JP3570271B2 - Semiconductor sensor and manufacturing method thereof - Google Patents

Semiconductor sensor and manufacturing method thereof Download PDF

Info

Publication number
JP3570271B2
JP3570271B2 JP04274899A JP4274899A JP3570271B2 JP 3570271 B2 JP3570271 B2 JP 3570271B2 JP 04274899 A JP04274899 A JP 04274899A JP 4274899 A JP4274899 A JP 4274899A JP 3570271 B2 JP3570271 B2 JP 3570271B2
Authority
JP
Japan
Prior art keywords
metal
semiconductor sensor
sensor chip
circuit board
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04274899A
Other languages
Japanese (ja)
Other versions
JP2000243783A (en
Inventor
琢 政井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp filed Critical Omron Corp
Priority to JP04274899A priority Critical patent/JP3570271B2/en
Publication of JP2000243783A publication Critical patent/JP2000243783A/en
Application granted granted Critical
Publication of JP3570271B2 publication Critical patent/JP3570271B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/113Manufacturing methods by local deposition of the material of the bump connector
    • H01L2224/1133Manufacturing methods by local deposition of the material of the bump connector in solid form
    • H01L2224/1134Stud bumping, i.e. using a wire-bonding apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13075Plural core members
    • H01L2224/13078Plural core members being disposed next to each other, e.g. side-to-side arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13075Plural core members
    • H01L2224/1308Plural core members being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13075Plural core members
    • H01L2224/1308Plural core members being stacked
    • H01L2224/13082Two-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Description

【0001】
【発明の属する技術分野】
本発明は、半導体のパッケージング技術に関するもので、より具体的には基板と半導体センサチップの電気的接合技術に関する。
【0002】
【従来の技術】
半導体センサチップを回路基板に実装してパッケージングする方法の一つとして、従来からワイヤボンディング法が用いられている。すなわち、図1に示すように、半導体センサチップ1を樹脂製のステム2の底面にダイボンディング材3を用いて固定する。次いで、ステム2に一体的に形成されたリード端子4と半導体センサチップ1の端子とをボンディングワイヤ5にて接続する。そして、ステム2の外側に突出したリード端子4の先端を回路基板上の配線パターンに電気的に導通させるようにしている。
【0003】
また、係るボンディングワイヤ法では、半導体センサチップ1をステム2に実装し、そのステム2を基板に装置実装するようになっており、しかも、ボンディングワイヤ5をはわせる空間が必要となるので、小型化に限界があった。
【0004】
そこで、さらなる小型化を図るため、最近、一般のICで用いられているバンプを用いたベアチップ実装(フリップチップ実装)を半導体センサの実装にも適用することが試みられている。
【0005】
すなわち、図2に示すように、半導体センサチップ1の電極部に金属突起(バンプ)7を設け、それを基板8と向かい合わせて接合する。このとき、金属突起7は、基板8上に形成された配線パターンに接合される。さらに、金属突起7の存在しない基板8と半導体センサチップ1の隙間には、接合材9が充填される。このように、半導体センサチップ1を直接基板8に接続することにより、大幅な小型化を図ることができる。
【0006】
【発明が解決しようとする課題】
しかしながら、図2に示す構造では、小型化は図れるものの、新たな問題が生じる。すなわち、半導体センサチップ1内に発生する応力によってセンサに歪みが発生し、出力特性の変化が起こってしまう。
【0007】
すなわち、半導体センサチップ1は、通常検出対象の物理量を受けて変位する可動部(梁(重り)・ダイアフラムなど)を有するシリコン基板と、そのシリコン基板を固定するガラス基板を積層した構造となっている。また、基板8は、上記シリコンやガラスに比べて熱膨張係数の大きいガラエポ樹脂により構成されている。
【0008】
さらに、金属突起7の高さは、高くても100μm程度が限度であり、実際には数10μm程度となる。したがって、基板8と半導体センサチップ1の一体化の度合いが強く、金属突起7の部分では応力が吸収されない。
【0009】
そして、温度変化にともない基板8が大きく膨張・収縮しようとした場合、その基板8に接合されているガラス基板はそれに追従して比較的大きく膨張・収縮するものの、基板に接続されていないシリコン基板や、ガラス基板(3層構造の場合)は、フリー状態であるのでもともと有する熱膨張係数にしたがって膨張・収縮するのでその変化量は少ない。その結果、シリコン基板の両面(基板に接続されたガラス基板側と、その反対側の面)での膨張率が異なるので、シリコン基板自体にも応力がかかるとともに、測定対象の物理量が変化しないにもかかわらずその温度変化にともなって可動部が変位してしまい、ガラス基板とのギャップが上下で異なってしまう。その結果、オフセット値が変動してしまい、正確な出力特性が得られなくなる。
【0010】
本発明は、上記した背景に鑑みてなされたもので、その目的とするところは、上記した問題を解決し、半導体センサチップと基板の熱膨張係数の相違にともない発生する温度変化時の半導体センサチップ側へ応力や撓みを低減させることで、高性能で小型の半導体センサ及びその製造方法を提供することにある。
【0011】
【課題を解決するための手段】
上記した目的を達成するために、本発明に係る半導体センサでは、回路基板上に半導体センサチップを実装するとともに、前記半導体センサチップの電極と前記回路基板の配線の間に金属柱を介在させてなる半導体センサであって、前記金属柱は、複数の金属突起が積み重なって構成することを前提とする。
【0012】
このように構成すると、半導体センサチップと回路基板の間の隙間は、金属柱の高さ、つまり積層した複数個の金属突起の合計の高さとほとんど同じだけ空くことになる。
【0013】
なお、複数の金属突起は、すべて同一の材質で構成されていてもよいし、別の材質で構成されていても構わない。また、複数の金属突起は、すべて同一形状で構成されていてもよいし、別の形をしていても構わないものとする。
【0014】
要するに、例えば、半導体センサチップの電極上に金属突起を形成し、その金属突起の上部に何らかの導電部材で厚みを付けたとき、半導体センサチップと回路基板の間にできる隙間の高さが、金属突起のみを半導体センサチップの電極上に形成した後、この金属突起と回路基板を接続したときにできる隙間よりも大きな隙間を作れるような導電部材であれば、そのような金属突起の上部に厚みを作る何らかの導電部材は、半導体センサチップの電極上に形成する金属突起と同様に請求項1に記載される金属突起に含まれる。
【0015】
上記したことと同様の理由で、突起を構成する金属突起の外観は必ずしも明確な突起である必要はないものとする。そして、実施の形態には具体的に記載していないが、例えば、半導体センサチップと回路基板を突起を介して接続するとき、半導体センサチップ側に金属突起があり、回路基板側にも別の金属突起があって、この金属突起同士が接続されるようにして形成された構成も、本発明に当然含まれるものとする。
【0016】
また、金属突起を形成する材質として、「金」が全ての実施の形態で用いられているが、基本的に硬くてもろい金属でなければ金以外の導電材料を用いても構わない。また、半導体センサチップと回路基板の間の隙間には、金属突起以外の部材があっても構わないものとする。
【0017】
本発明は、上記した前提のもと、前記金属柱を複数個隣接して配置するとともに、それら複数の金属柱間にはんだ充填されるように構成した。このように構成すると、例えば、ベアチップ実装装置によって半導体センサチップを回路基板に実装するときに、一つ一つの突起が接続時の圧力で破損しにくくなる。なお、この構成の具体的な一例を実施の形態において示したが、金属柱を構成する金属突起の本数及び金属柱の束ねられ方は任意である。
【0018】
つまり、実施の形態では、3つの金属突起の中心を三角形の各頂点に配した後、はんだにてこれらの突起を束ねるようにして形成したが、例えば、4つの突起の中心を正方形状になるように配した後、これらの突起を束ねてもよく、種々変更実施が可能である。
【0019】
また、本発明に係る半導体センサの製造方法では、半導体センサチップの電極と回路基板の配線の接続方法であって、前記電極の上に複数の金属突起を順次積層して金属柱を形成するとともに、その金属柱を隣接するように複数個配置する形成工程と、その隣接した複数個の金属柱間にはんだを充填して一体化する工程と、その一体化された金属柱を前記配線に接続するようにして前記半導体センサチップを前記回路基板に実装する工程とを有する。そして、前記形成工程は、少なくとも前記電極上に第1金属突起を形成し、次いで前記第1金属突起部の上部を平坦化して平坦部を形成し、前記平坦部上に第2金属突起を形成するような工程を含むようにした。
【0020】
金属突起を形成後次の金属突起を形成するに際し、前工程として、形成した金属突起(第1金属突起)の上面を潰して平坦部とすることにより、その上に積層する第2金属突起との接続強度が高まる。従って、例え金属柱の高さが高くなっても一定の強度が得られる。
【0021】
なお、第1金属突起部に平坦部を形成するのは、あくまで、第1金属突起部上に第2金属突起部を形成しやすくしたり、この2つの金属突起部間の接続強度を上げるための製作工程であるので、必ずしも純粋な平面である必要はない。
【0022】
そして、前記金属柱を隣接するように複数配置し、前記金属柱間にはんだを充填することにより、複数の金属柱がはんだにより一体化されるので、強度が増す。
【0023】
なお、複数の金属柱は同時に形成していってもよいし、1個ずつ形成してもよい。すなわち、前者は実施の形態でも説明したように、複数の金属柱をそれぞれ構成する金属突起を同時に形成し、次いで、それら複数の金属突起の上端を平坦化し、次に平坦化された各金属突起の上に次の金属突起を形成することである。また、後者は例えばまず1本の金属柱を形成し、次にその金属柱に隣接して別の金属柱を形成するという工程をとることである。
【0024】
【発明の実施の形態】
図3は、本発明に係る半導体センサ10の前提となる構成を示している。同図に示すように、半導体センサチップ11と回路基板12の間に、複数の金属柱13を介在させている。この金属柱13の上端は、半導体センサチップ11の電極に接続され、金属柱13の下端は回路基板12の表面に形成された配線パターン上に接続されている。これにより、その金属柱13を介して半導体センサチップ11の電極と回路基板12の配線パターンとが導通され、ベアチップ実装される。
【0025】
ここで本発明では、金属柱13を複数の金属突起で形成している。つまり、この例では第1金属突起13aと第2金属突起13bの2つの金属突起を積み重ねることにより形成される。
【0026】
すなわち、図4に半導体センサチップ11を示すように、矩形状をした半導体センサチップ11の裏面11aには、回路基板の配線パターンに接続するための高さ200μm程度の金属柱13が形成されている。そして、この形成位置は、半導体センサチップ11の電極形成位置であり、まず裏面11a側に第1金属突起13aを形成し、その第1金属突起13aの上面に第2金属突起13bを積層形成している。
【0027】
さらに、センサチップ11と基板12には金属柱13の高さ分のギャップが生じることになるので、そこのギャップにアンダーフィル材としてシリコーン製の樹脂14を充填している。
【0028】
係る構成をとると、金属柱13の高さは、金属突起の2倍の高さとなり、そのように高く(長く)なることから、回路基板12と半導体センサチップ11の熱膨張係数が大きく違っても、温度変化時に生じようとする応力は、当該金属柱13の部分で吸収され、半導体センサチップ11に応力が伝わらない。よって、温度変化によりオフセット値が変わることもなく、温度変化に強く、小型で高性能なセンサを構成することができる。
【0029】
次に、本発明に係る製造方法の実施の形態の前提となる基本構成を説明する。まず、図4に示すように、半導体センサチップ11の裏面に金属柱13を製造し、次いで、その金属柱13を回路基板の金属パターン上に接続するようにする。
【0030】
そして、以後本発明の重要な工程となる金属柱の製造工程の一例を説明する。まず、図5に示すように、太さ25μm〜30μm程の金ワイヤ20の先端を溶かしてその先端をボール状にしたボール部22を、ボンディング台25の上に置いたセンサチップ11の裏面11aの電極面に超音波や熱を加えて融着によりボンディングする。
【0031】
なお、本形態のように太さを25〜30μm程度のものを用いると、ボール部22の径は100μm程度となる。なお、単純にさらに太い径の金ワイヤを用いると、ボール部の径も大きくなり、高さが100μm以上にできるが、それに伴い幅も広くなるので、高密度化・高配線化により、電極も100μm程度の間隔で配置されるセンサチップ上の複数の電極を短絡するので、本発明の金属柱には実用に供し得ない。
【0032】
その後、金ワイヤ20を真上に引っ張り上げると、図6に示すように、半導体センサチップ11に付いたボール部22から金ワイヤ20が引きちぎられ、ボール部22のみが半導体センサチップ11上に残る。
【0033】
その後は、図7に示すように、センサチップ11から引きちぎって分離した金ワイヤ20の先端20aに対してトーチ電極27で電圧をかけることで、ボール部を再び形成し、裏面11aの別の場所に付着させる。
【0034】
ところで、もともとは金ワイヤ20の先端であったボール部22を引きちぎって裏面11aに取りつけると、ボール部22は、図8に示すようにその先端(上端)22aがささくれ立つとともに、高さがばらついてしまう。
【0035】
そこで、半導体センサチップ11の裏面11aに、1段目の全てのボール部22を付着させた後、ボール部22の上方から金属プレート等によって荷重をかけて先端部22aを潰す。これにより、図9に示すように、上面が平らな平坦部30となり、第1金属突起13aが形成される。
【0036】
上記の工程を行うことにより、半導体センサチップ11の裏面11a上には、図10に示すように、上端が平坦面となる第1金属突起13aが形成される。従って、各第1金属突起13aの平坦部30上に、金ワイヤ20の先端を接触させて、新たなボール部22を融着させることが可能となる。その結果、図11に示すように、第1金属突起13aの平坦部30の上に第2金属突起13bが安定状態で積み重ねられ、金属柱13が形成される。
【0037】
以後、通常のベアチップ実装と同様に、ベアチップ実装装置により、この金属柱13が回路基板上の配線パターンの上に位置するようにして基板12上に実装され、半導体センサチップ11の電極と基板12の配線パターンは、金属柱13を介して導通される。
【0038】
また、この実装に先立ち、前もって基板12側にシリコーン樹脂製の導電ペーストを転写しておいたり、実装装置に内蔵されている転写装置によって金属柱13に導電ペーストを転写することが望ましい。そして、転写した樹脂が熱可塑性であれば、ホットプレート又は硬化炉で加熱して硬化させることにより、導通を図りつつ接着固定することができる。
【0039】
さらに、センサチップ11と基板12には金属柱13の高さ分だけギャップが形成されるので、そこのギャップにアンダーフィル材としてシリコーン製の樹脂36を毛細血管現象を利用して充填するのが実施する上で望ましい。これにより、図3に示すような半導体センサが製造される。
【0040】
以下、本発明に係る半導体センサの好適な実施の形態を説明する。図12は本実施の形態の要部を示している。同図に示すように、本実施の形態では、半導体センサチップ11の裏面に、3本の金属柱13を近接配置している。具体的には、各金属柱13の中心が3角形の頂点に配置された形状をしている。これら3本の金属柱13は、いずれも上述した前提の基本構成のものと同一形状及び同一材質からなる部材である。
【0041】
そして、同図(b)に示すように、その3本の円柱状の金属柱13間に形成される隙間31には、はんだ33が充填されており、係る3本の金属柱13を電気機械的に一体化し、強度の向上を図っている。
【0042】
そして、係る構造のものを製造するには、例えば、上記隙間31内にはんだペーストを充填後、リフロー炉によってはんだを溶融させると、3箇所に配置された金属柱13の隙間31を埋めるようにはんだが流し込まれ、その後冷却することにより固定することができる。
【0043】
なお、上記した実施の形態では、いずれも金属柱は2つの金属突起を積み重ねることにより形成したが、本発明はこれに限ることはなく、3つ以上であってももちろんよい。そして、仮に1つの金属突起の高さが100μm程度とすると、上記した実施の形態の金属柱の高さは200μm程度となり、また、3つ重ねると300μm程度となる。
【0044】
一方、基板上にセンサチップを実装したときに、基板とセンサチップの熱膨張係数の違いによって発生する応力や撓みは、金属柱の高さを200μm〜300μmとることによって十分抑えられることが実験した結果確認された。よって、本形態のように2段重ねるだけでも十分効果がある。
【0045】
【発明の効果】
以上のように、本発明に係る半導体センサ及びその製造方法では、半導体センサチップと回路基板に隙間を作るための接続線を兼ねた金属柱を、複数の金属突起を積み上げることで、高くすることができ、その金属柱の部分で温度変化時に生じようとする基板と半導体センサチップの熱膨張係数の相違に基づく応力等が、実用上問題の無い程度に吸収できる。
【0046】
従って、半導体センサチップの出力特性が、温度変化に伴いオフセット値が変動することもなく、安定した出力特性が得られる。よって、高性能で小型の半導体センサを構成することができる。
【0047】
さらに、この金属柱の配置を複数個隣接するとともに、金属柱間にはんだが充填されるように構成することで、強度が増す。よって、半導体センサチップに金属柱を形成後、ベアチップ実装装置等によって、半導体センサチップと回路基板を接続する際に生じる圧力によって金属柱が変形・破損等することが可及的に抑制できる。すると、歩留まりが向上し、半導体センサの製造コストを下げることができる。
【0048】
また、本発明の製造方法を用いて半導体センサを形成するようにすると、複数の金属突起が積み重ねられた突起を持つ半導体センサの製造が容易になるとともに、半導体センサの製造時の破損率を低減することができる。
【図面の簡単な説明】
【図1】従来例を示す図(その1)である。
【図2】従来例を示す図(その2)である。
【図3】本発明に係る半導体センサの実施の形態の前提となる構成を示す図である。
【図4】図3に示す半導体センサチップを示す斜視図である。
【図5】本発明に係る半導体センサの製造方法の一実施の形態を示す工程図(その1)である。
【図6】本発明に係る半導体センサの製造方法の一実施の形態の前提要素を示す工程図(その2)である。
【図7】本発明に係る半導体センサの製造方法の一実施の形態の前提要素を示す工程図(その3)である。
【図8】本発明に係る半導体センサの製造方法の一実施の形態の前提要素を示す工程図(その4)である。
【図9】本発明に係る半導体センサの製造方法の一実施の形態の前提要素を示す工程図(その5)である。
【図10】本発明に係る半導体センサの製造方法の一実施の形態の前提要素を示す工程図(その6)である。
【図11】本発明に係る半導体センサの製造方法の一実施の形態の前提要素を示す工程図(その7)である。
【図12】(a)は、本発明に係る半導体センサの好適な一実施の形態の要部を示す斜視図である。
(b)は、本発明に係る半導体センサの好適な一実施の形態の要部を示す平面図である。
【符号の説明】
10 半導体センサ
11 半導体センサチップ
12 基板
13 金属柱
13a 第1金属突起
13b 第2金属突起
30 平坦部
33 はんだ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor packaging technique, and more specifically, to an electrical joining technique between a substrate and a semiconductor sensor chip.
[0002]
[Prior art]
As one of the methods for packaging a semiconductor sensor chip by mounting it on a circuit board, a wire bonding method has been conventionally used. That is, as shown in FIG. 1, a semiconductor sensor chip 1 is fixed to a bottom surface of a resin stem 2 using a die bonding material 3. Next, the lead terminals 4 formed integrally with the stem 2 and the terminals of the semiconductor sensor chip 1 are connected by bonding wires 5. The distal end of the lead terminal 4 protruding outside the stem 2 is electrically connected to the wiring pattern on the circuit board.
[0003]
Further, in such a bonding wire method, the semiconductor sensor chip 1 is mounted on the stem 2 and the stem 2 is mounted on the substrate by means of a device. Further, a space for the bonding wire 5 is required. There was a limit to miniaturization.
[0004]
Therefore, in order to further reduce the size, attempts have recently been made to apply bare chip mounting (flip chip mounting) using bumps used in general ICs to mounting of a semiconductor sensor.
[0005]
That is, as shown in FIG. 2, a metal projection (bump) 7 is provided on an electrode portion of the semiconductor sensor chip 1, and the metal projection is opposed to a substrate 8 and joined. At this time, the metal protrusion 7 is joined to the wiring pattern formed on the substrate 8. Further, the gap between the substrate 8 and the semiconductor sensor chip 1 where there is no metal protrusion 7 is filled with a bonding material 9. As described above, by directly connecting the semiconductor sensor chip 1 to the substrate 8, a significant reduction in size can be achieved.
[0006]
[Problems to be solved by the invention]
However, in the structure shown in FIG. 2, although a size reduction can be achieved, a new problem arises. That is, the stress generated in the semiconductor sensor chip 1 causes distortion in the sensor, and the output characteristics change.
[0007]
In other words, the semiconductor sensor chip 1 has a structure in which a silicon substrate having a movable portion (beam (weight), diaphragm, etc.) that is normally displaced by receiving a physical quantity to be detected and a glass substrate for fixing the silicon substrate are stacked. I have. The substrate 8 is made of glass epoxy resin having a larger coefficient of thermal expansion than the above silicon and glass.
[0008]
Further, the height of the metal projection 7 is limited to about 100 μm at the maximum, and is actually about several tens μm. Therefore, the degree of integration between the substrate 8 and the semiconductor sensor chip 1 is high, and stress is not absorbed at the metal projection 7.
[0009]
When the substrate 8 attempts to expand and contract significantly due to a change in temperature, the glass substrate bonded to the substrate 8 expands and contracts relatively greatly following the substrate 8, but a silicon substrate not connected to the substrate. Also, since the glass substrate (in the case of a three-layer structure) expands and contracts in accordance with the thermal expansion coefficient originally in the free state, the change amount is small. As a result, since the coefficients of expansion on both surfaces of the silicon substrate (the glass substrate connected to the substrate and the surface on the opposite side) are different, stress is applied to the silicon substrate itself, and the physical quantity of the measurement object does not change. Nevertheless, the movable portion is displaced with the temperature change, and the gap with the glass substrate is different between the upper and lower portions. As a result, the offset value fluctuates, and accurate output characteristics cannot be obtained.
[0010]
SUMMARY OF THE INVENTION The present invention has been made in view of the above background, and has as its object to solve the above-described problems, and to provide a semiconductor sensor at the time of a temperature change caused by a difference in thermal expansion coefficient between a semiconductor sensor chip and a substrate. An object of the present invention is to provide a high-performance and small-sized semiconductor sensor and a method for manufacturing the same by reducing stress and bending toward the chip.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, in a semiconductor sensor according to the present invention, a semiconductor sensor chip is mounted on a circuit board, and a metal pillar is interposed between an electrode of the semiconductor sensor chip and a wiring of the circuit board. In the semiconductor sensor, it is assumed that the metal pillar is configured by stacking a plurality of metal protrusions.
[0012]
With such a configuration, the gap between the semiconductor sensor chip and the circuit board becomes almost the same as the height of the metal pillar, that is, the total height of the plurality of stacked metal protrusions.
[0013]
Note that the plurality of metal protrusions may all be made of the same material, or may be made of different materials. In addition, the plurality of metal protrusions may be all configured in the same shape, or may have different shapes.
[0014]
In short, for example, when a metal projection is formed on an electrode of a semiconductor sensor chip, and the thickness of the metal projection is formed with a conductive member on top of the metal projection, the height of a gap formed between the semiconductor sensor chip and the circuit board is increased by the metal. After forming only the protrusions on the electrodes of the semiconductor sensor chip, if the conductive member is capable of forming a gap larger than the gap formed when the metal protrusions are connected to the circuit board, the thickness is formed on the metal protrusions. Some of the conductive members that make the metal protrusions are included in the metal protrusions according to claim 1 as well as the metal protrusions formed on the electrodes of the semiconductor sensor chip.
[0015]
For the same reason as described above, it is assumed that the appearance of the metal projection constituting the projection does not necessarily need to be a clear projection. Although not specifically described in the embodiments, for example, when the semiconductor sensor chip and the circuit board are connected via protrusions, there is a metal protrusion on the semiconductor sensor chip side, and another circuit protrusion is also provided on the circuit board side. The present invention also includes a configuration in which the metal projections are formed so that the metal projections are connected to each other.
[0016]
Although “gold” is used in all embodiments as a material for forming the metal protrusion, a conductive material other than gold may be used as long as the material is basically hard and brittle. Also, members other than metal protrusions may be provided in the gap between the semiconductor sensor chip and the circuit board.
[0017]
According to the present invention, a plurality of the metal columns are arranged adjacent to each other and solder is filled between the plurality of metal columns based on the above-described premise. With this configuration, for example, when the semiconductor sensor chip is mounted on the circuit board by the bare chip mounting device, each projection is less likely to be damaged by the pressure at the time of connection. Although a specific example of this configuration has been described in the embodiment, the number of metal projections constituting the metal columns and the manner in which the metal columns are bundled are arbitrary.
[0018]
That is, in the embodiment, after the centers of the three metal projections are arranged at the respective vertices of the triangle, the projections are formed by bundling them with solder. For example, the centers of the four projections are square. After such arrangement, these protrusions may be bundled, and various modifications are possible.
[0019]
The method for manufacturing a semiconductor sensor according to the present invention is a method for connecting electrodes of a semiconductor sensor chip and wiring of a circuit board, wherein a plurality of metal protrusions are sequentially laminated on the electrodes to form metal columns. Forming a plurality of metal pillars so as to be adjacent to each other, filling solder between the plurality of metal pillars to integrate the metal pillars, and connecting the integrated metal pillars to the wirings And mounting the semiconductor sensor chip on the circuit board. The forming step includes forming a first metal protrusion on at least the electrode, flattening an upper portion of the first metal protrusion to form a flat portion, and forming a second metal protrusion on the flat portion. Steps to be performed are included.
[0020]
When the next metal projection is formed after the formation of the metal projection, the upper surface of the formed metal projection (first metal projection) is crushed to be a flat portion as a pre-process, so that the second metal projection laminated on the top is formed. Connection strength is increased. Therefore, even if the height of the metal pillar is increased, a certain strength can be obtained.
[0021]
Note that the flat portion is formed on the first metal projection to make it easier to form the second metal projection on the first metal projection or to increase the connection strength between the two metal projections. It is not always necessary to be a pure plane because it is a manufacturing process.
[0022]
By arranging a plurality of the metal columns so as to be adjacent to each other and filling the space between the metal columns with the solder, the plurality of metal columns are integrated by the solder, thereby increasing the strength.
[0023]
Note that a plurality of metal columns may be formed simultaneously or one by one. That is, as described in the embodiment, the former simultaneously forms a plurality of metal projections respectively forming the plurality of metal pillars, then flattens the upper ends of the plurality of metal projections, and then flattens the respective metal projections. Forming the next metal projection on the substrate. In the latter case, for example, a step of forming one metal column and then forming another metal column adjacent to the metal column is performed.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 3 shows a configuration serving as a premise of the semiconductor sensor 10 according to the present invention. As shown in the figure, a plurality of metal columns 13 are interposed between the semiconductor sensor chip 11 and the circuit board 12. The upper end of the metal column 13 is connected to an electrode of the semiconductor sensor chip 11, and the lower end of the metal column 13 is connected to a wiring pattern formed on the surface of the circuit board 12. As a result, the electrodes of the semiconductor sensor chip 11 and the wiring patterns of the circuit board 12 are conducted through the metal pillars 13 and are mounted on a bare chip.
[0025]
Here, in the present invention, the metal pillar 13 is formed by a plurality of metal protrusions. That is, in this example, the first metal projection 13a and the second metal projection 13b are formed by stacking two metal projections.
[0026]
That is, as shown in FIG. 4, a metal pillar 13 having a height of about 200 μm for connecting to a wiring pattern of a circuit board is formed on a back surface 11 a of the rectangular semiconductor sensor chip 11. I have. This formation position is the position where the electrodes of the semiconductor sensor chip 11 are formed. First, the first metal protrusion 13a is formed on the back surface 11a side, and the second metal protrusion 13b is formed by lamination on the upper surface of the first metal protrusion 13a. ing.
[0027]
Further, since a gap corresponding to the height of the metal pillar 13 is formed between the sensor chip 11 and the substrate 12, the gap is filled with a silicone resin 14 as an underfill material.
[0028]
With such a configuration, the height of the metal pillar 13 is twice as high as that of the metal protrusion, and is thus higher (longer). Therefore, the thermal expansion coefficients of the circuit board 12 and the semiconductor sensor chip 11 are significantly different. However, the stress that is likely to occur when the temperature changes is absorbed by the metal pillar 13, and the stress is not transmitted to the semiconductor sensor chip 11. Therefore, the offset value does not change due to the temperature change, and a small-sized and high-performance sensor resistant to the temperature change can be configured.
[0029]
Next, a basic configuration which is a premise of the embodiment of the manufacturing method according to the present invention will be described. First, as shown in FIG. 4, a metal column 13 is manufactured on the back surface of the semiconductor sensor chip 11, and then the metal column 13 is connected to a metal pattern on a circuit board.
[0030]
An example of a manufacturing process of a metal pillar, which is an important process of the present invention, will be described below. First, as shown in FIG. 5, a ball portion 22 having a tip formed by melting a tip of a gold wire 20 having a thickness of about 25 μm to 30 μm is formed on a back surface 11 a of a sensor chip 11 placed on a bonding table 25. Ultrasonic or heat is applied to the electrode surface to perform bonding by fusion.
[0031]
When a ball having a thickness of about 25 to 30 μm is used as in the present embodiment, the diameter of the ball portion 22 is about 100 μm. If a thicker gold wire is simply used, the diameter of the ball portion becomes larger and the height can be increased to 100 μm or more. Since a plurality of electrodes on the sensor chip arranged at intervals of about 100 μm are short-circuited, the metal pillar of the present invention cannot be practically used.
[0032]
Thereafter, when the gold wire 20 is pulled up right above, as shown in FIG. 6, the gold wire 20 is torn off from the ball portion 22 attached to the semiconductor sensor chip 11, and only the ball portion 22 remains on the semiconductor sensor chip 11. .
[0033]
Thereafter, as shown in FIG. 7, a voltage is applied by the torch electrode 27 to the tip 20a of the gold wire 20 that has been torn off from the sensor chip 11 to form a ball portion again. Adhere to
[0034]
By the way, when the ball portion 22, which was originally the tip of the gold wire 20, is torn off and attached to the back surface 11a, the ball portion 22 has its tip (upper end) 22a raised and its height varied as shown in FIG. Would.
[0035]
Then, after all the ball portions 22 of the first stage are attached to the back surface 11a of the semiconductor sensor chip 11, a load is applied from above the ball portion 22 by a metal plate or the like to crush the tip portion 22a. Thereby, as shown in FIG. 9, the upper surface becomes a flat portion 30 with a flat upper surface, and the first metal protrusion 13a is formed.
[0036]
By performing the above steps, a first metal projection 13a having a flat upper end is formed on the back surface 11a of the semiconductor sensor chip 11, as shown in FIG. Therefore, a new ball portion 22 can be fused by bringing the tip of the gold wire 20 into contact with the flat portion 30 of each first metal projection 13a. As a result, as shown in FIG. 11, the second metal projections 13b are stably stacked on the flat portions 30 of the first metal projections 13a, and the metal columns 13 are formed.
[0037]
Thereafter, in the same manner as a normal bare chip mounting, the metal pillar 13 is mounted on the substrate 12 by using a bare chip mounting device so as to be positioned on the wiring pattern on the circuit board, and the electrodes of the semiconductor sensor chip 11 and the substrate 12 are mounted. Are conducted through the metal pillars 13.
[0038]
Prior to this mounting, it is desirable to transfer a conductive paste made of silicone resin to the substrate 12 side in advance, or to transfer the conductive paste to the metal pillar 13 by a transfer device built in the mounting device. If the transferred resin is thermoplastic, the resin can be heated and cured by a hot plate or a curing furnace, so that the resin can be adhered and fixed while achieving conduction.
[0039]
Further, since a gap is formed between the sensor chip 11 and the substrate 12 by the height of the metal column 13, it is necessary to fill the gap with a silicone resin 36 as an underfill material by utilizing the capillary phenomenon. It is desirable for implementation. Thus, a semiconductor sensor as shown in FIG. 3 is manufactured.
[0040]
Hereinafter, preferred embodiments of the semiconductor sensor according to the present invention will be described. FIG. 12 shows a main part of the present embodiment. As shown in the figure, in the present embodiment, three metal columns 13 are arranged close to the back surface of the semiconductor sensor chip 11. Specifically, each metal column 13 has a shape in which the center is located at the vertex of a triangle. Each of these three metal columns 13 is a member made of the same shape and the same material as those of the basic configuration described above.
[0041]
Then, as shown in FIG. 3B, a gap 33 formed between the three cylindrical metal columns 13 is filled with solder 33, and the three metal columns 13 are electrically And improve strength.
[0042]
In order to manufacture such a structure, for example, after filling the gap 31 with a solder paste and then melting the solder by a reflow furnace, the gap 31 of the metal columns 13 arranged at three places is filled. The solder can be poured in and then fixed by cooling.
[0043]
In each of the above-described embodiments, the metal pillar is formed by stacking two metal projections. However, the present invention is not limited to this, and may be three or more. If the height of one metal protrusion is about 100 μm, the height of the metal pillar in the above-described embodiment is about 200 μm, and if three metal protrusions are stacked, the height is about 300 μm.
[0044]
On the other hand, when the sensor chip was mounted on the substrate, the stress and the bending generated due to the difference in the coefficient of thermal expansion between the substrate and the sensor chip were sufficiently suppressed by setting the height of the metal column to 200 μm to 300 μm. The result was confirmed. Therefore, it is sufficiently effective to form a two-stage stack as in this embodiment.
[0045]
【The invention's effect】
As described above, in the semiconductor sensor and the method of manufacturing the same according to the present invention, the metal pillar, which also serves as a connection line for forming a gap between the semiconductor sensor chip and the circuit board, is raised by stacking a plurality of metal protrusions. The stress and the like due to the difference in the coefficient of thermal expansion between the substrate and the semiconductor sensor chip, which are likely to occur when the temperature changes in the metal pillar portion, can be absorbed to the extent that there is no practical problem.
[0046]
Therefore, the output characteristics of the semiconductor sensor chip can have stable output characteristics without the offset value fluctuating with the temperature change. Therefore, a high-performance and small semiconductor sensor can be configured.
[0047]
Further, by arranging a plurality of metal columns adjacent to each other and filling the space between the metal columns with solder, the strength is increased. Therefore, after the metal pillar is formed on the semiconductor sensor chip, deformation and breakage of the metal pillar due to pressure generated when the semiconductor sensor chip and the circuit board are connected by the bare chip mounting device or the like can be suppressed as much as possible. Then, the yield is improved, and the manufacturing cost of the semiconductor sensor can be reduced.
[0048]
In addition, when a semiconductor sensor is formed by using the manufacturing method of the present invention, it is easy to manufacture a semiconductor sensor having a plurality of stacked metal protrusions and reduce a breakage rate during the manufacture of the semiconductor sensor. can do.
[Brief description of the drawings]
FIG. 1 is a diagram (part 1) showing a conventional example.
FIG. 2 is a diagram (part 2) illustrating a conventional example.
FIG. 3 is a diagram showing a configuration as a premise of an embodiment of a semiconductor sensor according to the present invention.
FIG. 4 is a perspective view showing the semiconductor sensor chip shown in FIG. 3;
FIG. 5 is a process chart (1) showing one embodiment of a method for manufacturing a semiconductor sensor according to the present invention.
FIG. 6 is a process drawing (2) showing a prerequisite element of one embodiment of a method for manufacturing a semiconductor sensor according to the present invention;
FIG. 7 is a process diagram (part 3) showing a prerequisite element of one embodiment of a method for manufacturing a semiconductor sensor according to the present invention;
FIG. 8 is a process view (4) showing a prerequisite element of one embodiment of a method of manufacturing a semiconductor sensor according to the present invention;
FIG. 9 is a process view (5) showing a prerequisite element of one embodiment of a method of manufacturing a semiconductor sensor according to the present invention;
FIG. 10 is a process view (6) showing a prerequisite element of one embodiment of a method for manufacturing a semiconductor sensor according to the present invention;
FIG. 11 is a process view (7) showing a prerequisite element of one embodiment of a method for manufacturing a semiconductor sensor according to the present invention;
FIG. 12A is a perspective view showing a main part of a preferred embodiment of a semiconductor sensor according to the present invention.
(B) is a top view showing an important section of one preferred embodiment of a semiconductor sensor concerning the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Semiconductor sensor 11 Semiconductor sensor chip 12 Substrate 13 Metal pillar 13a First metal projection 13b Second metal projection 30 Flat portion 33 Solder

Claims (2)

回路基板上に半導体センサチップを実装するとともに、前記半導体センサチップの電極と前記回路基板の配線の間に金属柱を介在させてなる半導体センサであって、
前記金属柱は、複数の金属突起が積み重なって構成され、
その複数の金属突起が積み重なって構成される金属柱を複数個隣接して配置するとともに、それら複数個の金属柱間にはんだが充填されていることを特徴とする半導体センサ。
A semiconductor sensor in which a semiconductor sensor chip is mounted on a circuit board, and a metal column is interposed between an electrode of the semiconductor sensor chip and a wiring of the circuit board,
The metal pillar is configured by stacking a plurality of metal protrusions,
A semiconductor sensor wherein a plurality of metal pillars formed by stacking a plurality of metal projections are arranged adjacent to each other, and a solder is filled between the plurality of metal pillars.
半導体センサチップの電極と回路基板の配線の接続方法であって、
前記電極の上に複数の金属突起を順次積層して金属柱を形成するとともに、その金属柱を隣接するように複数個配置する形成工程と、
その隣接した複数個の金属柱間にはんだを充填して一体化する工程と、
その一体化された金属柱を前記配線に接続するようにして前記半導体センサチップを前記回路基板に実装する工程とを有し、
前記形成工程は、少なくとも前記電極上に第1金属突起を形成し、
次いで前記第1金属突起部の上部を平坦化して平坦部を形成し、
前記平坦部上に第2金属突起を形成するような工程を含むものであることを特徴とする半導体センサの製造方法。
A method for connecting electrodes of a semiconductor sensor chip and wiring of a circuit board,
Forming a metal column by sequentially laminating a plurality of metal projections on the electrode, forming a plurality of such metal columns adjacent to each other,
Filling the solder between the adjacent plurality of metal pillars and integrating them,
Mounting the semiconductor sensor chip on the circuit board so as to connect the integrated metal pillar to the wiring,
Forming the first metal projection on at least the electrode,
Next, the upper portion of the first metal protrusion is flattened to form a flat portion,
A method for manufacturing a semiconductor sensor, comprising a step of forming a second metal projection on the flat portion.
JP04274899A 1999-02-22 1999-02-22 Semiconductor sensor and manufacturing method thereof Expired - Fee Related JP3570271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04274899A JP3570271B2 (en) 1999-02-22 1999-02-22 Semiconductor sensor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04274899A JP3570271B2 (en) 1999-02-22 1999-02-22 Semiconductor sensor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2000243783A JP2000243783A (en) 2000-09-08
JP3570271B2 true JP3570271B2 (en) 2004-09-29

Family

ID=12644645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04274899A Expired - Fee Related JP3570271B2 (en) 1999-02-22 1999-02-22 Semiconductor sensor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3570271B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4056424B2 (en) 2003-05-16 2008-03-05 シャープ株式会社 Manufacturing method of semiconductor device
US7462942B2 (en) 2003-10-09 2008-12-09 Advanpack Solutions Pte Ltd Die pillar structures and a method of their formation
JP4715503B2 (en) * 2005-12-22 2011-07-06 パナソニック電工株式会社 Manufacturing method of sensor module
JP2007184341A (en) * 2006-01-05 2007-07-19 Yamaha Corp Semiconductor device and circuit board

Also Published As

Publication number Publication date
JP2000243783A (en) 2000-09-08

Similar Documents

Publication Publication Date Title
US7723839B2 (en) Semiconductor device, stacked semiconductor device, and manufacturing method for semiconductor device
TWI540693B (en) Microelectronic element with bond elements to encapsulation surface
JP3186941B2 (en) Semiconductor chips and multi-chip semiconductor modules
JP3633559B2 (en) Semiconductor device and manufacturing method thereof, circuit board, and electronic apparatus
US6316838B1 (en) Semiconductor device
US8890304B2 (en) Fan-out microelectronic unit WLP having interconnects comprising a matrix of a high melting point, a low melting point and a polymer material
US7015131B2 (en) Semiconductor device using bumps, method for fabricating same, and method for forming bumps
JP3009788B2 (en) Package for integrated circuit
US6548326B2 (en) Semiconductor device and process of producing same
JPH1145954A (en) Method and structure for flip-chip connection and electronic device employing it
JP2002270647A (en) Semiconductor chip mounting board and manufacturing method therefor
TW200534441A (en) Three-dimensional stacking packaging structure
JP3570271B2 (en) Semiconductor sensor and manufacturing method thereof
JP2002141459A (en) Semiconductor device and its manufacturing method
JP2003124262A5 (en)
US20010054762A1 (en) Semiconductor device and method of fabricating the same
JP2647047B2 (en) Flip chip mounting method for semiconductor element and adhesive used in this mounting method
JPH10303249A (en) Semiconductor device
JP3702062B2 (en) Pressure sensor device
JP3572254B2 (en) Circuit board
JPH08264711A (en) Semiconductor device
JPH11340278A (en) Resin sheet for mounting semiconductor device, flip chip mounting method and circuit board
JP2004055937A (en) Semiconductor device and manufacturing method therefor
JPH11135537A (en) Mounting structure for semiconductor chip and semiconductor device
JPH0462961A (en) Semiconductor device and manufacture thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040614

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees