Science And Technology Lithium sulfide-carbon complex, process for producing the complex, and lithium ion secondary battery utilizing the complex
US11705555B2 (en) 2010-08-24 2023-07-18 Sion Power Corporation Electrolyte materials for use in electrochemical cells
JP2014500584A (ja) * 2010-11-04 2014-01-09 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング リチウム・硫黄系電池のためのカソード材料
JP2014501436A (ja) * 2010-12-29 2014-01-20 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 固体電解質ベースのリチウム−硫黄電池
CN103270641A (zh) * 2010-12-29 2013-08-28 罗伯特·博世有限公司 基于固体电解质的锂-硫-电池
US9847550B2 (en) 2011-09-07 2017-12-19 Sion Power Corporation Lithium sulfur electrochemical cell including insoluble nitrogen-containing compound and battery including the cell
US10854921B2 (en) 2011-09-07 2020-12-01 Sion Power Corporation Electrochemical cell including electrolyte having insoluble nitrogen-containing material and battery including the cell
JP2013080637A (ja) * 2011-10-04 2013-05-02 Idemitsu Kosan Co Ltd 複合電極材料及びその製造方法、並びに該複合電極材料を用いたリチウム電池
JP2013139371A (ja) * 2011-12-28 2013-07-18 Qinghua Univ 硫黄−グラフェン複合材料の製造方法
JP2014017241A (ja) * 2012-06-13 2014-01-30 Nagase Chemtex Corp 薄膜硫黄被覆導電性カーボンの製造方法、薄膜硫黄被覆導電性カーボン、正極合材及び全固体型リチウム硫黄電池
JP2014017240A (ja) * 2012-06-13 2014-01-30 Nagase Chemtex Corp 薄膜硫黄被覆導電性カーボン、正極合材及び全固体型リチウム硫黄電池
JP2014029791A (ja) * 2012-07-31 2014-02-13 Tdk Corp リチウムイオン二次電池
US11502334B2 (en) 2012-12-17 2022-11-15 Sion Power Corporation Lithium-ion electrochemical cell, components thereof, and methods of making and using same
US10050308B2 (en) 2012-12-17 2018-08-14 Sion Power Corporation Lithium-ion electrochemical cell, components thereof, and methods of making and using same
US10879513B2 (en) 2013-04-29 2020-12-29 Optodot Corporation Nanoporous composite separators with increased thermal conductivity
US11217859B2 (en) 2013-04-29 2022-01-04 Optodot Corporation Nanoporous composite separators with increased thermal conductivity
US11387521B2 (en) 2013-04-29 2022-07-12 Optodot Corporation Nanoporous composite separators with increased thermal conductivity
JP2015088231A (ja) * 2013-10-28 2015-05-07 ナガセケムテックス株式会社 薄膜硫黄被覆活性炭、正極合材及び全固体型リチウム硫黄電池
JP2015088232A (ja) * 2013-10-28 2015-05-07 ナガセケムテックス株式会社 薄膜硫黄被覆活性炭の製造方法、薄膜硫黄被覆活性炭、正極合材及び全固体型リチウム硫黄電池
JP2016038985A (ja) * 2014-08-06 2016-03-22 日本特殊陶業株式会社 リチウム電池
JP2016100088A (ja) * 2014-11-18 2016-05-30 株式会社サムスン日本研究所 リチウム二次電池
US10186730B2 (en) 2015-07-15 2019-01-22 Samsung Electronics Co., Ltd. Electrolyte solution for secondary battery and secondary battery
CN113321485A (zh) * 2021-05-28 2021-08-31 中南大学 一种硫银锗矿型硫化物固态电解质的制备方法

Similar Documents

Publication Publication Date Title
JPH06275313A (ja) リチウム電池
US4009052A (en) Chalcogenide battery
US4436796A (en) All-solid electrodes with mixed conductor matrix
JP3555097B2 (ja) 電極材料及び二次電池
Huggins Alternative materials for negative electrodes in lithium systems
JP2014089965A (ja) 硫化リチウム電池およびこれを製造する方法
WO2002047185A2 (en) Improved electrodes for lithium batteries
CN110752376B (zh) 一种原位形成金属-汞齐活性集流体的制备方法与应用
JPH09194214A (ja) 酸化リチウムマンガン化合物及び調製方法
Plichta et al. The Rechargeable Li x TiS2/LiAlCl4/Li1− x CoO2 Solid‐State Cell
JP6648649B2 (ja) 全固体リチウム硫黄電池の製造方法
MXPA96006092A (es) Compuesto de oxido de litio-manganeso y metodo para su preparacion
JP2006324179A (ja) 電極およびそれを用いた電気化学素子
CN110911733A (zh) 一种对锂稳定的硫化物固体电解质及其制备方法和带有该固体电解质的固态电池
JPH10294104A (ja) リチウム二次電池の電極の製造方法
JPH06275315A (ja) リチウム二次電池
JPH06338345A (ja) 全固体リチウム電池
CN114824168B (zh) 用于锂离子电池正极的补锂剂、补锂方法、正极片、补锂浆料及电池
JPH06275314A (ja) リチウム二次電池
JP3413998B2 (ja) 全固体リチウム電池
JPH08167425A (ja) 全固体リチウム電池の製造法
Takada et al. Lithium ion conductive glass and its application to solid state batteries
US4751159A (en) Secondary lithium battery including a silver molybdenum cathode
CN107195881A (zh) 一种以岩石为原料制备锂离子电池负极材料的方法
JPH06275312A (ja) 全固体リチウム電池