JP2000236042A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JP2000236042A
JP2000236042A JP11037538A JP3753899A JP2000236042A JP 2000236042 A JP2000236042 A JP 2000236042A JP 11037538 A JP11037538 A JP 11037538A JP 3753899 A JP3753899 A JP 3753899A JP 2000236042 A JP2000236042 A JP 2000236042A
Authority
JP
Japan
Prior art keywords
wiring board
semiconductor chip
semiconductor
thickness
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11037538A
Other languages
Japanese (ja)
Inventor
Hiroyuki Uchida
浩享 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP11037538A priority Critical patent/JP2000236042A/en
Publication of JP2000236042A publication Critical patent/JP2000236042A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector

Landscapes

  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce stresses applied to a semiconductor chip and a connection member in the connection of the semiconductor chip and wiring board typified by flip-chip mounting. SOLUTION: A semiconductor chip 1 and a wiring board 2 for mounting it are bonded by a melted solder bump 3. The thickness ratio of the semiconductor chip 1 and the wiring board 2 is determined, based on the modulus of elasticity of the semiconductor chip 1 and that of wiring board 2 so that the maximum deflection of the semiconductor chip 1 and that of the wiring board 2 are made the same value. Consequently, the stress applied to the semiconductor chip 1 and solder bump 3 by thermal stress or an external force is reduced and optimized at the same time. Also, the reliability of a semiconductor device can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置に関
し、特に半導体チップが配線基板にフリップチップ接続
された半導体装置および半導体パッケージに関する。
The present invention relates to a semiconductor device, and more particularly to a semiconductor device and a semiconductor package in which a semiconductor chip is flip-chip connected to a wiring board.

【0002】[0002]

【従来の技術】本発明の従来例について説明する。図7
は従来例であるフリップチップ実装した半導体装置を示
している。大略すると、この半導体装置は半導体チップ
11,配線基板12,半田バンプ13,充填樹脂(アンダーフ
ィル樹脂)14を有している。半導体チップ11は、その底
面に複数の半田バンプ13が形成されている。この半田バ
ンプ13を配線基板12の上面に形成された接続パターン
(図示せず)に溶融接続することにより、半導体チップ
11は配線基板12上に搭載されている。配線基板12は例え
ばガラス繊維入りエポキシ樹脂製であり、この素材を用
いれば半導体装置全体の製品コストの低減を図ることが
できるが、他の材質よりなる樹脂製基板を用いることも
可能である。充填樹脂(アンダーフィル樹脂)14は、例
えば熱硬化性のプラスチックであるエポキシ樹脂であ
り、半田バンプ13を溶融して接続された後の半導体チッ
プ11と配線基板12の間隙に充填され、加熱硬化されてい
る。このアンダーフィル樹脂14により半導体チップ11の
下面は封止され、アンダーフィル樹脂14による接合部分
全体で、半導体チップ1および配線基板12の接合時等
に加わる応力を受けることが可能となり、半田バンプ13
に加わる応力の緩和が可能となる。
2. Description of the Related Art A conventional example of the present invention will be described. FIG.
Shows a conventional flip-chip mounted semiconductor device. Generally, this semiconductor device is a semiconductor chip
11, a wiring board 12, solder bumps 13, and a filling resin (underfill resin) 14. The semiconductor chip 11 has a plurality of solder bumps 13 formed on the bottom surface. By melting and connecting the solder bumps 13 to connection patterns (not shown) formed on the upper surface of the wiring board 12, a semiconductor chip is formed.
11 is mounted on the wiring board 12. The wiring substrate 12 is made of, for example, an epoxy resin containing glass fiber. If this material is used, the product cost of the entire semiconductor device can be reduced. However, a resin substrate made of another material can also be used. The filling resin (underfill resin) 14 is, for example, an epoxy resin, which is a thermosetting plastic, and is filled in the gap between the semiconductor chip 11 and the wiring board 12 after the solder bumps 13 are melted and connected, and is heat-cured. Have been. The underfill resin 14 seals the lower surface of the semiconductor chip 11, so that the entire joint portion of the underfill resin 14 can receive the stress applied when the semiconductor chip 1 and the wiring board 12 are joined.
Can be alleviated.

【0003】[0003]

【発明が解決しようとする課題】半導体装置に搭載され
る半導体チップおよび該半導体チップと配線基板との間
の電気的および機械的接続を担うバンプには、配線基板
と半導体チップの熱膨張係数が大きく5倍程度も異なる
ために半導体装置の温度変化による配線基板と半導体チ
ップの伸縮に大きな差が生じるため、両者の間には熱応
力が発生し、また外力による機械的応力も発生する。
SUMMARY OF THE INVENTION A semiconductor chip mounted on a semiconductor device and bumps for electrical and mechanical connection between the semiconductor chip and the wiring board have a coefficient of thermal expansion between the wiring board and the semiconductor chip. Since the difference between the wiring board and the semiconductor chip greatly varies by about 5 times due to a temperature change of the semiconductor device, a thermal stress is generated between the two and a mechanical stress due to an external force is generated between the two.

【0004】従来例では半導体チップと配線基板間にア
ンダーフィル樹脂を充填することで、配線基板と半導体
チップとの間に生じる前記のような応力が、バンプのみ
に集中することを防ぎバンプに加わる応力を低減しよう
としている。
In the prior art, by filling an underfill resin between the semiconductor chip and the wiring board, the above-mentioned stress generated between the wiring board and the semiconductor chip is prevented from being concentrated only on the bump, and is applied to the bump. Trying to reduce stress.

【0005】しかし、配線基板の弾性率が半導体チップ
の弾性率より小さいため、半田バンプに加わる応力は半
田バンプの半導体チップ接続側に偏って発生してしま
う。これは、半導体チップの弾性率が配線基板と比較し
て非常に大きく半導体チップは変形しづらいため、半導
体装置に応力が加わった際、配線基板は全体がたわむこ
とにより応力が緩和されるのに対し、半導体チップでは
たわみ変形による応力緩和の効果が小さいためである。
さらに、半導体チップと配線基板の間にアンダーフィル
樹脂を充填することで半田バンプに加わる応力は低減さ
れるが、その分半導体チップに加わる応力は増大する。
このため半導体チップの電気特性に支障を来たしたり、
またさらに半導体チップが大型化すると半田バンプの破
壊より半導体チップの割れ等のほうが発生し易くなるな
どの問題点があった。
However, since the elastic modulus of the wiring board is smaller than the elastic modulus of the semiconductor chip, the stress applied to the solder bump is generated unevenly on the side of the solder bump to which the semiconductor chip is connected. This is because the elastic modulus of the semiconductor chip is very large compared to the wiring board, and the semiconductor chip is difficult to deform.When stress is applied to the semiconductor device, the entire wiring board bends and the stress is relaxed. On the other hand, in a semiconductor chip, the effect of stress relaxation due to flexural deformation is small.
Further, by filling the underfill resin between the semiconductor chip and the wiring board, the stress applied to the solder bump is reduced, but the stress applied to the semiconductor chip is increased accordingly.
For this reason, the electrical characteristics of the semiconductor chip may be affected,
Further, when the size of the semiconductor chip is further increased, there has been a problem that cracking of the semiconductor chip is more likely to occur than breakage of the solder bumps.

【0006】本発明の目的は、半導体チップと配線基板
とが接続された半導体装置において、半導体チップおよ
び該半導体チップを接続している部材にかかる応力を低
減する半導体装置およびその製造方法を提供すること、
およびこれにより半導体装置の信頼性を高めることにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor device in which a semiconductor chip and a wiring board are connected to each other, and to provide a semiconductor device and a method for manufacturing the same, which reduce stress applied to the semiconductor chip and members connecting the semiconductor chip. thing,
And to improve the reliability of the semiconductor device.

【0007】[0007]

【課題を解決するための手段】本発明による半導体装置
は、半導体チップと配線基板とが接続されている半導体
装置において、該半導体チップと該配線基板の同一面積
に同一の応力が働いた時の最大たわみ量が実質的に同一
となるように、該半導体チップと該配線基板の弾性率に
基いて該半導体チップと該配線基板の厚さの比率が定め
られていることを特徴とする。
According to the present invention, there is provided a semiconductor device in which a semiconductor chip and a wiring board are connected to each other when the same stress acts on the same area of the semiconductor chip and the wiring board. The thickness ratio between the semiconductor chip and the wiring board is determined based on the elastic modulus of the semiconductor chip and the wiring board so that the maximum deflection is substantially the same.

【0008】これにより、前記半導体装置に、該半導体
装置の温度変化による熱応力、または外力による機械的
応力が働いた際に、前記半導体チップと前記配線基板の
たわみ量をほぼ等しくすることができる。このことか
ら、該半導体チップと該半導体チップを接続している部
材との間に応力が偏って発生することを防止し、該半導
体チップおよび該半導体チップを接続している部材にか
かる応力を同時に低減し、最適化することが可能とな
る。
Accordingly, when a thermal stress due to a temperature change of the semiconductor device or a mechanical stress due to an external force acts on the semiconductor device, the amount of deflection between the semiconductor chip and the wiring substrate can be made substantially equal. . From this, it is possible to prevent the stress from being generated unevenly between the semiconductor chip and the member connecting the semiconductor chip, and to simultaneously reduce the stress applied to the semiconductor chip and the member connecting the semiconductor chip. It is possible to reduce and optimize.

【0009】さらに前記半導体チップと前記配線基板
が、ロウ材からなる突起電極(バンプ)を用いたフリッ
プチップ接続により、電気的かつ機械的に接続されてい
る場合、該バンプにかかる応力を低減し、該バンプの電
気的動作の不良発生を防止して半導体装置の信頼性を高
めることができる。
Further, when the semiconductor chip and the wiring board are electrically and mechanically connected by flip-chip connection using bump electrodes (bumps) made of a brazing material, stress applied to the bumps is reduced. In addition, it is possible to prevent the occurrence of a failure in the electrical operation of the bump, thereby improving the reliability of the semiconductor device.

【0010】前記半導体チップと前記配線基板の間隙に
位置する前記バンプ周囲にアンダーフィル樹脂が充填さ
れている場合には、前記半導体チップと前記配線基板の
間に加わる応力を前記アンダーフィル樹脂による接合部
分全体で、従来より広い面積で受けることが可能となり
前記バンプにかかる応力は低減できる。しかも前記半導
体チップにかかる応力をも低減し、前記半導体チップの
電気特性の信頼性を確保することが可能である。
When the underfill resin is filled around the bumps located in the gap between the semiconductor chip and the wiring board, the stress applied between the semiconductor chip and the wiring board is bonded by the underfill resin. The entire part can be received in a wider area than before, and the stress applied to the bump can be reduced. In addition, the stress applied to the semiconductor chip can be reduced, and the reliability of the electrical characteristics of the semiconductor chip can be ensured.

【0011】本発明の効果は、前記半導体チップと前記
配線基板の厚さの比率を前記半導体チップと前記配線基
板の弾性率の比率の逆数の3乗根の0.9〜1.1倍の
範囲の値とすることによって達成することができる。
The effect of the present invention is that the ratio of the thickness of the semiconductor chip to the wiring substrate is 0.9 to 1.1 times the cube root of the reciprocal of the elastic modulus of the semiconductor chip and the wiring substrate. This can be achieved by setting the value to a range.

【0012】特に、前記配線基板の主構成材がガラス繊
維入りエポキシ樹脂で前記半導体チップの材質がシリコ
ンから成る半導体装置において、前記配線基板の厚さを
前記半導体チップの厚さの2.2〜2.8倍の範囲の厚
さとすることによって、本発明の効果を達成し、前記半
導体チップ及び前記バンプにかかる応力を低減すること
ができる。
In particular, in a semiconductor device in which the main component of the wiring board is an epoxy resin containing glass fiber and the material of the semiconductor chip is silicon, the thickness of the wiring board is set to 2.2 to 2.0 of the thickness of the semiconductor chip. By setting the thickness in the range of 2.8 times, the effect of the present invention can be achieved, and the stress applied to the semiconductor chip and the bump can be reduced.

【0013】また本発明による他の半導体装置は、半導
体チップを搭載した半導体パッケージと該半導体パッケ
ージが実装されるベース配線基板を有する半導体装置に
おいて、前記半導体チップと前記ベース配線基板の同一
面積に同一の応力が働いた時の最大たわみ量が実質的に
同一となるように、前記半導体チップと前記ベース配線
基板の弾性率に基いて、前記半導体チップと前記ベース
配線基板の厚さの比率が定められていることを特徴とす
る。
According to another aspect of the present invention, there is provided a semiconductor device having a semiconductor package having a semiconductor chip mounted thereon and a base wiring board on which the semiconductor package is mounted, wherein the semiconductor chip has the same area as the base wiring board. The thickness ratio between the semiconductor chip and the base wiring board is determined based on the elastic modulus of the semiconductor chip and the base wiring board so that the maximum amount of deflection when the stress acts is substantially the same. It is characterized by having been done.

【0014】これにより、前記半導体装置に、前記半導
体装置の温度変化による熱応力、または外力による機械
的応力が働いた際に、前記半導体チップと前記ベース配
線基板のたわみ量をほぼ等しくすることができる。これ
により、前記半導体チップと前記ベース配線基板との間
にある部材および前記半導体チップにかかる応力を低減
することができる。
[0014] According to this, when a thermal stress due to a temperature change of the semiconductor device or a mechanical stress due to an external force acts on the semiconductor device, the amount of deflection between the semiconductor chip and the base wiring substrate can be made substantially equal. it can. Thus, stress applied to the member between the semiconductor chip and the base wiring board and the semiconductor chip can be reduced.

【0015】本発明の効果は、前記半導体チップと前記
ベース配線基板の厚さの比率を前記半導体チップと前記
ベース配線基板の弾性率の比率の逆数の3乗根の0.9
〜1.1倍の範囲の値とすることによって達成すること
ができる。
The effect of the present invention is that the ratio of the thickness of the semiconductor chip to the base wiring board is set to 0.93 which is the reciprocal of the ratio of the elastic modulus of the semiconductor chip to the base wiring board.
This can be achieved by setting the value in the range of 1.11.1 times.

【0016】本発明による半導体装置の製造方法は、半
導体チップと配線基板とを有し、前記半導体チップと前
記配線基板とを接続する工程を有する半導体装置の製造
方法において、前記半導体チップと前記配線基板とを接
続する際に、前記半導体チップと前記配線基板の同一面
積に同一の応力が働いた時の最大たわみ量が実質的に同
一となるように、前記半導体チップの厚さおよび材料と
前記配線基板の厚さおよび材料を定めることを特徴とす
る。
A method of manufacturing a semiconductor device according to the present invention is directed to a method of manufacturing a semiconductor device having a semiconductor chip and a wiring board, the method including a step of connecting the semiconductor chip and the wiring board. When connecting a substrate, the thickness and the material of the semiconductor chip and the material are so set that the maximum deflection amount when the same stress acts on the same area of the semiconductor chip and the wiring substrate is substantially the same. The thickness and material of the wiring board are determined.

【0017】また本発明による半導体装置の他の製造方
法は、半導体チップを搭載した半導体パッケージと前記
半導体パッケージが実装されるベース配線基板を有し、
前記半導体パッケージと前記ベース配線基板とを接続す
る工程を有する半導体装置の製造方法において、前記半
導体チップと前記ベース配線基板とを接続する際に、前
記半導体チップと前記ベース配線基板の同一面積に同一
の応力が働いた時の最大たわみ量が実質的に同一となる
ように、前記半導体チップの厚さおよび材料と前記ベー
ス配線基板の厚さおよび材料を定めることを特徴とす
る。
Another method of manufacturing a semiconductor device according to the present invention includes a semiconductor package having a semiconductor chip mounted thereon and a base wiring board on which the semiconductor package is mounted.
In the method of manufacturing a semiconductor device having a step of connecting the semiconductor package and the base wiring board, when connecting the semiconductor chip and the base wiring board, the semiconductor chip and the base wiring board have the same area. The thickness and the material of the semiconductor chip and the thickness and the material of the base wiring substrate are determined so that the maximum amount of deflection when the stress acts is substantially the same.

【0018】[0018]

【発明の実施の形態】次に、本発明の第1の実施形態に
ついて図面を参照して説明する。
Next, a first embodiment of the present invention will be described with reference to the drawings.

【0019】図1は本発明の第1の実施形態を示す断面
図である。本実施形態では、いわゆる半導体チップ1の
素子形成面を配線基板2側に向け実装するフリップチッ
プ実装が採用されている。この半導体装置は大略すると
半導体チップ1,配線基板2,半田バンプ3,充填樹脂
(アンダーフィル樹脂)4を有している。半導体チップ
1は、その底面に複数の半田バンプ3が形成されてい
る。この半田バンプ3を、配線基板2の上面に形成され
た図示しない接続パターンに溶融し接続することによ
り、半導体チップ1は配線基板2上に搭載される。アン
ダーフィル樹脂4は例えば熱硬化性樹脂であり、このア
ンダーフィル樹脂4により半導体チップ1の下面は封止
される。これにより、半導体チップ1と配線基板2との
接合時等に両者の間に加わる応力をアンダーフィル樹脂
4による接合部分全体で受けることになり、半田バンプ
3に加わる応力の緩和が可能となる。半導体チップ1の
素材には主としてシリコンが用いられる。配線基板2は
ガラスエポキシ製のものなどが用いられる。半田バンプ
3は低弾性で高融点である鉛を90%以上含有したもの
が用いられることが多い。アンダーフィル樹脂4として
は例えばエポキシ樹脂などが用いられる。
FIG. 1 is a sectional view showing a first embodiment of the present invention. In the present embodiment, flip-chip mounting in which the so-called element forming surface of the semiconductor chip 1 is mounted so as to face the wiring board 2 is employed. This semiconductor device generally includes a semiconductor chip 1, a wiring board 2, solder bumps 3, and a filling resin (underfill resin) 4. The semiconductor chip 1 has a plurality of solder bumps 3 formed on the bottom surface. The semiconductor chip 1 is mounted on the wiring board 2 by melting and connecting the solder bumps 3 to connection patterns (not shown) formed on the upper surface of the wiring board 2. The underfill resin 4 is, for example, a thermosetting resin, and the undersurface of the semiconductor chip 1 is sealed by the underfill resin 4. As a result, the stress applied between the semiconductor chip 1 and the wiring board 2 at the time of joining or the like is received by the entire joint portion of the underfill resin 4, and the stress applied to the solder bumps 3 can be reduced. Silicon is mainly used as a material of the semiconductor chip 1. The wiring board 2 is made of glass epoxy. As the solder bumps 3, those containing 90% or more of lead having low elasticity and high melting point are often used. As the underfill resin 4, for example, an epoxy resin or the like is used.

【0020】ここで、半導体チップ1と配線基板2のた
わみ量と応力の関係について説明する。
Here, the relationship between the amount of deflection of the semiconductor chip 1 and the wiring board 2 and the stress will be described.

【0021】図2は、半導体チップ1と配線基板2と両
者を接続する半田バンプ3とを有する半導体装置が加熱
されることによってたわみが生じている様子を示した断
面図である。ここでは、半導体チップ1と配線基板2が
図2の両端の半田バンプ3aと3cおよび図の中央部の
半田バンプ3bによって接続されている場合を考える。
前記した材質の半導体チップ1および配線基板2を有す
る半導体装置が加熱された場合、配線基板2の熱膨張係
数は半導体チップ1の熱膨張係数に比べて通常5倍程度
も大きいため、図2に示すように下方向に凸の形状のた
わみが生じる。通常、半導体チップ1の弾性率は配線基
板2の弾性率にくらべて大きいため、半導体チップ1と
配線基板2の厚さが同程度であれば、半導体チップ1の
たわみ量W1は、配線基板2のたわみ量W2に比べて小さく
なっている。
FIG. 2 is a cross-sectional view showing a state in which a semiconductor device having a semiconductor chip 1, a wiring board 2, and a solder bump 3 for connecting the semiconductor chip 1 is bent by being heated. Here, it is assumed that the semiconductor chip 1 and the wiring board 2 are connected by the solder bumps 3a and 3c at both ends in FIG. 2 and the solder bump 3b at the center in FIG.
When the semiconductor device having the semiconductor chip 1 and the wiring board 2 of the above-described materials is heated, the coefficient of thermal expansion of the wiring board 2 is usually about 5 times larger than the coefficient of thermal expansion of the semiconductor chip 1. As shown, a downwardly convex deflection occurs. Usually, since the elastic modulus of the semiconductor chip 1 is larger than the elastic modulus of the wiring board 2, if the thickness of the semiconductor chip 1 and the wiring board 2 are almost the same, the deflection W1 of the semiconductor chip 1 is Is smaller than the deflection amount W2.

【0022】このため、半導体チップ1と配線基板2の
間隔は半田バンプ3aと3cの部分より半田バンプ3b
の部分で大きくなっており、半田バンプ3bとその接合
部および半導体チップ1に対して、図の上下方向に大き
な応力が働くことになる。また、半導体チップ1と配線
基板2の間隙に図1の様にアンダフィル樹脂4が充填さ
れていると半田バンプ3bにかかる応力を低減できる
が、半田バンプ3bの変形がアンダーフィル樹脂4によ
り抑制されてその変形量が小さくなり、半導体チップ1
にさらに大きな応力がかかることになる。そこで、半導
体素子1と配線基板2のたわみ量が同一になるようにす
ることによって、このような応力を低減できると考える
ことができる。
For this reason, the distance between the semiconductor chip 1 and the wiring board 2 is larger than that of the solder bumps 3a and 3c.
And a large stress acts on the solder bumps 3b, their joints, and the semiconductor chip 1 in the vertical direction in the figure. When the gap between the semiconductor chip 1 and the wiring board 2 is filled with the underfill resin 4 as shown in FIG. 1, the stress applied to the solder bump 3b can be reduced, but the deformation of the solder bump 3b is suppressed by the underfill resin 4. And the amount of deformation is reduced.
Will be further stressed. Therefore, it can be considered that such stress can be reduced by making the amount of deflection of the semiconductor element 1 and that of the wiring board 2 equal.

【0023】平板の最大たわみの理論式は以下の式1に
示す。
The theoretical formula for the maximum deflection of a flat plate is shown in the following formula 1.

【0024】 Wmax=α(p・a)4/(E・t3) …(式1) (Wmax:最大たわみ量,α:係数,p:荷重,a:面積,
E:弾性率,t:基板厚) 次に、半導体チップ1と配線基板2の最大たわみ量を等
しくすることを考える。すなわち、半導体チップ1と配
線基板2に加わる荷重pと面積aが同一条件のときに、両
者のはたわみ量が等しくなるように設定されることによ
り、半導体チップ1と配線基板2を接続した状態で荷重
が加えられた時に両者が同じたわみ量を持つと考えられ
る。そこで、半導体チップ1の弾性率,基板厚を各々E
1,t1とし配線基板2の弾性率,基板厚を各々E2,t2と
した時、最大たわみ量Wmaxを等しくするには以下に示す
式2が成り立っていればよい。
Wmax = α (p · a) 4 / (E · t 3 ) (Equation 1) (Wmax: maximum deflection, α: coefficient, p: load, a: area,
(E: elastic modulus, t: substrate thickness) Next, it is considered that the maximum deflection amounts of the semiconductor chip 1 and the wiring substrate 2 are made equal. That is, when the load p and the area a applied to the semiconductor chip 1 and the wiring board 2 are under the same condition, the deflection amounts of the two are set to be equal to each other so that the semiconductor chip 1 and the wiring board 2 are connected. It is considered that both have the same amount of deflection when a load is applied in. Therefore, the elastic modulus and the substrate thickness of the semiconductor chip 1 are set to E respectively.
When the elastic modulus of the wiring board 2 and the board thickness are E2 and t2, respectively, when the elastic modulus and the board thickness of the wiring board 2 are E1 and t1, respectively, the following equation 2 only needs to be satisfied in order to make the maximum deflection amount Wmax equal.

【0025】 E1/E2=t23/t13=A3 …(式2) これにより、例えば半導体チップ1の厚さおよび弾性率
ならびに配線基板2の弾性率が設定されている時、式2
により半導体チップ1と配線基板2の最大たわみ量が同
一となるように配線基板2の厚さを求めることができ
る。配線基板2の厚さt2を、求められた値の周りで変化
させた時の半田バンプ3と半導体チップ1に加わる応力
の変化を、構造解析シミュレーターを用いた応力解析に
より求めた結果を図3,4に示す。図3は、式2が成り
立つ場合の基板厚の比率A=(t2/t1)をA0として、この
比率を変化させた時の半田バンプに加わる応力の変動を
示したものである。また図4は、図3と同様に基板厚の
比率を変化させた時の半導体チップ1に加わる応力の変
動を示したものである。なお、図3,図4ともに応力に
比例する指数を縦軸に示してある。この指数は、半導体
チップ1と配線基板2が接する面内での最大値を示して
いる。
E1 / E2 = t2 3 / t1 3 = A 3 (Equation 2) By this, for example, when the thickness and the elastic modulus of the semiconductor chip 1 and the elastic modulus of the wiring board 2 are set, the equation 2
Accordingly, the thickness of the wiring board 2 can be determined so that the maximum deflection amount of the semiconductor chip 1 and the wiring board 2 becomes the same. FIG. 3 shows a result of a change in stress applied to the solder bump 3 and the semiconductor chip 1 when the thickness t2 of the wiring board 2 is changed around the obtained value by a stress analysis using a structural analysis simulator. , 4. 3, as the ratio A = (t2 / t1) of A 0 of the substrate thickness if the expression 2 is satisfied, there is shown the variation of stress applied to the solder bumps when changing this ratio. FIG. 4 shows a change in the stress applied to the semiconductor chip 1 when the ratio of the substrate thickness is changed as in FIG. In FIGS. 3 and 4, an index proportional to the stress is shown on the vertical axis. This index indicates a maximum value in a plane where the semiconductor chip 1 and the wiring board 2 are in contact with each other.

【0026】図3,図4によると、全体の変動傾向は半
田バンプ3と半導体チップ1で異なるが、いずれの場合
も基板厚の比率A=(t2/t1)が、式2を満たす基板厚の
比率であるA0の付近で加わる応力が最小となっている。
また、図3によると、半田バンプ3に加わる応力がほぼ
一定となる比率の範囲は、基板厚の比率A=(t2/t1)が
A0の0.9倍〜1.1倍の範囲と言える。図4による
と、半導体チップ1に加わる応力は、基板厚の比率A=
(t2/t1)がA0の1.2倍以下の広い範囲でほぼ一定の
値となるが、1.2倍を越えると急激に大きくなる。こ
れらの結果から、実用的な基板厚の比率A=(t2/t1)の
範囲を0.9A0〜1.1A0と定めることにより、半導体
チップ1および半田バンプ3に加わる応力を低減した半
導体装置を実現できることがわかる。
According to FIGS. 3 and 4, the overall fluctuation tendency differs between the solder bump 3 and the semiconductor chip 1. In any case, the ratio A = (t2 / t1) of the substrate thickness satisfies the equation 2 the stress applied in the vicinity of a 0 is the minimum is the ratio of.
According to FIG. 3, the range of the ratio at which the stress applied to the solder bump 3 becomes almost constant is the substrate thickness ratio A = (t2 / t1).
It can be said that the 0.9 times to 1.1 times the range of A 0. According to FIG. 4, the stress applied to the semiconductor chip 1 is represented by the ratio of the substrate thickness A =
(T2 / t1) but is substantially constant value in a wide range of 1.2 times the A 0, increases sharply exceeds 1.2 times. These results, by determining the practical substrate thickness ratio A = the range of (t2 / t1) and 0.9A 0 ~1.1A 0, and reduce the stress applied to the semiconductor chip 1 and the solder bumps 3 semiconductor It can be seen that the device can be realized.

【0027】前記の基板厚の比率A=(t2/t1)の範囲の
規定は、例えば、弾性率が約17000kg/mであるシリ
コンにより半導体チップ1が構成されており、弾性率が
約1700kg/nであるガラスエポキシにより配線基板2
が構成されている場合には、配線基板2の厚さを半導体
チップ1の厚さの2.2倍から2.8倍の厚さとするこ
とに相当している。すなわちこの場合、半導体チップ1
の厚さが0.5mmであれば、配線基板2の厚さを1.1
〜1.4mmとした場合に、本発明による半導体チップ1
および半導体バンプ3に加わる応力の低減効果を実現す
ることができる。配線基板2の厚さを1.25mmとした
時加わる応力は最低となる。なおこの場合、図3、4に
は配線基板2の厚さを0.6〜1.8mmに変化させた
場合について示してあることになる。
The definition of the range of the substrate thickness ratio A = (t2 / t1) is, for example, that the semiconductor chip 1 is made of silicon having an elastic modulus of about 17000 kg / m and has an elastic modulus of about 1700 kg / m. Wiring board 2 with glass epoxy which is n
Is equivalent to setting the thickness of the wiring board 2 to be 2.2 to 2.8 times the thickness of the semiconductor chip 1. That is, in this case, the semiconductor chip 1
Is 0.5 mm, the thickness of the wiring board 2 is 1.1 mm.
Semiconductor chip 1 according to the present invention,
In addition, the effect of reducing the stress applied to the semiconductor bump 3 can be realized. When the thickness of the wiring board 2 is 1.25 mm, the applied stress is minimum. In this case, FIGS. 3 and 4 show the case where the thickness of the wiring board 2 is changed to 0.6 to 1.8 mm.

【0028】また、本発明の半導体装置を製造するため
には、前記のように決められた半導体チップ1の厚さお
よび材料ならびに配線基板2の材料から、配線基板2の
厚さを決める方法が適用しやすい。この方法によって決
められた配線基板2の厚さが半導体装置製造上困難であ
る場合には、半導体チップ1の厚さまたは材料または配
線基板2の材料のいずれか少なくとも1つを変更するこ
とによって半導体チップ1と配線基板2のたわみ量が同
一になるようにしてもよい。すなわち、本発明の半導体
装置は、半導体チップ1の厚さおよび材料と配線基板2
の厚さおよび材料とを半導体チップ1と配線基板2の最
大たわみ量が同一となるように選択することによって実
現できる。実際には、この4つのパラメータのうちの3
条件を固定とし、残りの1つを調整することにより半導
体チップ1と配線基板2のたわみ量を同一にすることが
できる。
In order to manufacture the semiconductor device of the present invention, there is a method of determining the thickness of the wiring board 2 from the thickness and the material of the semiconductor chip 1 and the material of the wiring board 2 determined as described above. Easy to apply. If the thickness of the wiring board 2 determined by this method is difficult in manufacturing a semiconductor device, the thickness or the material of the semiconductor chip 1 or the material of the wiring board 2 is changed to change the semiconductor. The deflection amounts of the chip 1 and the wiring board 2 may be the same. That is, in the semiconductor device of the present invention, the thickness and material of the semiconductor chip 1 and the wiring board 2
The thickness and material of the semiconductor chip 1 and the wiring board 2 are selected so that the maximum deflection amount is the same. In practice, three of these four parameters
By fixing the condition and adjusting the remaining one, the amount of deflection of the semiconductor chip 1 and the wiring board 2 can be made equal.

【0029】次に、本発明の第2の実施形態について図
面を用いて説明する。図5は第2の実施形態におけるフ
リップチップ実装された半導体装置の断面図である。こ
の第2の実施形態でのフリップチップ実装された半導体
装置は、第1の実施形態と同様に半導体チップ1,配線
基板7,半田バンプ3,アンダーフィル樹脂4を有して
いる。第2の実施形態の特徴は、配線基板7が異なる製
法で製造した複数の基板を積層した複合材料で構成され
ている点にある。すなわち配線基板7は、コア基板5の
上に異なる製法で製造した複数の基板を積層したビルド
アップ層6を有している。このような配線基板を一般に
ビルドアップ基板と称する。このような配線基板を用い
る場合は、ビルドアップ層6を含めた配線基板7全体の
最大たわみ量を求めることによって基板厚の比率を決め
れば、第1の実施形態と同様の応力低減効果が期待でき
る。しかし、このような構造の配線基板7の最大たわみ
量を複雑な手法によって算出しなくても、第1の実施形
態で示した手法でコア基板9と半導体チップ1の基板厚
の比率を定めてやれば応力を低減可能である。これは、
ビルドアップ層6の厚さがコア基板5の厚さの1/20〜1/
50程度の厚さであり、配線基板7の最大たわみ量へのビ
ルドアップ層6による寄与が小さいためである。ただ
し、第1の実施形態の場合と比較すると本実施形態の場
合、応力の低減効果は小さくなると考えられる。
Next, a second embodiment of the present invention will be described with reference to the drawings. FIG. 5 is a cross-sectional view of a flip-chip mounted semiconductor device according to the second embodiment. The flip-chip mounted semiconductor device according to the second embodiment has a semiconductor chip 1, a wiring board 7, a solder bump 3, and an underfill resin 4, as in the first embodiment. The feature of the second embodiment is that the wiring board 7 is made of a composite material in which a plurality of boards manufactured by different manufacturing methods are laminated. That is, the wiring board 7 has the build-up layer 6 in which a plurality of boards manufactured by different manufacturing methods are stacked on the core board 5. Such a wiring board is generally called a build-up board. When such a wiring board is used, if the ratio of the board thickness is determined by obtaining the maximum deflection amount of the entire wiring board 7 including the build-up layer 6, the same stress reduction effect as in the first embodiment can be expected. it can. However, even if the maximum amount of deflection of the wiring board 7 having such a structure is not calculated by a complicated method, the ratio of the substrate thickness of the core substrate 9 to the semiconductor chip 1 is determined by the method described in the first embodiment. If done, the stress can be reduced. this is,
The thickness of the build-up layer 6 is 1/20 to 1/1 / the thickness of the core substrate 5
This is because the thickness is about 50, and the contribution of the build-up layer 6 to the maximum deflection amount of the wiring board 7 is small. However, compared to the first embodiment, the effect of reducing the stress is considered to be smaller in the case of the present embodiment.

【0030】次に、本発明の第3の実施形態について図
面を参照して説明する。図6は、第3の実施形態とし
て、半導体パッケージ9をベース配線基板10に実装し
た半導体装置の概略断面図を示している。図6におい
て、半導体パッケージ9は、半導体チップ1と、配線基
板2と、半導体チップ1と配線基板2とを接続する接着
剤8と、ベース配線基板10に溶融接着により電気的お
よび機械的に接続するための半田バンプ3とを有してい
る。また、半導体チップ1と配線基板2とは、図示しな
いワイヤーまたは半田バンプにより電気的に接続されて
いる。
Next, a third embodiment of the present invention will be described with reference to the drawings. FIG. 6 is a schematic cross-sectional view of a semiconductor device in which a semiconductor package 9 is mounted on a base wiring board 10 as a third embodiment. 6, the semiconductor package 9 is electrically and mechanically connected to the semiconductor chip 1, the wiring board 2, the adhesive 8 for connecting the semiconductor chip 1 and the wiring board 2, and the base wiring board 10 by fusion bonding. And solder bumps 3 for performing the operation. The semiconductor chip 1 and the wiring board 2 are electrically connected by wires or solder bumps (not shown).

【0031】図6において、本発明による半導体装置の
製造方法は、まず半導体チップ1と配線基板2との間に
適用できる。すなわち、配線基板2の厚さまたは材料あ
るいは半導体チップ1の厚さまたは材料を第1の実施形
態で示した方法によって両者のたわみ量が等しくなるよ
うに定めることによって、接着剤7を介して半導体チッ
プ1に加わる応力を低減することが可能である。
Referring to FIG. 6, the method of manufacturing a semiconductor device according to the present invention can be applied between a semiconductor chip 1 and a wiring board 2 first. That is, the thickness or the material of the wiring board 2 or the thickness or the material of the semiconductor chip 1 is determined by the method described in the first embodiment so that the deflection amounts of the two become equal, so that the semiconductor via the adhesive 7 is formed. It is possible to reduce the stress applied to the chip 1.

【0032】本実施形態は、配線基板2に加わる応力と
して、接着剤8を介して加わる応力のみを考えている。
実際には、図6の構成において、配線基板2に加わる応
力は接着材8を介して加わる応力の他に、半田バンプ3
を介して加わる応力がある。しかし、通常は半導体チッ
プ1に比べてベース配線基板10のたわみ量は一般的に
大きいと考えられ、またベース配線基板10と配線基板
2は同様な材料からなり、熱膨張係数の差は小さいと思
われる。従って、配線基板2に対して半導体チップ1か
ら接着剤8を介して加わる応力に比べて、配線基板2に
対してベース配線基板10から半田バンプ3を介して加
わる応力による配線基板2のたわみ量に対する影響は小
さいと考えられる。このため本実施形態では、半導体パ
ッケージ9が実装されるベース基板10のたわみ量を考
慮せずに、半導体チップ1と配線基板2のたわみ量を同
一とすることのみを考えることによって本発明の効果を
実現することができる。
In the present embodiment, only the stress applied via the adhesive 8 is considered as the stress applied to the wiring board 2.
Actually, in the configuration shown in FIG. 6, the stress applied to the wiring board 2 is not only the stress applied via the adhesive 8 but also the solder bump 3.
There is a stress applied through. However, it is generally considered that the amount of deflection of the base wiring board 10 is generally larger than that of the semiconductor chip 1, and that the base wiring board 10 and the wiring board 2 are made of the same material, and that the difference in the coefficient of thermal expansion is small. Seem. Therefore, the amount of deflection of the wiring board 2 due to the stress applied to the wiring board 2 from the base wiring board 10 via the solder bumps 3 as compared with the stress applied from the semiconductor chip 1 to the wiring board 2 via the adhesive 8. Is considered to have a small effect. Therefore, in the present embodiment, the effect of the present invention is achieved by considering only the same amount of deflection of the semiconductor chip 1 and the wiring substrate 2 without considering the amount of deflection of the base substrate 10 on which the semiconductor package 9 is mounted. Can be realized.

【0033】この方法によれば、半導体パッケージ9を
製造する段階で、半導体パッケージ9がどのようなベー
ス基板10に実装されるかを考慮することなく本発明の
効果を実現することができる。また、半導体パッケージ
9の製造段階で、半導体パッケージ9が標準的なベース
配線基板10に実装されることを想定して配線基板2の
最大たわみ量が半導体チップ1の最大たわみ量より小さ
目になるように設定することにしてもよい。
According to this method, the effects of the present invention can be realized without considering what kind of base substrate 10 the semiconductor package 9 is mounted in at the stage of manufacturing the semiconductor package 9. Also, at the stage of manufacturing the semiconductor package 9, assuming that the semiconductor package 9 is mounted on the standard base wiring board 10, the maximum deflection amount of the wiring board 2 is smaller than the maximum deflection amount of the semiconductor chip 1. May be set.

【0034】次に、半導体チップ1とベース配線基板1
0との間に対して、本発明による半導体装置の製造方法
を適用することも考えられる。すなわち、半導体チップ
1の厚さおよび材料とベース配線基板10の厚さおよび
材料を、両者のたわみ量が等しくなるように、第1の実
施形態で示した方法によって定める。この場合には、半
導体チップ1および半導体チップ1とベース配線基板1
0の間の部材に加わる応力を低減することができる。半
導体チップ1とベース配線基板10の間の部材に加わる
応力の低減による効果は、特に半田バンプ3に加わる応
力の低減効果によって、半田バンプ3を介した電気的接
続の信頼性を高めることができる。
Next, the semiconductor chip 1 and the base wiring board 1
It is also conceivable to apply the method of manufacturing a semiconductor device according to the present invention to a value between 0 and 0. That is, the thickness and the material of the semiconductor chip 1 and the thickness and the material of the base wiring board 10 are determined by the method described in the first embodiment so that the deflection amounts of the two become equal. In this case, the semiconductor chip 1 and the semiconductor chip 1 and the base wiring board 1
It is possible to reduce the stress applied to the member between zero. The effect of reducing the stress applied to the member between the semiconductor chip 1 and the base wiring board 10 is particularly effective in reducing the stress applied to the solder bumps 3, thereby improving the reliability of the electrical connection via the solder bumps 3. .

【0035】この場合にも、半導体チップ1と配線基板
2について本発明による半導体装置の製造方法を適用す
ることを考えた場合と同様に、配線基板2の影響は小さ
いものと考えている。またこの場合にも、配線基板2の
影響を考慮して、ベース配線基板10の最大たわみ量が
半導体チップ1の最大たわみ量より小さ目になるように
設定することにしてもよい。
In this case as well, it is considered that the influence of the wiring board 2 is small, as in the case where the method of manufacturing a semiconductor device according to the present invention is applied to the semiconductor chip 1 and the wiring board 2. Also in this case, the maximum deflection amount of the base wiring substrate 10 may be set to be smaller than the maximum deflection amount of the semiconductor chip 1 in consideration of the influence of the wiring substrate 2.

【0036】[0036]

【発明の効果】以上説明したように、本発明の半導体装
置の製造方法によれば、半導体チップと配線基板とが接
続されている半導体装置において、半導体チップおよび
半導体チップを配線基板に接続している部材にかかる応
力を低減することができる。半導体チップに加わる応力
を低減することにより、半導体チップの電気的動作の信
頼性を高めることができる。また半導体チップと配線基
板の接続が電気的接続を兼ねている場合には、半導体チ
ップを接続している部材に加わる応力を低減することに
より、電気的接続の信頼性を高めることができる。
As described above, according to the method of manufacturing a semiconductor device of the present invention, in a semiconductor device in which a semiconductor chip and a wiring board are connected, the semiconductor chip and the semiconductor chip are connected to the wiring board. Stress applied to the member can be reduced. By reducing the stress applied to the semiconductor chip, the reliability of the electrical operation of the semiconductor chip can be increased. In the case where the connection between the semiconductor chip and the wiring board also serves as an electrical connection, the reliability of the electrical connection can be increased by reducing the stress applied to the members connecting the semiconductor chip.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態の半導体装置を示す断
面構造図である。
FIG. 1 is a sectional structural view showing a semiconductor device according to a first embodiment of the present invention.

【図2】半導体装置にたわみが生じた時の断面構造図で
ある。
FIG. 2 is a sectional structural view when a semiconductor device is bent.

【図3】本発明の第1の実施形態の半導体装置における
半田バンプに加わる応力の変化を示した図である。
FIG. 3 is a diagram showing a change in stress applied to a solder bump in the semiconductor device according to the first embodiment of the present invention.

【図4】本発明の第1の実施形態の半導体装置における
半導体チップに加わる応力の変化を示した図である。
FIG. 4 is a diagram showing a change in stress applied to a semiconductor chip in the semiconductor device according to the first embodiment of the present invention.

【図5】本発明の第2の実施形態の半導体装置を示す断
面構造図である
FIG. 5 is a sectional structural view showing a semiconductor device according to a second embodiment of the present invention;

【図6】本発明の第3の実施形態の半導体パッケージを
示す断面図構造である。
FIG. 6 is a cross-sectional view illustrating a semiconductor package according to a third embodiment of the present invention.

【図7】従来例の半導体装置を示す断面構造図である。FIG. 7 is a sectional structural view showing a conventional semiconductor device.

【符号の説明】[Explanation of symbols]

1、11 半導体チップ 2、7、12 配線基板 3、13 半田バンプ 4、14 アンダーフィル樹脂(充填樹脂) 5 コア基板 6 ビルドアップ層 8 接着剤 9 半導体パッケージ 10 ベース配線基板 DESCRIPTION OF SYMBOLS 1, 11 Semiconductor chip 2, 7, 12 Wiring board 3, 13 Solder bump 4, 14 Underfill resin (filling resin) 5 Core board 6 Build-up layer 8 Adhesive 9 Semiconductor package 10 Base wiring board

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 半導体チップと配線基板とが接続されて
いる半導体装置において、 該半導体チップおよび該配線基板の同一面積に同一の応
力が働いた時の最大たわみ量が実質的に同一となるよう
に、該半導体チップと該配線基板の弾性率に基いて該半
導体チップと該配線基板の厚さの比率が定められている
ことを特徴とする半導体装置。
In a semiconductor device in which a semiconductor chip and a wiring board are connected to each other, the maximum deflection amount when the same stress acts on the same area of the semiconductor chip and the wiring board is substantially the same. A ratio of the thickness of the semiconductor chip to the thickness of the wiring board based on the elastic modulus of the semiconductor chip and the wiring board.
【請求項2】 前記半導体チップと前記配線基板が、ロ
ウ材からなるバンプを用いたフリップチップ接続によ
り、電気的かつ機械的に接続されている請求項1に記載
の半導体装置。
2. The semiconductor device according to claim 1, wherein the semiconductor chip and the wiring board are electrically and mechanically connected by flip-chip connection using a bump made of a brazing material.
【請求項3】前記半導体チップと前記配線基板の間隙に
位置する前記バンプの周囲にアンダーフィル樹脂が充填
されている請求項2に記載の半導体装置。
3. The semiconductor device according to claim 2, wherein an underfill resin is filled around said bump located in a gap between said semiconductor chip and said wiring board.
【請求項4】 前記半導体チップと前記配線基板の厚さ
の比率が、該半導体チップと該配線基板の弾性率の比率
の逆数の3乗根の0.9〜1.1倍の範囲の値である請
求項1から3のいずれか1項に記載した半導体装置。
4. A value of the thickness ratio between the semiconductor chip and the wiring board in a range of 0.9 to 1.1 times the cube root of the reciprocal of the elastic modulus ratio between the semiconductor chip and the wiring board. The semiconductor device according to claim 1, wherein:
【請求項5】 前記配線基板の主構成材がガラス繊維入
りエポキシ樹脂であり、かつ前記半導体チップの材質が
シリコンであり、該配線基板の厚さが該半導体チップの
厚さの2.2〜2.8倍の範囲の厚さとなっている請求
項1から3のいずれか1項に記載の半導体装置。
5. A main component of the wiring board is an epoxy resin containing glass fiber, a material of the semiconductor chip is silicon, and a thickness of the wiring board is 2.2 to 2.2 of a thickness of the semiconductor chip. 4. The semiconductor device according to claim 1, wherein the thickness is in a range of 2.8 times. 5.
【請求項6】 半導体チップを搭載した半導体パッケー
ジと該半導体パッケージが実装されるベース配線基板を
有する半導体装置において、該半導体チップと該ベース
配線基板の同一面積に同一の応力が働いた時の最大たわ
み量が実質的に同一となるように、該半導体チップと該
ベース配線基板の弾性率に基いて、該半導体チップと該
ベース配線基板の厚さの比率が定められていることを特
徴とする半導体装置。
6. In a semiconductor device having a semiconductor package on which a semiconductor chip is mounted and a base wiring board on which the semiconductor package is mounted, the maximum when the same stress acts on the same area of the semiconductor chip and the base wiring board. The thickness ratio between the semiconductor chip and the base wiring board is determined based on the elastic modulus of the semiconductor chip and the base wiring board so that the amount of deflection is substantially the same. Semiconductor device.
【請求項7】 前記半導体チップと前記ベース配線基板
の厚さの比率が該半導体チップと該ベース配線基板の弾
性率の比率の逆数の3乗根の0.9〜1.1倍の範囲の
値である請求項6に記載した半導体装置。
7. The semiconductor chip and the base wiring board have a thickness ratio in a range of 0.9 to 1.1 times a cube root of a reciprocal of an elastic modulus ratio of the semiconductor chip and the base wiring board. The semiconductor device according to claim 6, which is a value.
【請求項8】 半導体チップと配線基板とを有し、該半
導体チップと該配線基板とを接続する工程を有する半導
体装置の製造方法において、該半導体チップと該配線基
板とを接続する際に、該半導体チップと該配線基板の同
一面積に同一の応力が働いた時の最大たわみ量が実質的
に同一となるように、該半導体チップの厚さおよび材料
と該配線基板の厚さおよび材料を定めることを特徴とす
る半導体装置の製造方法。
8. A method for manufacturing a semiconductor device, comprising: a semiconductor chip and a wiring board; and a step of connecting the semiconductor chip and the wiring board, wherein when connecting the semiconductor chip and the wiring board, The thickness and the material of the semiconductor chip and the thickness and the material of the wiring board are set such that the maximum deflection amount when the same stress acts on the same area of the semiconductor chip and the wiring board becomes substantially the same. A method for manufacturing a semiconductor device, comprising:
【請求項9】 半導体チップを搭載した半導体パッケー
ジと該半導体パッケージが実装されるベース配線基板を
有し、該半導体パッケージと該ベース配線基板とを接続
する工程を有する半導体装置の製造方法において、該半
導体チップと該ベース配線基板とを接続する際に、該半
導体チップと該ベース配線基板の同一面積に同一の応力
が働いた時の最大たわみ量が実質的に同一となるよう
に、該半導体チップの厚さおよび材料と該ベース配線基
板の厚さおよび材料を定めることを特徴とする半導体装
置の製造方法。
9. A method for manufacturing a semiconductor device, comprising: a semiconductor package having a semiconductor chip mounted thereon; and a base wiring board on which the semiconductor package is mounted, the method including a step of connecting the semiconductor package and the base wiring board. When connecting the semiconductor chip and the base wiring board, the semiconductor chip is so formed that the maximum deflection amount when the same stress acts on the same area of the semiconductor chip and the base wiring board becomes substantially the same. A method for determining the thickness and material of the base wiring board and the thickness and material of the base wiring substrate.
JP11037538A 1999-02-16 1999-02-16 Semiconductor device and manufacture thereof Pending JP2000236042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11037538A JP2000236042A (en) 1999-02-16 1999-02-16 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11037538A JP2000236042A (en) 1999-02-16 1999-02-16 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JP2000236042A true JP2000236042A (en) 2000-08-29

Family

ID=12500315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11037538A Pending JP2000236042A (en) 1999-02-16 1999-02-16 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JP2000236042A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7057278B2 (en) 2001-03-08 2006-06-06 Hitachi, Ltd. Semiconductor device
US7476975B2 (en) * 2004-08-23 2009-01-13 Seiko Epson Corporation Semiconductor device and resin structure therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7057278B2 (en) 2001-03-08 2006-06-06 Hitachi, Ltd. Semiconductor device
US7365426B2 (en) 2001-03-08 2008-04-29 Renesas Technology Corp. Semiconductor device
US7476975B2 (en) * 2004-08-23 2009-01-13 Seiko Epson Corporation Semiconductor device and resin structure therefor
US7656044B2 (en) 2004-08-23 2010-02-02 Seiko Epson Corporation Semiconductor device with improved resin configuration
US7982319B2 (en) 2004-08-23 2011-07-19 Seiko Epson Corporation Semiconductor device with improved resin configuration
US8368233B2 (en) 2004-08-23 2013-02-05 Seiko Epson Corporation Semiconductor device with improved resin configuration

Similar Documents

Publication Publication Date Title
US6046077A (en) Semiconductor device assembly method and semiconductor device produced by the method
US7723839B2 (en) Semiconductor device, stacked semiconductor device, and manufacturing method for semiconductor device
US7109588B2 (en) Method and apparatus for attaching microelectronic substrates and support members
US6365441B1 (en) Partial underfill for flip-chip electronic packages
KR100743342B1 (en) A method of manufacturing a semiconductor device
JP4732824B2 (en) Cap wafer with cavity, semiconductor package using the same, and cap wafer manufacturing method
JP4899406B2 (en) Flip chip type semiconductor device
US20180204807A1 (en) Semiconductor device
JP2004260138A (en) Semiconductor device and manufacturing method therefor
KR20000075483A (en) Semiconductor device
US7663254B2 (en) Semiconductor apparatus and method of manufacturing the same
JP2002217514A (en) Multichip semiconductor device
US20070138618A1 (en) Stack package of ball grid array type
US6639321B1 (en) Balanced coefficient of thermal expansion for flip chip ball grid array
JP2000236042A (en) Semiconductor device and manufacture thereof
JP2001351946A (en) Semiconductor device
JP2001345418A (en) Double-sided packaging structure body and manufacturing method thereof
US6632690B2 (en) Method of fabricating reliable laminate flip-chip assembly
JP2011071234A (en) Semiconductor device and method of manufacturing the same
JP3570271B2 (en) Semiconductor sensor and manufacturing method thereof
JPH11204692A (en) Semiconductor device
JP2002170848A (en) Circuit board
JPH0775253B2 (en) Semiconductor device and manufacturing method thereof
JP5434306B2 (en) Semiconductor device and manufacturing method of semiconductor device
KR20100020771A (en) Method for fabricating semiconductor package