JPH06232210A - Semiconductor device, and method for preventing deformation of chip - Google Patents

Semiconductor device, and method for preventing deformation of chip

Info

Publication number
JPH06232210A
JPH06232210A JP1859193A JP1859193A JPH06232210A JP H06232210 A JPH06232210 A JP H06232210A JP 1859193 A JP1859193 A JP 1859193A JP 1859193 A JP1859193 A JP 1859193A JP H06232210 A JPH06232210 A JP H06232210A
Authority
JP
Japan
Prior art keywords
chip
semiconductor device
deformation
mounting substrate
adjusting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1859193A
Other languages
Japanese (ja)
Other versions
JP3241140B2 (en
Inventor
Tsutomu Nakazawa
勉 仲澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1859193A priority Critical patent/JP3241140B2/en
Publication of JPH06232210A publication Critical patent/JPH06232210A/en
Application granted granted Critical
Publication of JP3241140B2 publication Critical patent/JP3241140B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping

Abstract

PURPOSE:To provide a highly reliable semiconductor device having a superior thermal cycle characteristic, and to provide a method for preventing the deformation of a chip to obtain such a semiconductor device. CONSTITUTION:A semiconductor device is provided with a mounting board 3, and a semiconductor chip 1 which is electrically connected to the board 3 via bump electrodes 2. A polyimide film 5A is sandwiched between the chip 1 and the board 3, and the chip 1 and the board 3 are adhered to each other. An adjusting plate 7A is disposed on the top of the chip 1, whereby the flexure and deformation of the chip 1 is adjusted. With this construction, the chip 1 and the board 3 are bonded to each other by the film 5A, and hence the expansion and contraction of the board 3 induces the flexure and deformation of the chip 1. For this reason, the concentration of stress on the bump electrode 2 is suppressed, and a thermal cycle characteristic is improved. The adjusting plate 7 disposed on the chip 1 simultaneously makes it possible to solve the problem of the cracking of the chip 1 caused by the flexure and deformation of the chip 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は半導体装置に係わり、
特に実装基板上に装着される半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device,
In particular, it relates to a semiconductor device mounted on a mounting substrate.

【0002】[0002]

【従来の技術】従来、多ピンの製品に用いられる半導体
装置として、フリップチップ方式の半導体装置がある。
図9はフリップチップ方式の半導体装置を示す図で、
(a)図は理想的な製品の断面図、(b)図は実際の製
品の断面図である。
2. Description of the Related Art Conventionally, there is a flip-chip type semiconductor device as a semiconductor device used for a product having a large number of pins.
FIG. 9 shows a flip-chip type semiconductor device.
(A) is a cross-sectional view of an ideal product, and (b) is a cross-sectional view of an actual product.

【0003】図9(a)に示すように、半導体チップ1
の表面上にはバンプ電極2が設けられている。バンプ電
極2は実装基板3上に形成された配線パタ−ン4に半田
付により接続されている。
As shown in FIG. 9A, the semiconductor chip 1
The bump electrode 2 is provided on the surface of the. The bump electrode 2 is connected to the wiring pattern 4 formed on the mounting substrate 3 by soldering.

【0004】チップ1を構成している材料と基板3を構
成している材料とは互いに異なっており、それぞれの線
膨脹率には差が生じている。例えば基板3の線膨脹率が
チップ1のそれよりも大きいと、実装工程終了後に装置
を常温に戻した際に基板3が大きく縮み、図9(b)に
示すような形でバンプ電極2が歪む。
The material forming the chip 1 and the material forming the substrate 3 are different from each other, and there is a difference in the coefficient of linear expansion between them. For example, if the coefficient of linear expansion of the substrate 3 is larger than that of the chip 1, the substrate 3 shrinks greatly when the device is returned to room temperature after the mounting process is completed, and the bump electrode 2 is formed in a shape as shown in FIG. 9B. Distorted.

【0005】また、製品化後においては、動作させるご
とにチップ1が発熱する。このため、チップ1は膨脹/
収縮を繰り返す。このような熱サイクルの印加によりバ
ンプ電極2は歪みを繰り返し起こすこととなり、やがて
疲労を起こして脆弱となる。従って半導体装置の信頼性
を劣化させる。
After the product is commercialized, the chip 1 generates heat each time it is operated. Therefore, the tip 1 expands /
Repeat contraction. The application of such a heat cycle causes the bump electrode 2 to be repeatedly distorted, and eventually causes fatigue and becomes fragile. Therefore, the reliability of the semiconductor device is deteriorated.

【0006】[0006]

【発明が解決しようとする課題】以上のように、従来の
半導体装置ではチップ1が基板3にバンプ電極2によっ
てのみ支えられる構造となっており、バンプ電極2が線
膨脹率の違いによる応力を直接受けてしまう。このため
バンプ電極2に応力が集中するようになり、特に熱サイ
クルに起因した疲労(熱疲労)を起こしやすい。
As described above, the conventional semiconductor device has a structure in which the chip 1 is supported on the substrate 3 only by the bump electrodes 2, and the bump electrodes 2 are not affected by the stress due to the difference in linear expansion coefficient. I will receive it directly. As a result, stress concentrates on the bump electrodes 2, and fatigue (thermal fatigue) caused by thermal cycles is particularly likely to occur.

【0007】この発明は上記の点に鑑みて為されたもの
で、その目的は、熱サイクル特性が良好で、かつ高い信
頼性を有する半導体装置、並びにそのような半導体装置
を得るためのチップ変形防止方法を提供することにあ
る。
The present invention has been made in view of the above points, and an object thereof is a semiconductor device having good thermal cycle characteristics and high reliability, and a chip deformation for obtaining such a semiconductor device. It is to provide a prevention method.

【0008】[0008]

【課題を解決するための手段】この発明に係わる半導体
装置は、実装基板上に導電性電極を介してフリップチッ
プ接続された半導体チップと、このチップと実装基板と
の間に導電性電極以外に設けられたチップと実装基板と
を固着する固着手段と、チップの撓みを調節する調節手
段とを具備することを特徴としている。
A semiconductor device according to the present invention includes a semiconductor chip flip-chip connected on a mounting substrate via a conductive electrode, and a semiconductor chip other than the conductive electrode between the chip and the mounting substrate. It is characterized in that it is provided with a fixing means for fixing the provided chip and the mounting substrate, and an adjusting means for adjusting the bending of the chip.

【0009】また、この発明に係わるチップ変形防止方
法は、チップと実装基板との間に導電性電極以外にチッ
プと実装基板とを固着する固着手段を設けて実装基板の
伸縮に合わせてチップが撓む構造とし、この固着手段に
よる撓みを相殺するようにチップの撓みを調節する調節
手段を設けることによってチップの変形を防止すること
を特徴としている。
Further, in the chip deformation preventing method according to the present invention, a fixing means for fixing the chip and the mounting substrate is provided between the chip and the mounting substrate in addition to the conductive electrodes, so that the chip is expanded and contracted in accordance with the expansion and contraction of the mounting substrate. It is characterized in that the chip is deformed and the chip is prevented from being deformed by providing adjusting means for adjusting the bending of the chip so as to cancel the bending due to the fixing means.

【0010】[0010]

【作用】上記構成の半導体装置およびチップ変形防止方
法であると、チップと実装基板との間に設けられた固着
手段によって実装基板の伸縮に合わせてチップが撓み変
形を起こすので、実装基板の伸縮に伴って発生する応力
を導電性電極だけでなくチップ自体へ分散することがで
きる。従って、導電性電極に応力が集中しなくなり、導
電性電極は熱疲労を起こしにくい構造となる。さらに、
チップが撓み変形を起こすとチップが割れる恐れがあ
る。この点を改善するために、チップ上にチップの撓み
変形を調節する調節手段を設けてチップの撓みを矯正、
もしくは緩和するようにしている。
According to the semiconductor device and the chip deformation preventing method having the above-described configurations, the chip is bent and deformed in accordance with the expansion and contraction of the mounting substrate by the fixing means provided between the chip and the mounting substrate. It is possible to disperse the stress caused by the stress not only to the conductive electrode but also to the chip itself. Therefore, stress is not concentrated on the conductive electrode, and the conductive electrode has a structure in which thermal fatigue does not easily occur. further,
When the chip bends and deforms, the chip may crack. In order to improve this point, adjusting means for adjusting the bending deformation of the chip is provided on the chip to correct the bending of the chip,
Or try to ease it.

【0011】[0011]

【実施例】以下、この発明を実施例により説明する。こ
の説明において、全図に渡り共通の部分には共通の参照
符号を付すことで、重複する説明は避けることにする。
図1は、この発明の第1の実施例に係わる半導体装置の
断面図である。
EXAMPLES The present invention will be described below with reference to examples. In this description, common parts are denoted by common reference symbols throughout the drawings, and redundant description will be avoided.
1 is a sectional view of a semiconductor device according to a first embodiment of the present invention.

【0012】図1に示すように、半導体チップ1の表面
上にはバンプ電極2が設けられている。バンプ電極2は
実装基板3上に形成された配線パタ−ン4に半田付によ
り接続されている。基板3はアルミナ製である。チップ
1の表面と基板3との間にはポリイミドフィルム5Aが
挟み込まれている。ポリイミドフィルム5Aの表面およ
び裏面にはそれぞれ接着剤が付けられており、表面およ
び裏面はそれぞれチップ1および基板3に接着されてい
る。これにより、チップ1と基板3とが互いに固着され
る。チップ1の裏面上には絶縁性で低弾性率の接着剤で
成る接着層6を介して調節板7Aが取り付けられてい
る。この実施例では調節板7Aに銅板を用いることによ
り、チップ1の放熱性についても考慮されている。ま
た、基板3がアルミナで成り、調節板7Aが銅で成る
時、線膨脹係数の関係から調節板7Aの膜厚は基板3の
膜厚よりも薄くされる。
As shown in FIG. 1, bump electrodes 2 are provided on the surface of the semiconductor chip 1. The bump electrode 2 is connected to the wiring pattern 4 formed on the mounting substrate 3 by soldering. The substrate 3 is made of alumina. A polyimide film 5A is sandwiched between the surface of the chip 1 and the substrate 3. Adhesives are attached to the front surface and the back surface of the polyimide film 5A, and the front surface and the back surface are bonded to the chip 1 and the substrate 3, respectively. As a result, the chip 1 and the substrate 3 are fixed to each other. A control plate 7A is attached to the back surface of the chip 1 via an adhesive layer 6 made of an insulating and low elastic modulus adhesive. In this embodiment, the heat dissipation of the chip 1 is also taken into consideration by using a copper plate for the adjusting plate 7A. When the substrate 3 is made of alumina and the adjusting plate 7A is made of copper, the film thickness of the adjusting plate 7A is made thinner than that of the substrate 3 due to the linear expansion coefficient.

【0013】次に、調節板によるチップの撓み変形の調
節方法について説明する。この調節方法は、基板3、接
着層5(図1のポリイミドフィルム5Aに対応する)、
チップ1、接着層6および調節板7より成る部分を多層
複合の「はり」と仮定して、材料力学による計算式を適
用して行われる。調節方法の説明に先立ち、多層複合は
りモデルの熱応力について図2を参照して説明する。図
2は多層複合はりを模式的に示す図である。図2に示さ
れるような多層複合はりの第i層の応力は、次の式によ
り表すことができる。
Next, a method of adjusting the bending deformation of the chip by the adjusting plate will be described. This adjusting method includes a substrate 3, an adhesive layer 5 (corresponding to the polyimide film 5A in FIG. 1),
It is performed by applying a calculation formula based on material mechanics on the assumption that a portion composed of the chip 1, the adhesive layer 6 and the adjusting plate 7 is a multi-layer composite “beam”. Prior to the description of the adjusting method, the thermal stress of the multilayer composite beam model will be described with reference to FIG. FIG. 2 is a diagram schematically showing a multilayer composite beam. The stress of the i-th layer of the multilayer composite beam as shown in FIG. 2 can be expressed by the following equation.

【0014】[0014]

【数1】 [Equation 1]

【0015】上式において、σi は第i層の応力、εi
は第i層の熱歪、(t−δ)/ρは第i層の曲りによる
歪、tはti+1 〜ti の間の座標、δは中立線の座標、
ρは曲率半径、Ei は第i層のヤング率である。ここで
第i層の熱歪は、次の式により表される。
In the above equation, σ i is the stress of the i-th layer, ε i
The i layer of the thermal strain, (t-δ) / ρ the coordinates between the first distortion by bending of the i layer, t is t i + 1 ~t i, [delta] is the neutral line coordinates,
ρ is the radius of curvature, and E i is the Young's modulus of the i-th layer. Here, the thermal strain of the i-th layer is expressed by the following equation.

【0016】[0016]

【数2】 [Equation 2]

【0017】中立線の座標δおよび曲率半径ρをそれぞ
れ、δ=B/A、ρ=C/Aとすると、 A=−6[ΣEj εj (tj+1 −tj )・ΣEj (tj+1 2 −tj 2 ) −ΣEj εj (tj+1 2 −tj 2 )・ΣEj (tj+1 −tj )] B=−4ΣEj εj (tj+1 −tj )・ΣEj (tj+1 3 −tj 3 ) +3ΣEj εj (tj+1 2 −tj 2 )・ΣEj (tj+1 2 −tj 2 ) C=3[ΣEj (tj+1 2 −tj 2 )]2 −4ΣEj (tj+1 3 −tj 3 )・ΣEj (tj+1 −tj ) となる。
When the coordinates δ of the neutral line and the radius of curvature ρ are δ = B / A and ρ = C / A, respectively, A = -6 [ΣE j ε j (t j + 1 −t j ) · ΣE j (T j + 1 2 -T j 2 ) −ΣE j ε j (t j + 1 2 -T j 2 ) · ΣE j (t j + 1 −t j )] B = −4ΣE j ε j (t j + 1 −t j ) · ΣE j (t j + 1 3 -T j 3 ) + 3ΣE j ε j (t j + 1 2 -T j 2 ) ・ ΣE j (t j + 1 2 -T j 2 ) C = 3 [ΣE j (t j + 1 2 -T j 2 )] 2 -4ΣE j (t j + 1 3 -T j 3 ) · ΣE j (t j + 1 −t j ).

【0018】図3は、この発明に係わる半導体装置の断
面構造を模式的に示した図で、(a)図は基板3上にチ
ップ1が取り付けられた段階のもの、(b)図はチップ
1上に調節板7が取り付けられた段階のものをそれぞれ
示している。
FIG. 3 is a diagram schematically showing a cross-sectional structure of a semiconductor device according to the present invention. FIG. 3 (a) shows a chip 1 mounted on a substrate 3, and FIG. 3 (b) shows a chip. Each of the stages when the adjusting plate 7 is attached to the upper part 1 is shown.

【0019】図3(a)に示される構造を「はり」と仮
定して、上述した材料力学による多層複合はりモデルの
式によりチップ1に生ずる応力および反りを計算する
と、次のようになる。尚、材料物性値は以下に示す通り
である。
Assuming that the structure shown in FIG. 3 (a) is a "beam", the stress and warpage generated in the chip 1 are calculated by the equation of the multi-layer composite beam model based on the above-mentioned material mechanics. The physical properties of the material are as shown below.

【0020】 チップ1:厚さt1 =0.6mm 、線膨脹係数α1 =0.35×
10-5/℃、ヤング率E1 =17000kg/mm2 接着層5:厚さt2 =0.2mm 、線膨脹係数α2 =5.00×
10-5/℃、ヤング率E2 =100kg/mm2 基 板3:厚さt3 =1.0mm 、線膨脹係数α3 =1.60×
10-5/℃、ヤング率E3 =2000kg/mm 2 荷重条件は−200℃(即ち温度を200℃降下させ
る)である。
Chip 1: Thickness t 1 = 0.6 mm, linear expansion coefficient α 1 = 0.35 ×
Ten-Five/ ° C, Young's modulus E1 = 17,000 kg / mm2  Adhesive layer 5: thickness t2 = 0.2 mm, linear expansion coefficient α2 = 5.00 ×
Ten-Five/ ° C, Young's modulus E2 = 100kg / mm2  Base plate 3: thickness t3 = 1.0 mm, linear expansion coefficient α3 = 1.60 x
Ten-Five/ ° C, Young's modulus E3 = 2000kg / mm2  The load condition is -200 ° C (that is, lower the temperature by 200 ° C.
It is).

【0021】このような条件によれば、図3(a)に示
される構造ではチップ上面には8kg/mm 2 もの引張り応
力が生ずる。下面は圧縮となっている。曲率半径は−5
08mmとなり、チップ1のサイズが10mmであれば、
25μmも撓む。
According to such conditions, in the structure shown in FIG. 3 (a), the top surface of the chip is 8 kg / mm 2 Tensile stress occurs. The lower surface is compressed. Radius of curvature is -5
If the chip 1 size is 10 mm,
It also bends by 25 μm.

【0022】そこで、図3(b)に示される構造のよう
に、チップ1の上面に調節板7を取り付けてチップ1に
生ずる応力と全体の撓みを改善する。板は銅板として、
その厚さtx の最適値を求めると、次のようになる。
尚、材料物性値は以下に示す通りである。
Therefore, as in the structure shown in FIG. 3B, the adjusting plate 7 is attached to the upper surface of the chip 1 to improve the stress generated in the chip 1 and the overall deflection. The plate is a copper plate,
The optimum value of the thickness tx is obtained as follows.
The physical properties of the material are as shown below.

【0023】 チップ1:厚さt1 =0.6mm 、線膨脹係数α1 =0.35×
10-5/℃、ヤング率E1 =17000kg/mm2 接着層5:厚さt2 =0.2mm 、線膨脹係数α2 =5.00×
10-5/℃、ヤング率E2 =100kg/mm2 基 板3:厚さt3 =1.0mm 、線膨脹係数α3 =1.60×
10-5/℃、ヤング率E3 =2000kg/mm 2 調節板7:厚さtx (下記)、線膨脹係数αx =1.70×
10-5/℃、ヤング率Ex =11000kg/mm2 接着層6:厚さty =0.2mm 、線膨脹係数αy =5.00×
10-5/℃、ヤング率Ey =100kg/mm2 荷重条件は−200℃(即ち温度を200℃降下させ
る)である。
Chip 1: Thickness t 1 = 0.6 mm, linear expansion coefficient α 1 = 0.35 ×
Ten-Five/ ° C, Young's modulus E1 = 17,000 kg / mm2  Adhesive layer 5: thickness t2 = 0.2 mm, linear expansion coefficient α2 = 5.00 ×
Ten-Five/ ° C, Young's modulus E2 = 100kg / mm2  Base plate 3: thickness t3 = 1.0 mm, linear expansion coefficient α3 = 1.60 x
Ten-Five/ ° C, Young's modulus E3 = 2000kg / mm2  Adjustment plate 7: Thickness tx (below), linear expansion coefficient αx = 1.70x
Ten-Five/ ℃, Young's modulus Ex = 11000kg / mm2  Adhesive layer 6: Thickness ty = 0.2 mm, linear expansion coefficient αy = 5.00 ×
Ten-Five/ ℃, Young's modulus Ey = 100kg / mm2  The load condition is -200 ° C (that is, lower the temperature by 200 ° C.
It is).

【0024】このような条件によれば、板厚tx を0.3m
m とすると、チップに生じる応力はすべて圧縮の応力と
なる。曲率半径は5920mmとなり、反対方向(上面側)へ
撓むようになる。また、板厚tx を0.2mm とすると、や
はりチップに生じる応力はすべて圧縮の応力となり、曲
率半径は-3594mm となる。このことより、チップが撓ま
ないのは調節板の厚さが0.2mm から0.3mm の間にあるこ
とが分かる。しかし、どちらでもチップ1に生ずる応力
は-15kg/mm2 程度の圧縮の応力であり、引張りの応力は
生じ無くなるため、チップ1の破壊は無くなる。
Under these conditions, the plate thickness tx is 0.3 m
If m, the stress generated in the chip is all compressive stress. The radius of curvature is 5920 mm, and it will bend in the opposite direction (top side). When the plate thickness tx is 0.2 mm, all the stress generated in the chip is also compressive stress, and the radius of curvature is -3594 mm. From this, it can be seen that the chip does not bend when the thickness of the adjusting plate is between 0.2 mm and 0.3 mm. However, in both cases, the stress generated in chip 1 is -15kg / mm 2 Since it is a compressive stress of a certain degree and a tensile stress is not generated, the chip 1 is not destroyed.

【0025】ちなみに、チップ表面(素子形成面)の破
壊強度は引張り 20kg/mm2 程度、圧縮 30kg/mm2 程度だ
が、チップ裏面はその加工上、破壊強度は引張り8kg/mm
2 程度、圧縮 30kg/mm2 程度であり、引張りに弱い。
By the way, the breaking strength of the chip surface (element forming surface) is 20 kg / mm 2 in tensile. Degree, compression 30kg / mm 2 However, due to the processing on the back of the chip, the breaking strength is 8 kg / mm in tension.
2 Degree, compression 30kg / mm 2 The degree is low and it is weak in tension.

【0026】図4は、この発明の第2の実施例に係わる
半導体装置を示す図であり、(a)図はバンプ電極の配
置を示す平面図、(b)図は(a)図中のb−b線に沿
う断面図である。
4A and 4B are views showing a semiconductor device according to a second embodiment of the present invention. FIG. 4A is a plan view showing the arrangement of bump electrodes, and FIG. 4B is a view in FIG. It is sectional drawing which follows the bb line.

【0027】図4(a)および(b)に示すように、バ
ンプ電極2はチップ1の外周のみに配置され、チップ1
はバンプ電極2を介して基板3に接着される。さらにチ
ップ1は接着層5Bを介しても基板3に接着されてい
る。接着層5Bは、絶縁樹脂(例えばシリコ−ン)であ
る。チップ1の裏面上には、チップ1よりも線膨脹係数
の大きいプラスチック板が調節板7Bとして接着層6を
介して接着されている。
As shown in FIGS. 4A and 4B, the bump electrodes 2 are arranged only on the outer periphery of the chip 1,
Are bonded to the substrate 3 via the bump electrodes 2. Further, the chip 1 is adhered to the substrate 3 also via the adhesive layer 5B. The adhesive layer 5B is an insulating resin (for example, silicone). On the back surface of the chip 1, a plastic plate having a coefficient of linear expansion larger than that of the chip 1 is bonded as an adjusting plate 7B via an adhesive layer 6.

【0028】第2の実施例に係わる構成であると、チッ
プ1と基板3との間が絶縁樹脂による接着層5Bで埋め
込まれるためにチップ1と基板3との接着面を広くで
き、密着性を高めることができる。
In the structure according to the second embodiment, since the adhesive layer 5B made of an insulating resin is embedded between the chip 1 and the substrate 3, the adhesive surface between the chip 1 and the substrate 3 can be widened, and the adhesiveness can be improved. Can be increased.

【0029】図5は、この発明の第3の実施例に係わる
半導体装置を示す図であり、(a)図はバンプ電極の配
置を示す平面図、(b)図は(a)図中のb−b線に沿
う断面図である。
5A and 5B are views showing a semiconductor device according to a third embodiment of the present invention. FIG. 5A is a plan view showing the arrangement of bump electrodes, and FIG. 5B is a plan view in FIG. It is sectional drawing which follows the bb line.

【0030】図5(a)および(b)に示すように、バ
ンプ電極2はチップ1表面上の一部分に集中して配置さ
れている。この実施例では、バンプ電極2はグリッド状
とされ、チップ1の一つのすみに集中されている。他の
三つのすみには信号伝達に無関係のダミ−バンプ8が設
けられている。ダミ−バンプ8は信号伝達はしないが、
熱伝達を良好とするためにバンプ電極2よりもサイズが
大きくされる。チップ1はバンプ電極2とダミ−バンプ
8とにより基板3に接着される。さらにチップ1は接着
層5Bによっても基板3に接着される。この実施例での
接着層5Bは絶縁性の接着剤(例えばエポキシ系の樹
脂)である。チップ1の裏面上にはチップ1と同一の材
料(例えばシリコン)でチップ1よりもサイズの大きい
ものが調節板7Cとして接着層6を介して接着されてい
る。
As shown in FIGS. 5A and 5B, the bump electrodes 2 are concentrated on a part of the surface of the chip 1. In this embodiment, the bump electrodes 2 have a grid shape and are concentrated in one corner of the chip 1. Dummy bumps 8 unrelated to signal transmission are provided in the other three corners. Dummy bump 8 does not transmit signals,
The size is made larger than that of the bump electrode 2 in order to improve heat transfer. The chip 1 is bonded to the substrate 3 by the bump electrodes 2 and the dummy bumps 8. Further, the chip 1 is also adhered to the substrate 3 by the adhesive layer 5B. The adhesive layer 5B in this embodiment is an insulating adhesive (for example, epoxy resin). On the back surface of the chip 1, the same material (for example, silicon) as that of the chip 1 and having a size larger than that of the chip 1 is bonded as an adjusting plate 7C via an adhesive layer 6.

【0031】第3の実施例に係わる構成であると、バン
プ電極2はチップ1表面上の一部分に集中して配置され
るため、バンプ電極2の疲労進行を抑制できる。これは
バンプ電極2がチップ1の外周に設けるとチップ1と基
板3との歪みのくい違いが大きくなるが、チップ1の外
周から外れるようにバンプ電極2を一部分に集中させる
と、歪みのくい違いを小さくすることができるからであ
る。
With the structure according to the third embodiment, since the bump electrodes 2 are concentrated on a part of the surface of the chip 1, fatigue of the bump electrodes 2 can be suppressed. This is because if the bump electrode 2 is provided on the outer periphery of the chip 1, the distorted difference between the chip 1 and the substrate 3 becomes large, but if the bump electrode 2 is concentrated on a part so as to deviate from the outer periphery of the chip 1, the distorted strain is reduced. This is because the difference can be reduced.

【0032】図6は、この発明の第4の実施例に係わる
半導体装置を示す図であり、(a)図はバンプ電極の配
置を示す平面図、(b)図は(a)図中のb−b線に沿
う断面図である。
6A and 6B are views showing a semiconductor device according to a fourth embodiment of the present invention. FIG. 6A is a plan view showing the arrangement of bump electrodes, and FIG. 6B is a view in FIG. It is sectional drawing which follows the bb line.

【0033】第3の実施例で説明した観点から、バンプ
電極2を図4(a)および(b)に示すように、バンプ
電極2をグリッド状とするとともにチップ1の中央部に
集中されるようにしても良い。効果は第3の実施例と同
様、バンプ電極2の疲労進行を抑制できることにある。
この実施例は、発熱量が小さい装置を例にしているた
め、ダミ−バンプは無く、また、調節板もプラスチック
板7Bが用いられている。また、第3、第4の実施例に
おけるバンプ電極2の配置パタ−ンはグリッド状の他、
千鳥状でも良い。図7は、この発明の第5の実施例に係
わる半導体装置の断面図である。
From the viewpoint described in the third embodiment, as shown in FIGS. 4A and 4B, the bump electrodes 2 are formed in a grid shape and are concentrated in the central portion of the chip 1. You may do it. The effect is that the fatigue progression of the bump electrode 2 can be suppressed as in the third embodiment.
In this embodiment, since a device having a small amount of heat generation is taken as an example, there is no dummy bump, and a plastic plate 7B is used as the adjusting plate. Further, the arrangement pattern of the bump electrodes 2 in the third and fourth embodiments is not limited to the grid pattern,
It may be staggered. FIG. 7 is a sectional view of a semiconductor device according to the fifth embodiment of the present invention.

【0034】図7に示すように、複数のチップ1-1、1
-2を実装する例であり、この場合に調節板7を複数のチ
ップ1-1および1-2で共用するものである。このように
調節板7は複数のチップ1-1および1-2で共用されて
も、チップ1-1および1-2は各々、撓み変形による破壊
を防止できる。尚、調節板7には、銅板、プラスチック
およびシリコン等を用いることが可能である。図8は、
この発明の第6の実施例に係わる半導体装置の断面図で
ある。
As shown in FIG. 7, a plurality of chips 1-1, 1
In this case, the adjusting plate 7 is shared by a plurality of chips 1-1 and 1-2. As described above, even if the adjusting plate 7 is shared by the plurality of chips 1-1 and 1-2, the chips 1-1 and 1-2 can be prevented from being broken due to bending deformation. It should be noted that a copper plate, plastic, silicon or the like can be used for the adjusting plate 7. Figure 8
It is sectional drawing of the semiconductor device concerning the 6th Example of this invention.

【0035】調節板7のサイズはチップ1よりも大きい
ものに限られることは無く、図6に示すように接着層5
によるチップ1の撓みを相殺するように調節可能な場合
は、調節板7のサイズはチップ1より小さくても良い。
尚、調節板7には、銅板、プラスチックおよびシリコン
等を用いることが可能であるが、小さいサイズの調節板
7を用いた場合には、破壊強度が大きい材料が選ばれる
ことが望ましい。
The size of the adjusting plate 7 is not limited to the size larger than that of the chip 1, and as shown in FIG.
The size of the adjusting plate 7 may be smaller than that of the chip 1 when the chip 1 can be adjusted so as to cancel the bending of the chip 1.
It is possible to use a copper plate, plastic, silicon, or the like for the adjusting plate 7, but when using the adjusting plate 7 of a small size, it is desirable to select a material having a high breaking strength.

【0036】上記各実施例により説明された構成の半導
体装置によれば、チップ1と実装基板3とが互いに接着
層5により固着され、チップ1と基板3とがバンプ電極
2以外の部分でも互いに固着されるようになっている。
このため、基板3が伸縮すると、その変形に合わせてチ
ップ1自体が撓み変形を起こす。これにより、基板3の
伸縮変形に伴った応力がチップ1へも分散されてバンプ
電極2への応力集中を防止することができる。従って、
バンプ電極2の歪み量は小さくなって熱疲労耐性が増
し、半導体装置の熱サイクル特性が向上する。
According to the semiconductor device having the structure described in each of the above-described embodiments, the chip 1 and the mounting substrate 3 are fixed to each other by the adhesive layer 5, and the chip 1 and the substrate 3 are mutually connected even in the portions other than the bump electrodes 2. It is supposed to be fixed.
Therefore, when the substrate 3 expands and contracts, the chip 1 itself bends and deforms in accordance with the deformation. As a result, the stress associated with the expansion and contraction of the substrate 3 is distributed to the chip 1 and the stress concentration on the bump electrode 2 can be prevented. Therefore,
The amount of strain of the bump electrode 2 is reduced, the thermal fatigue resistance is increased, and the thermal cycle characteristics of the semiconductor device are improved.

【0037】また、上記各実施例では基板3がアルミナ
で構成されており、チップ1を構成するシリコンよりも
線膨脹係数が大きい。このために装置が高温状態から常
温(低温)状態となった時、チップ1はその裏面が凸と
なるように反る。チップ1がこのように反ると、チップ
1の裏面には引張り応力が生じ、チップ1の裏面にクラ
ックが入ったり、割れたり、あるいは内部の集積回路が
破壊されたりする。このようなチップ1の破壊を防ぐた
めに、チップ1の裏面上に、チップ1の線膨脹係数より
も大きい線膨脹係数を持つ材料で成る調節板7が取り付
けられている。このような調節板7を取り付けることに
よって基板3の変形に伴ったチップ1自体の変形が調
節、もしくは緩和され、上記問題を解決できる。
Further, in each of the above embodiments, the substrate 3 is made of alumina, and has a larger linear expansion coefficient than that of silicon which constitutes the chip 1. For this reason, when the device goes from a high temperature state to a room temperature (low temperature) state, the chip 1 warps so that its back surface becomes convex. When the chip 1 is warped in this way, tensile stress is generated on the back surface of the chip 1, and the back surface of the chip 1 is cracked or broken, or the internal integrated circuit is destroyed. In order to prevent such damage of the chip 1, an adjusting plate 7 made of a material having a linear expansion coefficient larger than that of the chip 1 is attached on the back surface of the chip 1. By attaching the adjusting plate 7 as described above, the deformation of the chip 1 itself due to the deformation of the substrate 3 is adjusted or alleviated, and the above problem can be solved.

【0038】調節板7は、チップ1の線膨脹係数よりも
大きい線膨脹係数を有する材料を選ぶことが好ましい。
そのような材料が調達できない場合には、接着層6を調
節板7の一部と考え、その材料や塗布厚さを調節して線
膨脹係数を調節することが可能である。また、調節板7
の厚さを変えてその剛性を変えることによっても線膨脹
係数を調節するのと等価な効果を得ることができる。
The adjusting plate 7 is preferably made of a material having a coefficient of linear expansion larger than that of the chip 1.
When such a material cannot be procured, it is possible to consider the adhesive layer 6 as a part of the adjusting plate 7 and adjust the material and the coating thickness to adjust the linear expansion coefficient. Also, the adjusting plate 7
The effect equivalent to adjusting the coefficient of linear expansion can also be obtained by changing the thickness of the film and changing its rigidity.

【0039】尚、上記各実施例ではチップの撓みを調節
する調節部材に、銅板やプラスチック板のような板状の
ものを用いているが、この他、線膨脹係数がチップ1よ
りも大きいフィルム状のものや、熱硬化する樹脂等を用
いることも可能である。
In each of the above-described embodiments, a plate-shaped member such as a copper plate or a plastic plate is used as the adjusting member for adjusting the bending of the chip. In addition to this, a film having a coefficient of linear expansion larger than that of the chip 1 is used. It is also possible to use a resinous material or a thermosetting resin.

【0040】さらに調節部材を取り付ける位置について
も、チップ1の裏面上に限らず、チップ1の裏面上から
側面上にかけて取り付けられてもよく、またチップ1の
側面上のみに取り付けられても良い。その他、この発明
の趣旨を逸脱しない範囲で種々の変形が可能であること
は勿論である。
Further, the position of attaching the adjusting member is not limited to the back surface of the chip 1, but may be from the back surface of the chip 1 to the side surface thereof, or may be only on the side surface of the chip 1. Of course, various modifications can be made without departing from the spirit of the present invention.

【0041】[0041]

【発明の効果】以上説明したように、この発明によれ
ば、熱サイクル特性が良好で、かつ高い信頼性を有する
半導体装置、並びにそのような半導体装置を得るための
チップ変形防止方法を提供できる。
As described above, according to the present invention, it is possible to provide a semiconductor device having good thermal cycle characteristics and high reliability, and a chip deformation preventing method for obtaining such a semiconductor device. .

【図面の簡単な説明】[Brief description of drawings]

【図1】図1はこの発明の第1の実施例に係わる半導体
装置の断面図。
FIG. 1 is a sectional view of a semiconductor device according to a first embodiment of the present invention.

【図2】図2は多層複合はりの模式図。FIG. 2 is a schematic view of a multi-layer composite beam.

【図3】図3はこの発明に係わる半導体装置の断面構造
の模式図で、(a)図は基板上にチップが取り付けられ
た段階を示す図、(b)図はチップ上に調節板が取り付
けられた段階を示す図。
FIG. 3 is a schematic diagram of a cross-sectional structure of a semiconductor device according to the present invention, FIG. 3A is a diagram showing a stage in which a chip is mounted on a substrate, and FIG. 3B is a diagram showing an adjusting plate on the chip. The figure which shows the stage attached.

【図4】図4はこの発明の第2の実施例に係わる半導体
装置を示す図で、(a)図は平面図、(b)図は(a)
図中のb−b線に沿う断面図。
4A and 4B are views showing a semiconductor device according to a second embodiment of the present invention, in which FIG. 4A is a plan view and FIG.
Sectional drawing which follows the bb line in a figure.

【図5】図5はこの発明の第3の実施例に係わる半導体
装置を示す図で、(a)図は平面図、(b)図は(a)
図中のb−b線に沿う断面図。
5A and 5B are views showing a semiconductor device according to a third embodiment of the present invention, wherein FIG. 5A is a plan view and FIG. 5B is a drawing.
Sectional drawing which follows the bb line in a figure.

【図6】図6はこの発明の第4の実施例に係わる半導体
装置を示す図で、(a)図は平面図、(b)図は(a)
図中のb−b線に沿う断面図。
6A and 6B are views showing a semiconductor device according to a fourth embodiment of the present invention, wherein FIG. 6A is a plan view and FIG. 6B is a drawing.
Sectional drawing which follows the bb line in a figure.

【図7】図7はこの発明の第5の実施例に係わる半導体
装置の断面図。
FIG. 7 is a sectional view of a semiconductor device according to a fifth embodiment of the present invention.

【図8】図8はこの発明の第6の実施例に係わる半導体
装置の断面図。
FIG. 8 is a sectional view of a semiconductor device according to a sixth embodiment of the present invention.

【図9】図9はフリップチップ方式の半導体装置を示す
図で、(a)図は理想的な製品の断面図、(b)図は実
際の製品の断面図。
9A and 9B are views showing a flip-chip type semiconductor device. FIG. 9A is an ideal product sectional view, and FIG. 9B is an actual product sectional view.

【符号の説明】[Explanation of symbols]

1,1-1,1-2…半導体チップ、2…バンプ電極、3…
実装基板、4…配線パタ−ン、5,5A,5B…接着
層、6…接着層、7,7A,7B,7C…調節板、8…
ダミ−バンプ。
1, 1-1, 1-2 ... Semiconductor chip, 2 ... Bump electrode, 3 ...
Mounting substrate, 4 ... Wiring pattern, 5, 5A, 5B ... Adhesive layer, 6 ... Adhesive layer, 7, 7A, 7B, 7C ... Adjusting plate, 8 ...
Dummy bump.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 実装基板上に導電性電極を介してフリッ
プチップ接続された半導体チップと、 前記チップと前記実装基板との間に前記導電性電極以外
に設けられた前記チップと前記実装基板とを固着する固
着手段と、 前記チップの撓みを調節する調節手段とを具備すること
を特徴とする半導体装置。
1. A semiconductor chip flip-chip connected to a mounting substrate via a conductive electrode, the chip and the mounting substrate provided between the chip and the mounting substrate except for the conductive electrode. A semiconductor device comprising: a fixing means for fixing a chip and an adjusting means for adjusting the bending of the chip.
【請求項2】 前記導電性電極は、前記チップ上に設け
られたバンプ電極であり、このバンプ電極は前記チップ
上の一部分に集中して配置されていることを特徴とする
請求項1に記載の半導体装置。
2. The conductive electrode is a bump electrode provided on the chip, and the bump electrode is concentrated on a part of the chip. Semiconductor device.
【請求項3】 実装基板上に半導体チップが導電性電極
を介してフリップチップ接続される構造を持つ半導体装
置のチップ変形防止方法であって、 前記チップと前記実装基板との間に前記導電性電極以外
に前記チップと前記実装基板とを固着する固着手段を設
けて前記実装基板の伸縮に合わせて前記チップが撓む構
造とし、この固着手段による撓みを相殺するように前記
チップの撓みを調節する調節手段を設けることによって
前記チップの変形を防止することを特徴とするチップ変
形防止方法。
3. A chip deformation preventing method for a semiconductor device having a structure in which a semiconductor chip is flip-chip connected via a conductive electrode on a mounting substrate, wherein the conductive material is provided between the chip and the mounting substrate. In addition to the electrodes, a fixing means for fixing the chip and the mounting board is provided so that the chip bends according to the expansion and contraction of the mounting board, and the bending of the chip is adjusted so as to cancel the bending by the fixing means. A chip deformation preventing method, characterized in that the chip is prevented from being deformed by providing adjusting means for controlling the chip deformation.
【請求項4】 前記チップの撓みの調節は、前記調節手
段を構成する材料の厚さ、そのヤング率およびその線膨
脹係数を調節することにより行うことを特徴とする請求
項3に記載のチップ変形防止方法。
4. The chip according to claim 3, wherein the bending of the chip is adjusted by adjusting the thickness of the material forming the adjusting means, its Young's modulus and its linear expansion coefficient. Deformation prevention method.
【請求項5】 前記チップの撓みの調節は、前記実装基
板、前記固着手段、前記チップおよび前記調節手段より
成る多層複合部を多層複合のはりと仮定して、材料力学
による多層複合はりの計算式を適用して行うことを特徴
とする請求項4に記載のチップの変形防止方法。
5. The adjustment of the deflection of the chip is calculated by the material mechanics, assuming that the multi-layer composite part including the mounting substrate, the fixing means, the chip and the adjusting means is a multi-layer composite beam. The method for preventing deformation of a chip according to claim 4, wherein the method is performed by applying an equation.
JP1859193A 1993-02-05 1993-02-05 Semiconductor device and chip deformation prevention method Expired - Fee Related JP3241140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1859193A JP3241140B2 (en) 1993-02-05 1993-02-05 Semiconductor device and chip deformation prevention method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1859193A JP3241140B2 (en) 1993-02-05 1993-02-05 Semiconductor device and chip deformation prevention method

Publications (2)

Publication Number Publication Date
JPH06232210A true JPH06232210A (en) 1994-08-19
JP3241140B2 JP3241140B2 (en) 2001-12-25

Family

ID=11975886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1859193A Expired - Fee Related JP3241140B2 (en) 1993-02-05 1993-02-05 Semiconductor device and chip deformation prevention method

Country Status (1)

Country Link
JP (1) JP3241140B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990002289A (en) * 1997-06-19 1999-01-15 윤종용 COB (chip on board) package
KR19990005192A (en) * 1997-06-30 1999-01-25 윤종용 Semiconductor Package Structure Using Insulating Tape
JP2007180166A (en) * 2005-12-27 2007-07-12 Seiko Epson Corp Electronic component, manufacturing method thereof, circuit board, and electronic equipment
WO2008120705A1 (en) 2007-03-29 2008-10-09 Nec Corporation Semiconductor device
JP2011071267A (en) * 2009-09-25 2011-04-07 Nec Corp Electronic device package, method of manufacturing the same, and electronic equipment
JP2013526769A (en) * 2010-03-23 2013-06-24 アルカテル−ルーセント IC package reinforcement with beams

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990002289A (en) * 1997-06-19 1999-01-15 윤종용 COB (chip on board) package
KR19990005192A (en) * 1997-06-30 1999-01-25 윤종용 Semiconductor Package Structure Using Insulating Tape
JP2007180166A (en) * 2005-12-27 2007-07-12 Seiko Epson Corp Electronic component, manufacturing method thereof, circuit board, and electronic equipment
WO2008120705A1 (en) 2007-03-29 2008-10-09 Nec Corporation Semiconductor device
JP5521547B2 (en) * 2007-03-29 2014-06-18 日本電気株式会社 Semiconductor device and manufacturing method thereof
JP2011071267A (en) * 2009-09-25 2011-04-07 Nec Corp Electronic device package, method of manufacturing the same, and electronic equipment
JP2013526769A (en) * 2010-03-23 2013-06-24 アルカテル−ルーセント IC package reinforcement with beams

Also Published As

Publication number Publication date
JP3241140B2 (en) 2001-12-25

Similar Documents

Publication Publication Date Title
JP2570498B2 (en) Integrated circuit chip carrier
US6308938B1 (en) Semiconductor integrated circuit device
JP4476381B2 (en) Semiconductor chip package and manufacturing method thereof
KR100821154B1 (en) Electronic components embedded PCB and the method for manufacturing thereof
TWI429339B (en) Substrate of circuit board, circuit board and method of fabricating thereof
US20010028116A1 (en) Apparatus and methods of reinforcement of lead bonding in microelectronics packages
KR100496508B1 (en) Semiconductor device
US5952719A (en) Metal ball grid electronic package having improved solder joint
US7247945B2 (en) Semiconductor apparatus
US6670706B2 (en) Semiconductor device including a semiconductor pellet having bump electrodes connected to pad electrodes of an interconnect board and method for manufacturing same
JP3241140B2 (en) Semiconductor device and chip deformation prevention method
EP0504669B1 (en) Semiconductor device comprising a substrate
JPH06291165A (en) Flip chip connecting construction
JPH1140687A (en) Semiconductor device
US20020063324A1 (en) Semiconductor device, method of fabricating same, semiconductor device package construction, and method of mounting the semiconductor device
JP2008010690A (en) Base board with stiffener, and its manufacturing method
KR101070905B1 (en) substrate parent material for semiconductor package and unit substrate manufactured from the same
TWI254429B (en) Flexible flip chip package structure
JP2830504B2 (en) Substrate for mounting semiconductor devices
JPH0776131A (en) Image device
JPH1126634A (en) Semiconductor device
JP2503873B2 (en) Structure of integrated circuit package
JPH10229102A (en) Electronic product
KR20110021123A (en) Electronic components embedded pcb
JP2001156097A (en) Electronic circuit, lsi chip mounting structure and method of manufacturing semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081019

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20081019

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091019

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20101019

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20111019

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20121019

LAPS Cancellation because of no payment of annual fees