JPH06275283A - 溶融炭酸塩型燃料電池用正極 - Google Patents

溶融炭酸塩型燃料電池用正極

Info

Publication number
JPH06275283A
JPH06275283A JP5088144A JP8814493A JPH06275283A JP H06275283 A JPH06275283 A JP H06275283A JP 5088144 A JP5088144 A JP 5088144A JP 8814493 A JP8814493 A JP 8814493A JP H06275283 A JPH06275283 A JP H06275283A
Authority
JP
Japan
Prior art keywords
positive electrode
fuel cell
molten carbonate
carbonate fuel
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5088144A
Other languages
English (en)
Inventor
Kazuhito Hado
一仁 羽藤
Junji Niikura
順二 新倉
Eiichi Yasumoto
栄一 安本
Koji Gamo
孝治 蒲生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5088144A priority Critical patent/JPH06275283A/ja
Publication of JPH06275283A publication Critical patent/JPH06275283A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Inert Electrodes (AREA)

Abstract

(57)【要約】 【目的】 溶融炭酸塩に対する溶解度が小さく、かつ酸
素還元反応に対する活性と導電率の大きい正極を提供す
る。 【構成】 La−Co系、La−Cu系またはLa−N
i系の酸化物、特にABO3で表されるペロブスカイト
型酸化物を主成分とする多孔質体で正極を構成する。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、溶融炭酸塩型燃料電池
用正極に関するものである。
【0002】
【従来の技術】溶融炭酸塩型燃料電池は、一般に多孔質
のガス拡散電極である正極と負極とで電解質を挾持した
構造を単位電池としている。従来、この電池の正極材料
には、LixNi1-xO(0<x<1)が用いられてい
る。ほとんどの場合には、Ni粉末または酸化Ni粉末
をドクタ−ブレ−ド等の手法によってテ−プに成型し、
これをいったん焼結するかあるいはそのまま電池に組み
込み、電池内で電解質より供給されるLiをド−プして
LixNi1-xO(0<x<1)の多孔質板状電極を作成
する。LixNi1-xO(0<x<1)電極は、溶融炭酸
塩型燃料電池の正極反応である酸素還元反応に対する活
性が高く、また導電率も比較的高いため、広く一般的な
正極材料として使用されている。
【0003】
【発明が解決しようとする課題】しかしながら、従来の
電極材料である酸化ニッケルは溶融炭酸塩型燃料電池の
電解質である溶融炭酸塩にNiイオンとして溶解する。
単に溶解するだけであれば、飽和溶解度に達した時点
で、電解質中へのNiの溶出は平衡状態を保つはずであ
る。ところが電解質中に溶解したNiは、負極近傍の還
元雰囲気にさらされると、還元されて金属Niとして電
解質中に析出する。そのため、Niは正極から溶出し続
ける。正極からNiの溶出が続くと、正極は徐々に痩せ
て接触抵抗の増大を招来する。また、最適な微細構造の
維持も困難になる。さらに、最終的には電解質中に析出
したNiによって正極と負極の短絡を引き起こす。この
ように、Niの溶解は電池寿命を支配する大きな要因と
なっている。そこで、電解質にアルカリ土類金属炭酸塩
等を添加して、Niの溶解度を抑える試みが検討されて
いる。しかしながら、この方法によってNiの溶出速度
を抑制することは可能であるが、抜本的な解決にはなっ
ておらず、わずかに電池寿命が延びる程度である。近
年、LiFeO2等の代替材料の研究も行われている
が、これは電解質中への溶出や負極近傍での再析出はほ
とんど無いものの、酸素還元反応に対する活性や導電率
が低いため、十分な電池性能が得られない。
【0004】本発明は、以上に鑑み、電解質中への溶出
や負極近傍での再析出がほとんどなく、かつ酸素還元反
応に対する活性が高い溶融炭酸塩型燃料電池用正極を提
供することを目的とする。
【0005】
【課題を解決するための手段】本発明の溶融炭酸塩型燃
料電池用正極は、La−Co系酸化物、La−Cu系酸
化物またはLa−Ni系酸化物を主成分とする多孔質体
で構成したことを特徴とする。特に好ましくは、一般式
ABO3で表されるペロブスカイト型酸化物であるLa
CoO3系ペロブスカイト型酸化物、LaCuO3系ペロ
ブスカイト型酸化物、またはLaNiO3系ペロブスカ
イト型酸化物を主成分とする多孔質体で正極を構成す
る。
【0006】
【作用】本発明の正極材であるLa−Co系酸化物、L
a−Cu系酸化物、およびLa−Ni系酸化物は、後述
の実施例に示すように、溶融炭酸塩への溶解度が小さい
上に金属状態へ還元されにくく、しかも酸素還元反応に
対する活性や導電率が高いので、優れた溶融炭酸塩型燃
料電池用正極を得ることができる。また、一般式ABO
3で表されるペロブスカイト型酸化物のBサイトの一部
をFeで置換することによって、または一般式ABO3
で表されるペロブスカイト型酸化物のAサイトの一部を
La以外の希土類元素またはアルカリ土類金属で置換す
ることによって、より安価で優れた溶融炭酸塩型燃料電
池用正極を得ることができる。さらに、Li1-xNix
(x=0.1〜0.9)、LiCoO2、LiCuO、
Li2CuO2、AgまたはAg酸化物の内少なくともい
ずれか一つを、導電材として加えることによって、より
導電性の高い優れた溶融炭酸塩型燃料電池用正極を得る
ことができる。
【0007】本発明の正極を構成する酸化物の具体例と
しては、例えば、LaCoO3、LaCo1-xFex
3(0.05<x<0.90)、La2CoO4、LaC
uO3、LaCu1-xFex3(0.05<x<0.9
0)、LaNiO3、LaNi1-xFex3(0.05<
x<0.90)、LaNixCo1-x3(0.1<x<
0.9)、LaNixCo1-x-yFey3(0.1<x<
0.9、0.05<y<0.90、x+y<1)、La
2NiO4、La1-xCexCoO3(0.05<x<0.
8)、La1-xCaxNi1-yFey3(0.05<x<
0.8、0.05<y<0.90)などがある。
【0008】
【実施例】次に本発明の実施例を説明する。 [実施例1]本発明の正極を構成する酸化物のいくつか
と比較のためのLixNi1-xO(x=0.2)につい
て、Li2CO3とK2CO3の混合溶融塩(Li:K=6
2:38モル%)中での650℃における溶解度を表1
に示した。また、各酸化物の600℃と700℃におけ
る比抵抗の比較を表2に示した。
【0009】
【表1】
【0010】
【表2】
【0011】表1から明らかなように本発明の材料は、
従来のLixNi1-xOに比べて溶解度が小さいことがわ
かる。また、表2から本発明の材料は、従来のLix
1-xOと比べて、ほぼ同程度の導電率を持つことがわ
かる。なお、一般式ABO3で表されるペロブスカイト
型酸化物のBサイトの一部をFeで置換したものについ
ては、本実施例ではその一部を示したが、Feの置換割
合は0.05〜0.9程度が望ましい。また、ペロブス
カイト型酸化物のAサイトの一部をLa以外の希土類元
素またはアルカリ土類金属で置換したものについても、
一部の例を示したが、置換元素は本実施例で示したC
e,Ca以外の希土類元素またはアルカリ土類金属であ
ってももちろんよく、その置換割合は0.05〜0.8
程度が望ましい。
【0012】[実施例2]LaCoO3を溶融炭酸塩型
燃料電池の正極材料に用いた。この酸化物粉末に溶媒と
成形助剤を加えてドクタ−ブレ−ド法によりシ−ト状に
成形した。このシ−ト状グリ−ンテ−プをそのまま溶融
炭酸塩型燃料電池に組込み正極とした。負極にはNi−
Al合金粉末の焼結多孔体を用いた。電解質体には電解
質保持体であるアルミン酸リチウムのマトリクス板に6
0重量%の炭酸塩(炭酸リチウム:炭酸カリウム=6
2:38モル%)を電解質として保持したものを用い
た。また燃料ガスには水素:炭酸ガスの比が80:20
のガスを55℃で加湿したものを、酸化剤には空気:炭
酸ガスの比が70:30のものをそれぞれ適用し、65
0℃の温度でこの溶融炭酸塩型燃料電池の特性を調べ
た。電流密度−電圧特性の結果を第1図に示す。燃料利
用率60%、電流密度150mA/cm2 において初期
性能が0.83Vであった。この結果から、本実施例で
用いたLaCoO3は、溶融炭酸塩型燃料電池用正極と
して十分な酸素還元活性を有することが判明した。ま
た、実施例1の結果より明らかに従来のLixNi1-x
と比べて溶解度が小さいことが判明しているため、本実
施例では長期間に及ぶ発電試験は行わなかった。
【0013】本実施例では、LaCoO3のペロブスカ
イト型酸化物を溶融炭酸塩型燃料電池の正極材料に用い
た場合を示したが、一般式ABO3で表されるペロブス
カイト型酸化物のAサイトの一部がLa以外の希土類元
素またはアルカリ土類金属で置換されていてもよいし、
もちろんBサイトの一部がFeで置換されていてもよい
し、またNiやCuで置換されていてもよい。さらに、
本実施例では特に導電材を必要としなかったため添加し
なかったが、Li1-xNixO(x=0.1〜0.9)、
LiCoO2、LiCuO、Li2CuO2、Agまたは
Ag酸化物の内少なくともいずれか一つを含む導電材を
添加してももちろんよい。
【0014】[実施例3]La2CoO4を正極材料に用
い、実施例1と同様にして溶融炭酸塩型燃料電池を構成
した。この電池の実施例1と同様の条件における電流密
度−電圧特性を第2図に示す。燃料利用率60%、電流
密度150mA/cm2 において初期性能が0.82V
であった。この結果から、本実施例で用いたLa2Co
4は、溶融炭酸塩型燃料電池用正極として十分な酸素
還元活性を有することが判明した。また、実施例1の結
果より明らかに従来のLixNi1-xOと比べて溶解度が
小さいことが判明しているため、本実施例では長期間に
及ぶ発電試験は行わなかった。さらに、本実施例では特
に導電材を必要としなかったため添加しなかったが、L
1-xNixO(x=0.1〜0.9)、LiCoO2
LiCuO、Li2CuO2、AgまたはAg酸化物の内
少なくともいずれか一つを含む導電材を添加してももち
ろんよい。
【0015】[実施例4]LaCuO3を正極材料に用
い、実施例1と同様にして、溶融炭酸塩型燃料電池を構
成し、その電流密度−電圧特性を調べた結果を第3図に
示す。燃料利用率60%、電流密度150mA/cm2
において初期性能が0.81Vであった。この結果か
ら、本実施例で用いたLaCuO3は、溶融炭酸塩型燃
料電池用正極として十分な酸素還元活性を有することが
判明した。また、実施例1の結果より明らかに従来のL
xNi1-xOと比べて溶解度が小さいことが判明してい
るため、本実施例では長期間に及ぶ発電試験は行わなか
った。
【0016】本実施例ではLaCuO3のペロブスカイ
ト型酸化物を溶融炭酸塩型燃料電池の正極材料に用いた
場合を示したが、一般式ABO3で表されるペロブスカ
イト型酸化物のAサイトの一部がLa以外の希土類元素
またはアルカリ土類金属で置換されていてもよいし、も
ちろんBサイトの一部がFeで置換されていてもよい
し、またNiやCoで置換されていてもよい。さらに、
本実施例では特に導電材を必要としなかったため添加し
なかったが、Li1-xNixO(x=0.1〜0.9)、
LiCoO2、LiCuO、Li2CuO2、Agまたは
Ag酸化物の内少なくともいずれか一つを含む導電材を
添加してももちろんよい。
【0017】[実施例5]LaNi0.5Fe0.53を溶
融炭酸塩型燃料電池の正極材料に用いた。この酸化物粉
末に導電材としてLiCoO2粉末を10重量%加え、
溶媒と成形助剤を加えてドクタ−ブレ−ド法によりシ−
ト状に成形した。このシ−ト状グリ−ンテ−プをそのま
ま溶融炭酸塩型燃料電池に組込み正極とした。実施例1
と同様にして、溶融炭酸塩型燃料電池を構成し、その電
流密度−電圧特性を調べた結果を第4図に示す。燃料利
用率60%、150mA/cm2 において初期性能が
0.82Vであった。この結果から、本実施例で用いた
LaNi 0.5Fe0.53は、溶融炭酸塩型燃料電池用正
極として十分な酸素還元活性を有することが判明した。
また、実施例1の結果より明らかに従来のLixNi1-x
Oと比べて溶解度が小さいことが判明しているため、本
実施例では長期間に及ぶ発電試験は行わなかった。
【0018】本実施例では式LaNi1-xFex3にお
いてx=0.5のペロブスカイト型酸化物を溶融炭酸塩
型燃料電池の正極材料に用いた場合を示したが、前記式
においてx値が0.05<x<0.95のものでもよ
く、また一般式ABO3で表されるペロブスカイト型酸
化物のAサイトの一部がLa以外の希土類元素またはア
ルカリ土類金属で置換されていてもよいし、もちろんB
サイトの一部がCoやCuで置換されていてもよい。さ
らに、本実施例ではLiCoO2を導電材として用いた
場合を示したが、これは他のLi1-xNixO(x=0.
1〜0.9)、LiCuO、Li2CuO2、Agまたは
Ag酸化物の内少なくともいずれか一つを含む導電材で
あってももちろんよい。
【0019】[実施例6]La2NiO4を溶融炭酸塩型
燃料電池の正極材料に用いた。この酸化物粉末に導電材
としてLiCuO粉末を5重量%加え、溶媒と成形助剤
を加えてドクタ−ブレ−ド法によりシ−ト状に成形し
た。このシ−ト状グリ−ンテ−プをそのまま溶融炭酸塩
型燃料電池に組込み正極とした。実施例1と同様にし
て、溶融炭酸塩型燃料電池を構成し、その電流密度−電
圧特性を調べた結果を第5図に示す。燃料利用率60
%、電流密度150mA/cm2 において初期性能が
0.81Vであった。この結果から、本実施例で用いた
La2NiO4は、溶融炭酸塩型燃料電池用正極として十
分な酸素還元活性を有することが判明した。また、実施
例1の結果より明らかに従来のLixNi1-xOと比べて
溶解度が小さいことが判明しているため、本実施例では
長期間に及ぶ発電試験は行わなかった。
【0020】さらに、本実施例ではLiCuOを導電材
として用いた場合を示したが、これは他のLi1-xNix
O(x=0.1〜0.9)、LiCoO2、Li2CuO
2、AgまたはAg酸化物の内少なくともいずれか一つ
を含む導電材であってももちろんよい。
【0021】
【発明の効果】以上のように本発明によれば、性能の優
れた溶融炭酸塩型燃料電池用正極を得ることができる。
【図面の簡単な説明】
【図1】本発明の実施例2による溶融炭酸塩型燃料電池
の電流密度−電圧特性図である。
【図2】本発明の実施例3による溶融炭酸塩型燃料電池
の電流密度−電圧特性図である。
【図3】本発明の実施例4による溶融炭酸塩型燃料電池
の電流密度−電圧特性図である。
【図4】本発明の実施例5による溶融炭酸塩型燃料電池
の電流密度−電圧特性図である。
【図5】本発明の実施例6による溶融炭酸塩型燃料電池
の電流密度−電圧特性図である。
フロントページの続き (72)発明者 蒲生 孝治 大阪府門真市大字門真1006番地 松下電器 産業株式会社内

Claims (4)

    【特許請求の範囲】
  1. 【請求項1】 La−Co系酸化物を主成分とする多孔
    質体で構成したことを特徴とする溶融炭酸塩型燃料電池
    用正極。
  2. 【請求項2】 La−Cu系酸化物を主成分とする多孔
    質体で構成したことを特徴とする溶融炭酸塩型燃料電池
    用正極。
  3. 【請求項3】 La−Ni系酸化物を主成分とする多孔
    質体で構成したことを特徴とする溶融炭酸塩型燃料電池
    用正極。
  4. 【請求項4】 前記酸化物が、一般式ABO3で表され
    るペロブスカイト型酸化物である請求項1〜3のいずれ
    かに記載の溶融炭酸塩型燃料電池用正極。
JP5088144A 1993-03-22 1993-03-22 溶融炭酸塩型燃料電池用正極 Pending JPH06275283A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5088144A JPH06275283A (ja) 1993-03-22 1993-03-22 溶融炭酸塩型燃料電池用正極

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5088144A JPH06275283A (ja) 1993-03-22 1993-03-22 溶融炭酸塩型燃料電池用正極

Publications (1)

Publication Number Publication Date
JPH06275283A true JPH06275283A (ja) 1994-09-30

Family

ID=13934746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5088144A Pending JPH06275283A (ja) 1993-03-22 1993-03-22 溶融炭酸塩型燃料電池用正極

Country Status (1)

Country Link
JP (1) JPH06275283A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010282896A (ja) * 2009-06-05 2010-12-16 Nippon Telegr & Teleph Corp <Ntt> 固体酸化物形燃料電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010282896A (ja) * 2009-06-05 2010-12-16 Nippon Telegr & Teleph Corp <Ntt> 固体酸化物形燃料電池

Similar Documents

Publication Publication Date Title
JP3519733B2 (ja) 固体燃料電池とその製造方法
JP4972468B2 (ja) 固体電解質型燃料電池セル
JP2001351646A (ja) LaGaO3系固体電解質型燃料電池
US5589287A (en) Molten carbonate fuel cell
JPH0745291A (ja) 固体電解質型燃料電池
JP2010232135A (ja) 耐久性のある燃料極およびこの燃料極を組み込んだ固体酸化物形燃料電池
JP5390655B2 (ja) 固体電解質型燃料電池セル
JP3381544B2 (ja) 低温動作固体燃料電池用複合型空気極材料
JPH06275283A (ja) 溶融炭酸塩型燃料電池用正極
JP7395171B2 (ja) 固体酸化物形燃料電池用アノード及び固体酸化物形燃料電池
Futamura et al. Alternative SOFC Anode Materials with Ion–and Electron–Conducting Backbones for Higher Fuel Utilization
JP2001250563A (ja) 酸化物固体電解質用の酸化極
JP3949512B2 (ja) アノード支持固体酸化物型燃料電池の製造方法
JP3220330B2 (ja) 固体電解質型燃料電池における発電方法
JP2009054393A (ja) 燃料電池および発電方法
JP2988673B2 (ja) 溶融炭酸塩燃料電池
JPH0412591B2 (ja)
JP2708820B2 (ja) 溶融炭酸塩型燃料電池の電解質
RU2248649C1 (ru) Материал для кислородного электрода топливного элемента
JPH07272729A (ja) 溶融炭酸塩型燃料電池およびその製造方法
JPH0520866B2 (ja)
JP2520281B2 (ja) 溶融炭酸塩型燃料電池の電解質板
Ishibashi et al. Alternative Ni-alloy cermet anode materials for SOFCs
JPS5861571A (ja) 空気電池
JPS6366861A (ja) 溶融炭酸塩燃料電池