JP3241140B2 - Semiconductor device and chip deformation prevention method - Google Patents

Semiconductor device and chip deformation prevention method

Info

Publication number
JP3241140B2
JP3241140B2 JP1859193A JP1859193A JP3241140B2 JP 3241140 B2 JP3241140 B2 JP 3241140B2 JP 1859193 A JP1859193 A JP 1859193A JP 1859193 A JP1859193 A JP 1859193A JP 3241140 B2 JP3241140 B2 JP 3241140B2
Authority
JP
Japan
Prior art keywords
chip
semiconductor device
deformation
adjusting
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1859193A
Other languages
Japanese (ja)
Other versions
JPH06232210A (en
Inventor
勉 仲澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1859193A priority Critical patent/JP3241140B2/en
Publication of JPH06232210A publication Critical patent/JPH06232210A/en
Application granted granted Critical
Publication of JP3241140B2 publication Critical patent/JP3241140B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping

Abstract

PURPOSE:To provide a highly reliable semiconductor device having a superior thermal cycle characteristic, and to provide a method for preventing the deformation of a chip to obtain such a semiconductor device. CONSTITUTION:A semiconductor device is provided with a mounting board 3, and a semiconductor chip 1 which is electrically connected to the board 3 via bump electrodes 2. A polyimide film 5A is sandwiched between the chip 1 and the board 3, and the chip 1 and the board 3 are adhered to each other. An adjusting plate 7A is disposed on the top of the chip 1, whereby the flexure and deformation of the chip 1 is adjusted. With this construction, the chip 1 and the board 3 are bonded to each other by the film 5A, and hence the expansion and contraction of the board 3 induces the flexure and deformation of the chip 1. For this reason, the concentration of stress on the bump electrode 2 is suppressed, and a thermal cycle characteristic is improved. The adjusting plate 7 disposed on the chip 1 simultaneously makes it possible to solve the problem of the cracking of the chip 1 caused by the flexure and deformation of the chip 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は半導体装置に係わり、
特に実装基板上に装着される半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device,
In particular, the present invention relates to a semiconductor device mounted on a mounting board.

【0002】[0002]

【従来の技術】従来、多ピンの製品に用いられる半導体
装置として、フリップチップ方式の半導体装置がある。
図9はフリップチップ方式の半導体装置を示す図で、
(a)図は理想的な製品の断面図、(b)図は実際の製
品の断面図である。
2. Description of the Related Art Conventionally, there is a flip-chip type semiconductor device as a semiconductor device used for a multi-pin product.
FIG. 9 shows a flip-chip type semiconductor device.
(A) is a cross-sectional view of an ideal product, and (b) is a cross-sectional view of an actual product.

【0003】図9(a)に示すように、半導体チップ1
の表面上にはバンプ電極2が設けられている。バンプ電
極2は実装基板3上に形成された配線パタ−ン4に半田
付により接続されている。
[0003] As shown in FIG.
A bump electrode 2 is provided on the surface of the substrate. The bump electrode 2 is connected to a wiring pattern 4 formed on a mounting substrate 3 by soldering.

【0004】チップ1を構成している材料と基板3を構
成している材料とは互いに異なっており、それぞれの線
膨脹率には差が生じている。例えば基板3の線膨脹率が
チップ1のそれよりも大きいと、実装工程終了後に装置
を常温に戻した際に基板3が大きく縮み、図9(b)に
示すような形でバンプ電極2が歪む。
[0004] The material constituting the chip 1 and the material constituting the substrate 3 are different from each other, and there is a difference between the respective coefficients of linear expansion. For example, if the coefficient of linear expansion of the substrate 3 is larger than that of the chip 1, when the device is returned to room temperature after the completion of the mounting process, the substrate 3 is greatly shrunk, and the bump electrodes 2 are formed as shown in FIG. Distorted.

【0005】また、製品化後においては、動作させるご
とにチップ1が発熱する。このため、チップ1は膨脹/
収縮を繰り返す。このような熱サイクルの印加によりバ
ンプ電極2は歪みを繰り返し起こすこととなり、やがて
疲労を起こして脆弱となる。従って半導体装置の信頼性
を劣化させる。
After commercialization, the chip 1 generates heat every time it is operated. Therefore, the tip 1 is expanded /
Repeat the contraction. The application of such a heat cycle causes the bump electrode 2 to repeatedly generate strain, eventually causing fatigue and becoming brittle. Therefore, the reliability of the semiconductor device is deteriorated.

【0006】[0006]

【発明が解決しようとする課題】以上のように、従来の
半導体装置ではチップ1が基板3にバンプ電極2によっ
てのみ支えられる構造となっており、バンプ電極2が線
膨脹率の違いによる応力を直接受けてしまう。このため
バンプ電極2に応力が集中するようになり、特に熱サイ
クルに起因した疲労(熱疲労)を起こしやすい。
As described above, the conventional semiconductor device has a structure in which the chip 1 is supported only on the substrate 3 by the bump electrodes 2, and the bump electrodes 2 reduce the stress caused by the difference in linear expansion coefficient. Receive it directly. For this reason, stress concentrates on the bump electrode 2, and in particular, fatigue (thermal fatigue) due to a thermal cycle is likely to occur.

【0007】この発明は上記の点に鑑みて為されたもの
で、その目的は、熱サイクル特性が良好で、かつ高い信
頼性を有する半導体装置、並びにそのような半導体装置
を得るためのチップ変形防止方法を提供することにあ
る。
The present invention has been made in view of the above points, and has as its object to provide a semiconductor device having good thermal cycle characteristics and high reliability, and a chip deformation for obtaining such a semiconductor device. It is to provide a prevention method.

【0008】[0008]

【課題を解決するための手段】この発明に係わる半導体
装置は、実装基板上に導電性電極を介してフリップチッ
プ接続された半導体チップと、このチップと実装基板と
の間に導電性電極以外に設けられたチップと実装基板と
を固着する固着手段と、チップの撓みを調節する調節手
段とを具備し、チップの撓みを調整する手段を、固着手
段と対向するチップ上に設けたことを特徴としている。
A semiconductor device according to the present invention comprises a semiconductor chip flip-chip connected on a mounting substrate via a conductive electrode, and a conductive chip between the chip and the mounting substrate. A fixing means for fixing the provided chip to the mounting substrate; and an adjusting means for adjusting the bending of the chip.
It is characterized in that it is provided on a chip facing the step .

【0009】また、この発明に係わるチップ変形防止方
法は、チップと実装基板との間に導電性電極以外にチッ
プと実装基板とを固着する固着手段を設けて実装基板の
伸縮に合わせてチップが撓む構造とし、この固着手段に
よる撓みを相殺するようにチップの撓みを調節する調節
手段を固着手段と対向してチップ上に設けることによっ
てチップの変形を防止することを特徴としている。
Further, in the chip deformation preventing method according to the present invention, a fixing means for fixing the chip and the mounting substrate is provided between the chip and the mounting substrate in addition to the conductive electrodes, so that the chip is expanded and contracted in accordance with the expansion and contraction of the mounting substrate. It is characterized in that the chip is bent, and the deformation of the chip is prevented by providing an adjusting means for adjusting the bending of the chip so as to offset the bending by the fixing means on the chip in opposition to the fixing means .

【0010】[0010]

【作用】上記構成の半導体装置およびチップ変形防止方
法であると、チップと実装基板との間に設けられた固着
手段によって実装基板の伸縮に合わせてチップが撓み変
形を起こすので、実装基板の伸縮に伴って発生する応力
を導電性電極だけでなくチップ自体へ分散することがで
きる。従って、導電性電極に応力が集中しなくなり、導
電性電極は熱疲労を起こしにくい構造となる。さらに、
チップが撓み変形を起こすとチップが割れる恐れがあ
る。この点を改善するために、チップ上にチップの撓み
変形を調節する調節手段を設けてチップの撓みを矯正、
もしくは緩和するようにしている。
According to the semiconductor device and the chip deformation preventing method having the above-described structures, the chip is bent and deformed in accordance with the expansion and contraction of the mounting substrate by the fixing means provided between the chip and the mounting substrate. Can be distributed not only to the conductive electrodes but also to the chip itself. Therefore, stress does not concentrate on the conductive electrode, and the conductive electrode has a structure that is less likely to cause thermal fatigue. further,
When the tip is bent and deformed, the tip may be broken. In order to improve this point, an adjustment means for adjusting the bending deformation of the chip is provided on the chip to correct the bending of the chip,
Or try to relax.

【0011】[0011]

【実施例】以下、この発明を実施例により説明する。こ
の説明において、全図に渡り共通の部分には共通の参照
符号を付すことで、重複する説明は避けることにする。
図1は、この発明の第1の実施例に係わる半導体装置の
断面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to embodiments. In this description, common portions will be denoted by common reference symbols throughout the drawings, and redundant description will be avoided.
FIG. 1 is a sectional view of a semiconductor device according to a first embodiment of the present invention.

【0012】図1に示すように、半導体チップ1の表面
上にはバンプ電極2が設けられている。バンプ電極2は
実装基板3上に形成された配線パタ−ン4に半田付によ
り接続されている。基板3はアルミナ製である。チップ
1の表面と基板3との間にはポリイミドフィルム5Aが
挟み込まれている。ポリイミドフィルム5Aの表面およ
び裏面にはそれぞれ接着剤が付けられており、表面およ
び裏面はそれぞれチップ1および基板3に接着されてい
る。これにより、チップ1と基板3とが互いに固着され
る。チップ1の裏面上には絶縁性で低弾性率の接着剤で
成る接着層6を介して調節板7Aが取り付けられてい
る。この実施例では調節板7Aに銅板を用いることによ
り、チップ1の放熱性についても考慮されている。ま
た、基板3がアルミナで成り、調節板7Aが銅で成る
時、線膨脹係数の関係から調節板7Aの膜厚は基板3の
膜厚よりも薄くされる。
As shown in FIG. 1, a bump electrode 2 is provided on a surface of a semiconductor chip 1. The bump electrode 2 is connected to a wiring pattern 4 formed on a mounting substrate 3 by soldering. The substrate 3 is made of alumina. A polyimide film 5A is sandwiched between the surface of the chip 1 and the substrate 3. An adhesive is attached to the front and back surfaces of the polyimide film 5A, respectively, and the front and back surfaces are bonded to the chip 1 and the substrate 3, respectively. Thus, the chip 1 and the substrate 3 are fixed to each other. On the back surface of the chip 1, an adjusting plate 7A is attached via an adhesive layer 6 made of an insulating and low elastic modulus adhesive. In this embodiment, the heat dissipation of the chip 1 is also considered by using a copper plate for the adjustment plate 7A. When the substrate 3 is made of alumina and the adjusting plate 7A is made of copper, the thickness of the adjusting plate 7A is made smaller than the thickness of the substrate 3 due to the linear expansion coefficient.

【0013】次に、調節板によるチップの撓み変形の調
節方法について説明する。この調節方法は、基板3、接
着層5(図1のポリイミドフィルム5Aに対応する)、
チップ1、接着層6および調節板7より成る部分を多層
複合の「はり」と仮定して、材料力学による計算式を適
用して行われる。調節方法の説明に先立ち、多層複合は
りモデルの熱応力について図2を参照して説明する。図
2は多層複合はりを模式的に示す図である。図2に示さ
れるような多層複合はりの第i層の応力は、次の式によ
り表すことができる。
Next, a method of adjusting the bending deformation of the chip by the adjusting plate will be described. This adjusting method includes the following steps: substrate 3, adhesive layer 5 (corresponding to polyimide film 5A in FIG. 1),
Assuming that the portion including the chip 1, the adhesive layer 6, and the adjusting plate 7 is a multilayer composite "beam", the calculation is performed by applying a calculation formula based on material mechanics. Prior to the description of the adjustment method, the thermal stress of the multilayer composite beam model will be described with reference to FIG. FIG. 2 is a diagram schematically showing a multilayer composite beam. The stress of the i-th layer of the multilayer composite beam as shown in FIG. 2 can be expressed by the following equation.

【0014】[0014]

【数1】 (Equation 1)

【0015】上式において、σi は第i層の応力、εi
は第i層の熱歪、(t−δ)/ρは第i層の曲りによる
歪、tはti+1 〜ti の間の座標、δは中立線の座標、
ρは曲率半径、Ei は第i層のヤング率である。ここで
第i層の熱歪は、次の式により表される。
In the above equation, σ i is the stress of the i-th layer, ε i
The i layer of the thermal strain, (t-δ) / ρ the coordinates between the first distortion by bending of the i layer, t is t i + 1 ~t i, [delta] is the neutral line coordinates,
ρ is the radius of curvature, and E i is the Young's modulus of the i-th layer. Here, the thermal strain of the i-th layer is represented by the following equation.

【0016】[0016]

【数2】 (Equation 2)

【0017】中立線の座標δおよび曲率半径ρをそれぞ
れ、δ=B/A、ρ=C/Aとすると、 A=−6[ΣEj εj (tj+1 −tj )・ΣEj (tj+1 2 −tj 2 ) −ΣEj εj (tj+1 2 −tj 2 )・ΣEj (tj+1 −tj )] B=−4ΣEj εj (tj+1 −tj )・ΣEj (tj+1 3 −tj 3 ) +3ΣEj εj (tj+1 2 −tj 2 )・ΣEj (tj+1 2 −tj 2 ) C=3[ΣEj (tj+1 2 −tj 2 )]2 −4ΣEj (tj+1 3 −tj 3 )・ΣEj (tj+1 −tj ) となる。
Assuming that the coordinate δ and the radius of curvature ρ of the neutral line are δ = B / A and ρ = C / A, respectively, A = −6 [ΣE j ε j (t j + 1 −t j ) · ΣE j (T j + 1 2 −t j 2 ) −ΣE j ε j (t j + 1 2 −t j 2 ) · ΣE j (t j + 1 −t j )] B = −4ΣE j ε j (t j + 1 −t j ) · ΣE j (t j + 1 3 −t j 3 ) + 3ΣE j ε j (t j + 1 2 −t j 2 ) · ΣE j (t j + 1 2 −t j 2 ) C = 3 [ΣE j (t j + 1 2 −t j 2 )] 2 -4ΣE j (t j + 1 3 −t j 3 ) · ΣE j (t j + 1 −t j ).

【0018】図3は、この発明に係わる半導体装置の断
面構造を模式的に示した図で、(a)図は基板3上にチ
ップ1が取り付けられた段階のもの、(b)図はチップ
1上に調節板7が取り付けられた段階のものをそれぞれ
示している。
FIGS. 3A and 3B schematically show a cross-sectional structure of a semiconductor device according to the present invention. FIG. 3A shows a state where a chip 1 is mounted on a substrate 3 and FIG. 1 shows a stage in which the adjustment plate 7 is mounted on each of the components.

【0019】図3(a)に示される構造を「はり」と仮
定して、上述した材料力学による多層複合はりモデルの
式によりチップ1に生ずる応力および反りを計算する
と、次のようになる。尚、材料物性値は以下に示す通り
である。
Assuming that the structure shown in FIG. 3A is a “beam”, the stress and warpage generated in the chip 1 are calculated as follows based on the above-described multi-layer composite beam model based on the material dynamics. The material properties are as shown below.

【0020】 チップ1:厚さt1 =0.6mm 、線膨脹係数α1 =0.35×
10-5/℃、ヤング率E1 =17000kg/mm2 接着層5:厚さt2 =0.2mm 、線膨脹係数α2 =5.00×
10-5/℃、ヤング率E2 =100kg/mm2 基 板3:厚さt3 =1.0mm 、線膨脹係数α3 =1.60×
10-5/℃、ヤング率E3 =2000kg/mm 2 荷重条件は−200℃(即ち温度を200℃降下させ
る)である。
Chip 1: thickness t 1 = 0.6 mm, linear expansion coefficient α 1 = 0.35 ×
Ten-Five/ ° C, Young's modulus E1 = 17000 kg / mmTwo  Adhesive layer 5: thickness t2 = 0.2 mm, coefficient of linear expansion α2 = 5.00 x
Ten-Five/ ° C, Young's modulus E2 = 100 kg / mmTwo  Substrate 3: thickness t3 = 1.0 mm, coefficient of linear expansion α3 = 1.60 x
Ten-Five/ ° C, Young's modulus E3 = 2000 kg / mmTwo  The load condition is -200 ° C (that is, the temperature is lowered by 200 ° C).
).

【0021】このような条件によれば、図3(a)に示
される構造ではチップ上面には8kg/mm 2 もの引張り応
力が生ずる。下面は圧縮となっている。曲率半径は−5
08mmとなり、チップ1のサイズが10mmであれば、
25μmも撓む。
According to such a condition, in the structure shown in FIG. 3A, 8 kg / mm 2 Also tensile stress occurs. The lower surface is compressed. Radius of curvature is -5
08mm, and if the size of chip 1 is 10mm,
It also bends 25 μm.

【0022】そこで、図3(b)に示される構造のよう
に、チップ1の上面に調節板7を取り付けてチップ1に
生ずる応力と全体の撓みを改善する。板は銅板として、
その厚さtx の最適値を求めると、次のようになる。
尚、材料物性値は以下に示す通りである。
Therefore, as shown in FIG. 3B, an adjusting plate 7 is attached to the upper surface of the chip 1 to improve the stress generated in the chip 1 and the overall bending. The board is a copper plate,
When the optimum value of the thickness tx is obtained, the following is obtained.
The material properties are as shown below.

【0023】 チップ1:厚さt1 =0.6mm 、線膨脹係数α1 =0.35×
10-5/℃、ヤング率E1 =17000kg/mm2 接着層5:厚さt2 =0.2mm 、線膨脹係数α2 =5.00×
10-5/℃、ヤング率E2 =100kg/mm2 基 板3:厚さt3 =1.0mm 、線膨脹係数α3 =1.60×
10-5/℃、ヤング率E3 =2000kg/mm 2 調節板7:厚さtx (下記)、線膨脹係数αx =1.70×
10-5/℃、ヤング率Ex =11000kg/mm2 接着層6:厚さty =0.2mm 、線膨脹係数αy =5.00×
10-5/℃、ヤング率Ey =100kg/mm2 荷重条件は−200℃(即ち温度を200℃降下させ
る)である。
Chip 1: thickness t1 = 0.6 mm, coefficient of linear expansion α1 = 0.35 ×
Ten-Five/ ° C, Young's modulus E1 = 17000 kg / mmTwo  Adhesive layer 5: thickness t2 = 0.2 mm, coefficient of linear expansion α2 = 5.00 x
Ten-Five/ ° C, Young's modulus E2 = 100 kg / mmTwo  Substrate 3: thickness t3 = 1.0 mm, coefficient of linear expansion α3 = 1.60 x
Ten-Five/ ° C, Young's modulus E3 = 2000 kg / mmTwo  Adjustment plate 7: thickness tx (described below), coefficient of linear expansion αx = 1.70 ×
Ten-Five/ ° C, Young's modulus Ex = 11000kg / mmTwo  Adhesive layer 6: thickness ty = 0.2 mm, coefficient of linear expansion αy = 5.00 ×
Ten-Five/ ° C, Young's modulus Ey = 100 kg / mmTwo  The load condition is -200 ° C (that is, the temperature is lowered by 200 ° C).
).

【0024】このような条件によれば、板厚tx を0.3m
m とすると、チップに生じる応力はすべて圧縮の応力と
なる。曲率半径は5920mmとなり、反対方向(上面側)へ
撓むようになる。また、板厚tx を0.2mm とすると、や
はりチップに生じる応力はすべて圧縮の応力となり、曲
率半径は-3594mm となる。このことより、チップが撓ま
ないのは調節板の厚さが0.2mm から0.3mm の間にあるこ
とが分かる。しかし、どちらでもチップ1に生ずる応力
は-15kg/mm2 程度の圧縮の応力であり、引張りの応力は
生じ無くなるため、チップ1の破壊は無くなる。
According to such conditions, the thickness tx is set to 0.3 m
If m, the stress generated in the chip is all compressive. The radius of curvature is 5920 mm, and it bends in the opposite direction (upper surface side). Further, when the plate thickness tx is 0.2 mm, all the stresses generated in the chip are also compressive stresses, and the radius of curvature is -3594 mm. This shows that the tip does not bend when the thickness of the adjusting plate is between 0.2 mm and 0.3 mm. However, in either case, the stress generated in chip 1 is -15 kg / mm 2 This is a compressive stress of a certain degree, and no tensile stress is generated, so that the chip 1 is not broken.

【0025】ちなみに、チップ表面(素子形成面)の破
壊強度は引張り 20kg/mm2 程度、圧縮 30kg/mm2 程度だ
が、チップ裏面はその加工上、破壊強度は引張り8kg/mm
2 程度、圧縮 30kg/mm2 程度であり、引張りに弱い。
Incidentally, the breaking strength of the chip surface (element formation surface) is 20 kg / mm 2 tensile. Degree, compression 30kg / mm 2 Despite that, the back surface of the chip is processed, and the breaking strength is 8kg / mm.
Two Degree, compression 30kg / mm 2 It is a degree and is weak to tension.

【0026】図4は、この発明の第2の実施例に係わる
半導体装置を示す図であり、(a)図はバンプ電極の配
置を示す平面図、(b)図は(a)図中のb−b線に沿
う断面図である。
FIGS. 4A and 4B show a semiconductor device according to a second embodiment of the present invention. FIG. 4A is a plan view showing the arrangement of bump electrodes, and FIG. It is sectional drawing which follows the bb line.

【0027】図4(a)および(b)に示すように、バ
ンプ電極2はチップ1の外周のみに配置され、チップ1
はバンプ電極2を介して基板3に接着される。さらにチ
ップ1は接着層5Bを介しても基板3に接着されてい
る。接着層5Bは、絶縁樹脂(例えばシリコ−ン)であ
る。チップ1の裏面上には、チップ1よりも線膨脹係数
の大きいプラスチック板が調節板7Bとして接着層6を
介して接着されている。
As shown in FIGS. 4A and 4B, the bump electrodes 2 are arranged only on the outer periphery of the chip 1,
Are bonded to the substrate 3 via the bump electrodes 2. Further, the chip 1 is bonded to the substrate 3 via the bonding layer 5B. The adhesive layer 5B is an insulating resin (for example, silicone). On the back surface of the chip 1, a plastic plate having a larger linear expansion coefficient than that of the chip 1 is adhered as an adjusting plate 7B via an adhesive layer 6.

【0028】第2の実施例に係わる構成であると、チッ
プ1と基板3との間が絶縁樹脂による接着層5Bで埋め
込まれるためにチップ1と基板3との接着面を広くで
き、密着性を高めることができる。
In the structure according to the second embodiment, the space between the chip 1 and the substrate 3 can be widened because the space between the chip 1 and the substrate 3 is filled with the adhesive layer 5B made of insulating resin. Can be increased.

【0029】図5は、この発明の第3の実施例に係わる
半導体装置を示す図であり、(a)図はバンプ電極の配
置を示す平面図、(b)図は(a)図中のb−b線に沿
う断面図である。
FIGS. 5A and 5B are views showing a semiconductor device according to a third embodiment of the present invention. FIG. 5A is a plan view showing the arrangement of bump electrodes, and FIG. 5B is a view in FIG. It is sectional drawing which follows the bb line.

【0030】図5(a)および(b)に示すように、バ
ンプ電極2はチップ1表面上の一部分に集中して配置さ
れている。この実施例では、バンプ電極2はグリッド状
とされ、チップ1の一つのすみに集中されている。他の
三つのすみには信号伝達に無関係のダミ−バンプ8が設
けられている。ダミ−バンプ8は信号伝達はしないが、
熱伝達を良好とするためにバンプ電極2よりもサイズが
大きくされる。チップ1はバンプ電極2とダミ−バンプ
8とにより基板3に接着される。さらにチップ1は接着
層5Bによっても基板3に接着される。この実施例での
接着層5Bは絶縁性の接着剤(例えばエポキシ系の樹
脂)である。チップ1の裏面上にはチップ1と同一の材
料(例えばシリコン)でチップ1よりもサイズの大きい
ものが調節板7Cとして接着層6を介して接着されてい
る。
As shown in FIGS. 5A and 5B, the bump electrodes 2 are arranged in a concentrated manner on a part of the chip 1 surface. In this embodiment, the bump electrodes 2 have a grid shape and are concentrated on one corner of the chip 1. The other three corners are provided with dummy bumps 8 unrelated to signal transmission. The dummy bump 8 does not transmit a signal,
The size is made larger than that of the bump electrode 2 in order to improve heat transfer. The chip 1 is bonded to the substrate 3 by the bump electrodes 2 and the dummy bumps 8. Further, the chip 1 is also adhered to the substrate 3 by the adhesive layer 5B. The adhesive layer 5B in this embodiment is an insulating adhesive (for example, an epoxy resin). On the back surface of the chip 1, the same material as the chip 1 (for example, silicon) having a size larger than that of the chip 1 is adhered via an adhesive layer 6 as an adjustment plate 7C.

【0031】第3の実施例に係わる構成であると、バン
プ電極2はチップ1表面上の一部分に集中して配置され
るため、バンプ電極2の疲労進行を抑制できる。これは
バンプ電極2がチップ1の外周に設けるとチップ1と基
板3との歪みのくい違いが大きくなるが、チップ1の外
周から外れるようにバンプ電極2を一部分に集中させる
と、歪みのくい違いを小さくすることができるからであ
る。
In the configuration according to the third embodiment, since the bump electrodes 2 are arranged intensively at a part on the surface of the chip 1, the fatigue progress of the bump electrodes 2 can be suppressed. This is because when the bump electrode 2 is provided on the outer periphery of the chip 1, the difference in distortion between the chip 1 and the substrate 3 increases, but when the bump electrode 2 is partially concentrated so as to be off the outer periphery of the chip 1, the distortion is small. This is because the difference can be reduced.

【0032】図6は、この発明の第4の実施例に係わる
半導体装置を示す図であり、(a)図はバンプ電極の配
置を示す平面図、(b)図は(a)図中のb−b線に沿
う断面図である。
FIGS. 6A and 6B are views showing a semiconductor device according to a fourth embodiment of the present invention. FIG. 6A is a plan view showing the arrangement of bump electrodes, and FIG. It is sectional drawing which follows the bb line.

【0033】第3の実施例で説明した観点から、バンプ
電極2を図4(a)および(b)に示すように、バンプ
電極2をグリッド状とするとともにチップ1の中央部に
集中されるようにしても良い。効果は第3の実施例と同
様、バンプ電極2の疲労進行を抑制できることにある。
この実施例は、発熱量が小さい装置を例にしているた
め、ダミ−バンプは無く、また、調節板もプラスチック
板7Bが用いられている。また、第3、第4の実施例に
おけるバンプ電極2の配置パタ−ンはグリッド状の他、
千鳥状でも良い。図7は、この発明の第5の実施例に係
わる半導体装置の断面図である。
From the viewpoint described in the third embodiment, as shown in FIGS. 4A and 4B, the bump electrodes 2 are formed in a grid shape and concentrated at the center of the chip 1. You may do it. The effect is that the fatigue progress of the bump electrode 2 can be suppressed as in the third embodiment.
In this embodiment, an apparatus having a small heat value is used as an example, so that no dummy bump is provided, and a plastic plate 7B is used as an adjusting plate. In addition, the arrangement pattern of the bump electrodes 2 in the third and fourth embodiments is not only grid-shaped but also
It may be staggered. FIG. 7 is a sectional view of a semiconductor device according to a fifth embodiment of the present invention.

【0034】図7に示すように、複数のチップ1-1、1
-2を実装する例であり、この場合に調節板7を複数のチ
ップ1-1および1-2で共用するものである。このように
調節板7は複数のチップ1-1および1-2で共用されて
も、チップ1-1および1-2は各々、撓み変形による破壊
を防止できる。尚、調節板7には、銅板、プラスチック
およびシリコン等を用いることが可能である。図8は、
この発明の第6の実施例に係わる半導体装置の断面図で
ある。
As shown in FIG. 7, a plurality of chips 1-1, 1
In this case, the adjusting plate 7 is shared by a plurality of chips 1-1 and 1-2. Thus, even if the adjusting plate 7 is shared by the plurality of chips 1-1 and 1-2, each of the chips 1-1 and 1-2 can prevent destruction due to bending deformation. Note that a copper plate, plastic, silicon, or the like can be used for the adjustment plate 7. FIG.
FIG. 14 is a sectional view of a semiconductor device according to a sixth embodiment of the present invention.

【0035】調節板7のサイズはチップ1よりも大きい
ものに限られることは無く、図6に示すように接着層5
によるチップ1の撓みを相殺するように調節可能な場合
は、調節板7のサイズはチップ1より小さくても良い。
尚、調節板7には、銅板、プラスチックおよびシリコン
等を用いることが可能であるが、小さいサイズの調節板
7を用いた場合には、破壊強度が大きい材料が選ばれる
ことが望ましい。
The size of the adjusting plate 7 is not limited to the size larger than the chip 1, and as shown in FIG.
The size of the adjustment plate 7 may be smaller than that of the chip 1 if the adjustment can be made so as to cancel the deflection of the chip 1 due to the above.
Note that a copper plate, plastic, silicon, or the like can be used for the adjustment plate 7. However, when the adjustment plate 7 having a small size is used, it is desirable that a material having a high breaking strength be selected.

【0036】上記各実施例により説明された構成の半導
体装置によれば、チップ1と実装基板3とが互いに接着
層5により固着され、チップ1と基板3とがバンプ電極
2以外の部分でも互いに固着されるようになっている。
このため、基板3が伸縮すると、その変形に合わせてチ
ップ1自体が撓み変形を起こす。これにより、基板3の
伸縮変形に伴った応力がチップ1へも分散されてバンプ
電極2への応力集中を防止することができる。従って、
バンプ電極2の歪み量は小さくなって熱疲労耐性が増
し、半導体装置の熱サイクル特性が向上する。
According to the semiconductor device having the structure described in each of the above embodiments, the chip 1 and the mounting substrate 3 are fixed to each other by the adhesive layer 5, and the chip 1 and the substrate 3 are connected to each other even in portions other than the bump electrodes 2. It is designed to be fixed.
Therefore, when the substrate 3 expands and contracts, the chip 1 itself bends and deforms in accordance with the deformation. Thereby, the stress accompanying the expansion and contraction deformation of the substrate 3 is also distributed to the chip 1 and the concentration of the stress on the bump electrode 2 can be prevented. Therefore,
The amount of distortion of the bump electrode 2 is reduced, the thermal fatigue resistance is increased, and the thermal cycle characteristics of the semiconductor device are improved.

【0037】また、上記各実施例では基板3がアルミナ
で構成されており、チップ1を構成するシリコンよりも
線膨脹係数が大きい。このために装置が高温状態から常
温(低温)状態となった時、チップ1はその裏面が凸と
なるように反る。チップ1がこのように反ると、チップ
1の裏面には引張り応力が生じ、チップ1の裏面にクラ
ックが入ったり、割れたり、あるいは内部の集積回路が
破壊されたりする。このようなチップ1の破壊を防ぐた
めに、チップ1の裏面上に、チップ1の線膨脹係数より
も大きい線膨脹係数を持つ材料で成る調節板7が取り付
けられている。このような調節板7を取り付けることに
よって基板3の変形に伴ったチップ1自体の変形が調
節、もしくは緩和され、上記問題を解決できる。
In each of the above embodiments, the substrate 3 is made of alumina, and has a larger linear expansion coefficient than the silicon constituting the chip 1. For this reason, when the device changes from a high temperature state to a normal temperature (low temperature) state, the chip 1 warps so that its back surface becomes convex. When the chip 1 warps in this manner, a tensile stress is generated on the back surface of the chip 1, and the back surface of the chip 1 is cracked or broken, or the internal integrated circuit is broken. In order to prevent such destruction of the chip 1, an adjusting plate 7 made of a material having a linear expansion coefficient larger than the linear expansion coefficient of the chip 1 is mounted on the back surface of the chip 1. By attaching such an adjusting plate 7, the deformation of the chip 1 itself accompanying the deformation of the substrate 3 is adjusted or reduced, and the above problem can be solved.

【0038】調節板7は、チップ1の線膨脹係数よりも
大きい線膨脹係数を有する材料を選ぶことが好ましい。
そのような材料が調達できない場合には、接着層6を調
節板7の一部と考え、その材料や塗布厚さを調節して線
膨脹係数を調節することが可能である。また、調節板7
の厚さを変えてその剛性を変えることによっても線膨脹
係数を調節するのと等価な効果を得ることができる。
It is preferable that the adjustment plate 7 be made of a material having a coefficient of linear expansion larger than that of the chip 1.
If such a material cannot be procured, it is possible to consider the adhesive layer 6 as a part of the adjustment plate 7 and adjust the coefficient of linear expansion by adjusting the material and the applied thickness. Also, the adjusting plate 7
The effect equivalent to adjusting the coefficient of linear expansion can also be obtained by changing the thickness and the rigidity thereof.

【0039】尚、上記各実施例ではチップの撓みを調節
する調節部材に、銅板やプラスチック板のような板状の
ものを用いているが、この他、線膨脹係数がチップ1よ
りも大きいフィルム状のものや、熱硬化する樹脂等を用
いることも可能である。
In each of the above embodiments, a plate-like member such as a copper plate or a plastic plate is used as the adjusting member for adjusting the bending of the chip. In addition, a film having a linear expansion coefficient larger than that of the chip 1 is used. It is also possible to use a shape-like material or a thermosetting resin.

【0040】さらに調節部材を取り付ける位置について
も、チップ1の裏面上に限らず、チップ1の裏面上から
側面上にかけて取り付けられてもよく、またチップ1の
側面上のみに取り付けられても良い。その他、この発明
の趣旨を逸脱しない範囲で種々の変形が可能であること
は勿論である。
Further, the position at which the adjusting member is mounted is not limited to the position on the back surface of the chip 1, but may be mounted from the back surface to the side surface of the chip 1, or may be mounted only on the side surface of the chip 1. In addition, it goes without saying that various modifications can be made without departing from the spirit of the present invention.

【0041】[0041]

【発明の効果】以上説明したように、この発明によれ
ば、熱サイクル特性が良好で、かつ高い信頼性を有する
半導体装置、並びにそのような半導体装置を得るための
チップ変形防止方法を提供できる。
As described above, according to the present invention, it is possible to provide a semiconductor device having good thermal cycle characteristics and high reliability, and a chip deformation preventing method for obtaining such a semiconductor device. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1はこの発明の第1の実施例に係わる半導体
装置の断面図。
FIG. 1 is a sectional view of a semiconductor device according to a first embodiment of the present invention;

【図2】図2は多層複合はりの模式図。FIG. 2 is a schematic view of a multilayer composite beam.

【図3】図3はこの発明に係わる半導体装置の断面構造
の模式図で、(a)図は基板上にチップが取り付けられ
た段階を示す図、(b)図はチップ上に調節板が取り付
けられた段階を示す図。
FIGS. 3A and 3B are schematic views of a cross-sectional structure of a semiconductor device according to the present invention. FIG. 3A is a view showing a stage in which a chip is mounted on a substrate, and FIG. The figure which shows the attached stage.

【図4】図4はこの発明の第2の実施例に係わる半導体
装置を示す図で、(a)図は平面図、(b)図は(a)
図中のb−b線に沿う断面図。
FIGS. 4A and 4B are views showing a semiconductor device according to a second embodiment of the present invention, wherein FIG. 4A is a plan view and FIG.
Sectional drawing which follows the bb line | wire in a figure.

【図5】図5はこの発明の第3の実施例に係わる半導体
装置を示す図で、(a)図は平面図、(b)図は(a)
図中のb−b線に沿う断面図。
FIGS. 5A and 5B are diagrams showing a semiconductor device according to a third embodiment of the present invention, wherein FIG. 5A is a plan view and FIG.
Sectional drawing which follows the bb line | wire in a figure.

【図6】図6はこの発明の第4の実施例に係わる半導体
装置を示す図で、(a)図は平面図、(b)図は(a)
図中のb−b線に沿う断面図。
FIGS. 6A and 6B are diagrams showing a semiconductor device according to a fourth embodiment of the present invention, wherein FIG. 6A is a plan view and FIG.
Sectional drawing which follows the bb line | wire in a figure.

【図7】図7はこの発明の第5の実施例に係わる半導体
装置の断面図。
FIG. 7 is a sectional view of a semiconductor device according to a fifth embodiment of the present invention.

【図8】図8はこの発明の第6の実施例に係わる半導体
装置の断面図。
FIG. 8 is a sectional view of a semiconductor device according to a sixth embodiment of the present invention.

【図9】図9はフリップチップ方式の半導体装置を示す
図で、(a)図は理想的な製品の断面図、(b)図は実
際の製品の断面図。
9A and 9B are views showing a flip-chip type semiconductor device. FIG. 9A is a cross-sectional view of an ideal product, and FIG. 9B is a cross-sectional view of an actual product.

【符号の説明】[Explanation of symbols]

1,1-1,1-2…半導体チップ、2…バンプ電極、3…
実装基板、4…配線パタ−ン、5,5A,5B…接着
層、6…接着層、7,7A,7B,7C…調節板、8…
ダミ−バンプ。
1,1-1,1-2 ... semiconductor chip, 2 ... bump electrode, 3 ...
Mounting substrate, 4 ... wiring pattern, 5, 5A, 5B ... adhesive layer, 6 ... adhesive layer, 7, 7A, 7B, 7C ... adjustment plate, 8 ...
Dam-bump.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 21/60 311 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01L 21/60 311

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 実装基板上に導電性電極を介してフリッ
プチップ接続された半導体チップと、 前記チップと前記実装基板との間に前記導電性電極以外
に設けられた前記チップと前記実装基板とを固着する固
着手段と、 前記チップの撓みを調節する調節手段とを具備し、前記
チップの撓みを調整する手段は、前記固着手段と対向す
るチップ上に設けらせることを特徴とする半導体装置。
A semiconductor chip which is flip-chip connected on a mounting board via a conductive electrode; and the chip and the mounting board provided between the chip and the mounting board except for the conductive electrode. Fixing means for fixing the tip, and adjusting means for adjusting the bending of the chip ,
The means for adjusting the deflection of the chip is opposed to the fixing means.
A semiconductor device provided on a chip .
【請求項2】 前記導電性電極は、前記チップ上に設け
られたバンプ電極であり、このバンプ電極は前記チップ
上の一部分に集中して配置されていることを特徴とする
請求項1に記載の半導体装置。
2. The device according to claim 1, wherein the conductive electrode is a bump electrode provided on the chip, and the bump electrode is concentrated on a part of the chip. Semiconductor device.
【請求項3】 実装基板上に半導体チップが導電性電極
を介してフリップチップ接続される構造を持つ半導体装
置のチップ変形防止方法であって、 前記チップと前記実装基板との間に前記導電性電極以外
に前記チップと前記実装基板とを固着する固着手段を設
けて前記実装基板の伸縮に合わせて前記チップが撓む構
造とし、この固着手段による撓みを相殺するように前記
チップの撓みを調節する調節手段を前記固着手段と対向
してチップ上に設けることによって前記チップの変形を
防止することを特徴とするチップ変形防止方法。
3. A method for preventing chip deformation of a semiconductor device having a structure in which a semiconductor chip is flip-chip connected via a conductive electrode on a mounting board, wherein the conductive chip is provided between the chip and the mounting board. Fixing means for fixing the chip and the mounting substrate other than the electrodes is provided so that the chip bends in accordance with expansion and contraction of the mounting substrate, and the bending of the chip is adjusted so as to cancel the bending by the fixing means. Adjustment means facing the fixing means
A chip deformation preventing method, wherein the chip deformation is prevented by providing the chip on a chip.
【請求項4】 前記チップの撓みの調節は、前記調節手
段を構成する材料の厚さ、そのヤング率およびその線膨
脹係数を調節することにより行うことを特徴とする請求
項3に記載のチップ変形防止方法。
4. The tip according to claim 3, wherein the deflection of the tip is adjusted by adjusting the thickness of the material constituting the adjusting means, its Young's modulus and its linear expansion coefficient. Deformation prevention method.
【請求項5】 前記チップの撓みの調節は、前記実装基
板、前記固着手段、前記チップおよび前記調節手段より
成る多層複合部を多層複合のはりと仮定して、材料力学
による多層複合はりの計算式を適用して行うことを特徴
とする請求項4に記載のチップの変形防止方法。
5. The adjustment of the bending of the chip is performed by calculating a multi-layer composite beam by material mechanics, assuming that the multi-layer composite portion including the mounting substrate, the fixing means, the chip and the adjusting means is a multi-layer composite beam. The method according to claim 4, wherein the method is performed by applying an equation.
【請求項6】 前記撓み調整手段は、前記実装基板とは
異なる材料からなることを特徴とする請求項1に記載の
半導体装置。
6. The flexure adjusting means is provided on the mounting substrate.
The method according to claim 1, wherein the material is made of different materials.
Semiconductor device.
JP1859193A 1993-02-05 1993-02-05 Semiconductor device and chip deformation prevention method Expired - Fee Related JP3241140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1859193A JP3241140B2 (en) 1993-02-05 1993-02-05 Semiconductor device and chip deformation prevention method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1859193A JP3241140B2 (en) 1993-02-05 1993-02-05 Semiconductor device and chip deformation prevention method

Publications (2)

Publication Number Publication Date
JPH06232210A JPH06232210A (en) 1994-08-19
JP3241140B2 true JP3241140B2 (en) 2001-12-25

Family

ID=11975886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1859193A Expired - Fee Related JP3241140B2 (en) 1993-02-05 1993-02-05 Semiconductor device and chip deformation prevention method

Country Status (1)

Country Link
JP (1) JP3241140B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990002289A (en) * 1997-06-19 1999-01-15 윤종용 COB (chip on board) package
KR19990005192A (en) * 1997-06-30 1999-01-25 윤종용 Semiconductor Package Structure Using Insulating Tape
JP4784304B2 (en) * 2005-12-27 2011-10-05 セイコーエプソン株式会社 Electronic component, method for manufacturing electronic component, circuit board, and electronic device
WO2008120705A1 (en) 2007-03-29 2008-10-09 Nec Corporation Semiconductor device
JP5487847B2 (en) * 2009-09-25 2014-05-14 日本電気株式会社 Electronic device package, manufacturing method thereof, and electronic apparatus
US20110235304A1 (en) * 2010-03-23 2011-09-29 Alcatel-Lucent Canada, Inc. Ic package stiffener with beam

Also Published As

Publication number Publication date
JPH06232210A (en) 1994-08-19

Similar Documents

Publication Publication Date Title
US6905911B2 (en) Semiconductor device, method for manufacturing an electronic equipment, electronic equipment, and portable information terminal
US7015131B2 (en) Semiconductor device using bumps, method for fabricating same, and method for forming bumps
US20010028116A1 (en) Apparatus and methods of reinforcement of lead bonding in microelectronics packages
US20050260794A1 (en) Method for fabrication of wafer level package incorporating dual compliant layers
US6914333B2 (en) Wafer level package incorporating dual compliant layers and method for fabrication
JP2000058713A (en) Semiconductor chip package and its manufacture
JPH09260533A (en) Semiconductor device and its mounting structure
KR100496508B1 (en) Semiconductor device
US5952719A (en) Metal ball grid electronic package having improved solder joint
US6670706B2 (en) Semiconductor device including a semiconductor pellet having bump electrodes connected to pad electrodes of an interconnect board and method for manufacturing same
JP3241140B2 (en) Semiconductor device and chip deformation prevention method
EP0504669B1 (en) Semiconductor device comprising a substrate
JPH06291165A (en) Flip chip connecting construction
US20020063324A1 (en) Semiconductor device, method of fabricating same, semiconductor device package construction, and method of mounting the semiconductor device
JPH0547842A (en) Semiconductor device
JP2830504B2 (en) Substrate for mounting semiconductor devices
JPH0776131A (en) Image device
JP2001094228A (en) Mounting structure of semiconductor device
JPH1126634A (en) Semiconductor device
JPH10229102A (en) Electronic product
JP2638089B2 (en) Semiconductor device
JPH11354582A (en) Mounting structure for semiconductor chip
JPH11121525A (en) Semiconductor device
JP2001110978A (en) Mounting structure for semiconductor device
JP2000236042A (en) Semiconductor device and manufacture thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081019

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20081019

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091019

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20101019

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20111019

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20121019

LAPS Cancellation because of no payment of annual fees