JP2001351946A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP2001351946A
JP2001351946A JP2000167737A JP2000167737A JP2001351946A JP 2001351946 A JP2001351946 A JP 2001351946A JP 2000167737 A JP2000167737 A JP 2000167737A JP 2000167737 A JP2000167737 A JP 2000167737A JP 2001351946 A JP2001351946 A JP 2001351946A
Authority
JP
Japan
Prior art keywords
semiconductor device
substrate
chip
electrode
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000167737A
Other languages
Japanese (ja)
Inventor
Shigeru Hamada
繁 濱田
Yasumi Kamigai
康己 上貝
Shuichi Tani
周一 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000167737A priority Critical patent/JP2001351946A/en
Publication of JP2001351946A publication Critical patent/JP2001351946A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05556Shape in side view
    • H01L2224/05557Shape in side view comprising protrusions or indentations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05563Only on parts of the surface of the internal layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05571Disposition the external layer being disposed in a recess of the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13005Structure
    • H01L2224/13006Bump connector larger than the underlying bonding area, e.g. than the under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1302Disposition
    • H01L2224/13022Disposition the bump connector being at least partially embedded in the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8138Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/81385Shape, e.g. interlocking features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3512Cracking

Landscapes

  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a highly reliable semiconductor device, in which the occur rence of disconnections in the junction interfaces between junctions and IC electrode sections and between the junctions and substrate electrode sections is reduced by reinforcing the jointing strengths between the junctions and elec trode sections in the interfaces. SOLUTION: This semiconductor device is provided with a semiconductor IC chip section carrying a plurality of IC electrode sections on one surface, a mounting substrate section carrying a plurality of substrate electrode sections on one surface, and a plurality of junctions which join the IC electrode sections to their corresponding substrate electrode sections, the IC electrode sections have first projecting sections, which are fixed to the electrode sections and protruded into the junctions and the substrate electrode sections have second projecting sections, which are fixed to the electrode sections and protruded into the junctions so that the reliability of the semiconductor device is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、フリップチップ実
装方法を用いて、ICチップを基板に実装した半導体装
置に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a semiconductor device having an IC chip mounted on a substrate by using a flip chip mounting method.

【0002】[0002]

【従来の技術】各種電子機器の小型・軽量化が進むにつ
れ、ICチップなどの半導体部品を基板に直接実装する
COB(Chip on Board)技術や、パッケージの下面に
マトリックス状に半田ボールを配置して実装するBGA
(Ball Grid Array)技術などが開発されてきた。その
結果、単位面積あたりに、数多くのICチップ−基板間
の接合部を形成することができ、高い集積度で半導体装
置を実装することができるようになった。
2. Description of the Related Art As electronic devices become smaller and lighter, COB (Chip on Board) technology for directly mounting semiconductor components such as IC chips on a substrate, and solder balls arranged in a matrix on the lower surface of a package. BGA to mount
(Ball Grid Array) technology has been developed. As a result, many junctions between the IC chip and the substrate can be formed per unit area, and the semiconductor device can be mounted with a high degree of integration.

【0003】図8および図9を参照しながら、従来式の
実装方法を用いて形成された半導体装置について説明す
る。図8は、従来式の半導体装置101の断面図であ
る。図8で示すように、この半導体装置101は、概
略、半導体ICチップ部102、実装回路部103、お
よびこれらを接合する複数の接合部104(104aな
いし104gを示す)から構成される。図9は、図8に
おいて最も左側(周縁)部に配置された接合部104a
の一部を拡大した図である。
A semiconductor device formed by using a conventional mounting method will be described with reference to FIGS. FIG. 8 is a sectional view of a conventional semiconductor device 101. As shown in FIG. 8, the semiconductor device 101 generally includes a semiconductor IC chip section 102, a mounting circuit section 103, and a plurality of joining sections 104 (showing 104a to 104g) for joining them. FIG. 9 shows the joining portion 104a arranged at the leftmost (peripheral) portion in FIG.
It is the figure which expanded a part of.

【0004】半導体ICチップ部102は、ICチップ
110、ダイボンド樹脂111、およびICチップ11
0を保護するためのモールド樹脂112を有している。
ICチップ110は、ダイボンド樹脂111の上に搭載
されており、外部回路に接続すべき複数のICチップ端
子(図示せず)を有する。このICチップ端子は、各
々、金線113およびダイボンド樹脂111上のパター
ン配線(図示せず)を介して、ダイボンド樹脂111の
下側表面に形成されたICパッド114と接続してい
る。半導体ICチップ部102は、さらに、ICパッド
114を包囲するように、ガラスエポキシ樹脂で形成さ
れたインタポーザ115を有する。
The semiconductor IC chip section 102 includes an IC chip 110, a die bond resin 111, and an IC chip 11.
0 has a mold resin 112 for protection.
The IC chip 110 is mounted on the die bond resin 111 and has a plurality of IC chip terminals (not shown) to be connected to an external circuit. Each of the IC chip terminals is connected to an IC pad 114 formed on the lower surface of the die bond resin 111 via a gold wire 113 and a pattern wiring (not shown) on the die bond resin 111. The semiconductor IC chip unit 102 further has an interposer 115 formed of glass epoxy resin so as to surround the IC pad 114.

【0005】各接合部104は、例えば、スクリーン印
刷法などにより、各ICパッド114上に半田などで形
成される。
[0005] Each joint portion 104 is formed on each IC pad 114 by soldering or the like by, for example, a screen printing method.

【0006】実装回路部103は、ガラスエポキシ樹脂
などにより形成された実装基板120と、複数の基板パ
ッド121から構成される。半導体ICチップ部102
と実装回路部103は、図9で示すように、基板パッド
121と接合部104の各々が互いに対向するように配
置された状態でリフロー処理される。こうして、半導体
ICチップ部102が実装回路部103に接合された半
導体装置101を形成する。
The mounting circuit section 103 includes a mounting substrate 120 formed of a glass epoxy resin or the like, and a plurality of substrate pads 121. Semiconductor IC chip section 102
As shown in FIG. 9, the mounting circuit section 103 and the mounting circuit section 103 are subjected to reflow processing in a state where the substrate pad 121 and the bonding section 104 are arranged so as to face each other. Thus, the semiconductor device 101 in which the semiconductor IC chip unit 102 is joined to the mounting circuit unit 103 is formed.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、形成さ
れた従来式の半導体装置101について、温度サイクル
試験(例えば、−25℃〜+120℃)を実施すると、
半導体ICチップ部102と接合部104の接合界面付
近、および実装回路部103と接合部102の接合界面
付近において、接合部104が破断(断線)するという
不具合が多発した。
However, when a temperature cycle test (for example, −25 ° C. to + 120 ° C.) is performed on the formed conventional semiconductor device 101,
In the vicinity of the bonding interface between the semiconductor IC chip portion 102 and the bonding portion 104 and the vicinity of the bonding interface between the mounting circuit portion 103 and the bonding portion 102, there were many problems that the bonding portion 104 was broken (disconnected).

【0008】この接合部104の破断(断線)のメカニ
ズムについて、図8ないし図11を参照して説明する。
ICチップ110は、通常、シリコンなどの半導体から
形成され、例えば、約3.5×10-6/℃の熱膨張係数
を有する。一方、実装基板120は、上述のように、ガ
ラスエポキシ樹脂などにより形成され、例えば、約14
×10-6/℃の熱膨張係数を有する。つまり、実装基板
120は、ICチップ110に比べて、一般に、大きい
熱膨張係数を有する。したがって、所定の温度変化によ
り膨張する度合いは、実装基板120の方がICチップ
110よりも、はるかに大きい。図8および図9におい
て、ICチップ110が膨張するときの変位ベクトルを
矢印A(ベクトル)、および実装基板120が膨張する
ときの変位ベクトルを矢印B(ベクトル)で示す。これ
らの図で示すように、実装基板120の変位ベクトルB
は、ICチップ110の変位ベクトルAよりも、はるか
に大きい。とりわけ、半導体チップ部102と実装回路
部103の中央部よりも両端(周縁)部において、両者
の変位ベクトルA、Bの差異は大きくなる。
The mechanism of breakage (breakage) of the joint 104 will be described with reference to FIGS.
The IC chip 110 is usually formed from a semiconductor such as silicon, and has a thermal expansion coefficient of, for example, about 3.5 × 10 −6 / ° C. On the other hand, the mounting substrate 120 is formed of glass epoxy resin or the like as described above,
It has a coefficient of thermal expansion of × 10 -6 / ° C. That is, the mounting substrate 120 generally has a larger thermal expansion coefficient than the IC chip 110. Therefore, the degree of expansion due to a predetermined temperature change is much greater in the mounting substrate 120 than in the IC chip 110. 8 and 9, a displacement vector when the IC chip 110 expands is indicated by an arrow A (vector), and a displacement vector when the mounting substrate 120 expands is indicated by an arrow B (vector). As shown in these figures, the displacement vector B
Is much larger than the displacement vector A of the IC chip 110. In particular, the difference between the displacement vectors A and B at both ends (peripheral edges) of the semiconductor chip portion 102 and the mounting circuit portion 103 is larger than the center portion.

【0009】図9は、図8の最も左側にある接合部10
4a付近を拡大した図である。このとき、ICチップ1
10と実装基板120の間に介在する接合部104a
は、変位ベクトルA、Bの差異に起因して、ICチップ
110に対して水平方向左側に歪み応力F1を受け、実
装基板120に対しては反対方向である右側に同じ大き
さの歪み応力F2を受ける。なお、上述のように、変位
ベクトルA、Bの差異は、半導体チップ部110と実装
回路部120の中央部よりも両端(周縁)部において大
きくなるので、歪み応力F1、F2も同様に、半導体チッ
プ部102と実装回路部103の両端(周縁)部におい
て大きくなる。
FIG. 9 shows the leftmost joint 10 in FIG.
It is the figure which expanded the vicinity of 4a. At this time, IC chip 1
Joint 104a Interposed Between 10 and Mounting Board 120
Receives the strain stress F 1 on the left side in the horizontal direction with respect to the IC chip 110 due to the difference between the displacement vectors A and B, and the same magnitude of the strain stress on the right side, which is the opposite direction to the mounting substrate 120. receive the F 2. As described above, the difference between the displacement vectors A and B is larger at both ends (periphery) than at the center of the semiconductor chip unit 110 and the mounting circuit unit 120, so that the strain stresses F 1 and F 2 are also the same. At both ends (periphery) of the semiconductor chip portion 102 and the mounting circuit portion 103.

【0010】さらに、図示しないが、変位ベクトルA、
Bの差異に起因して、実装基板120は、下に凸(IC
チップ110とは反対側の方向に凸)となるように湾曲
してしまう。その結果、ICチップ110と実装基板1
20の間に介在する各接合部104は、ICチップ11
0に対して垂直方向下側に湾曲応力f1を受け、実装基
板120に対しては反対方向である上側に同じ大きさの
湾曲応力f2を受けることになる。湾曲応力f1、f2
大きさは、歪み応力F1ほど大きくはないが、歪み応力
と同様、半導体チップ部102と実装回路部103の中
央部よりも両端(周縁)部において大きくなる。
Further, although not shown, displacement vectors A,
B, the mounting substrate 120 is convex downward (IC
(The convex in the direction opposite to the tip 110). As a result, the IC chip 110 and the mounting substrate 1
20 are connected to the IC chip 11.
The bending stress f 1 is received on the lower side in the direction perpendicular to 0, and the same level of bending stress f 2 is received on the upper side, which is the opposite direction to the mounting substrate 120. The magnitudes of the bending stresses f 1 and f 2 are not as large as the strain stress F 1, but are larger at both ends (peripheral edges) than at the center of the semiconductor chip portion 102 and the mounting circuit portion 103, like the strain stress.

【0011】ところで、接合部104は、ICパッド1
14および基板パッド121との間に、IC−接合界面
117および基板−接合界面123をそれぞれ有してお
り、両者接合界面117、123付近は、一般に、合金
層が形成されているので、水平方向の歪み応力F1、F2
や垂直方向の湾曲応力f1、f2に対して比較的に脆弱で
ある。したがって、温度サイクル試験や実使用における
温度変化に伴って、上述のような歪み応力F1、F2およ
び湾曲応力f1、f2が生じると、例えば、図10で示す
ように、基板−接合界面123付近に亀裂124が生
じ、さらに、反復的な温度変化により、この亀裂123
が拡大し、図11で示すように、ついには破断(断線)
に至る。図11は、基板−接合界面123に亀裂が生じ
て断線した様子を示す図であるが、IC−接合界面11
7付近にも同様に亀裂が生じて断線に至る。
By the way, the bonding portion 104 is connected to the IC pad 1
14 and the substrate pad 121, an IC-bonding interface 117 and a substrate-bonding interface 123 are respectively provided. In the vicinity of the bonding interfaces 117 and 123, generally, an alloy layer is formed. Strain stresses F 1 and F 2
And are relatively vulnerable to bending stresses f 1 and f 2 in the vertical direction. Therefore, when the above-described strain stresses F 1 and F 2 and the bending stresses f 1 and f 2 are generated due to a temperature change in a temperature cycle test or actual use, for example, as shown in FIG. A crack 124 is formed near the interface 123, and further, due to a repetitive temperature change, this crack 123
Expands and finally breaks (disconnection) as shown in FIG.
Leads to. FIG. 11 is a diagram showing a state in which a crack is generated in the substrate-bonding interface 123 and the wire is disconnected.
Similarly, a crack is generated near 7 and the wire is broken.

【0012】そこで、本発明は、温度変化に伴って生じ
る歪み応力および湾曲応力に耐える、信頼性の高い半導
体装置を提供することを目的とする。
Accordingly, an object of the present invention is to provide a highly reliable semiconductor device that can withstand a strain stress and a bending stress generated by a temperature change.

【0013】[0013]

【課題を解決するための手段】請求項1に記載の本発明
によれば、複数のIC電極部が一方の表面に形成された
半導体ICチップ部と、複数の基板電極部が一方の表面
に形成された実装基板部と、IC電極部と対応する基板
電極部を接合する複数の接合部とを備えた半導体装置に
おいて、IC電極部が、該IC電極部に固定され、接合
部内部に突出する第1の突出部を有し、基板電極部が、
該基板電極部に固定され、接合部内部に突出する第2の
突出部を有する。これにより、第1および第2の突出部
が、接合部およびIC電極部と、接合部および基板電極
部の間の接合界面における両者の接合強度を補強し、こ
れらの接合界面で断線しにくい、信頼性の高い半導体装
置を提供することができる。
According to the present invention, a semiconductor IC chip portion having a plurality of IC electrode portions formed on one surface and a plurality of substrate electrode portions are formed on one surface. In a semiconductor device having a formed mounting substrate portion and a plurality of bonding portions for bonding a substrate electrode portion corresponding to an IC electrode portion, the IC electrode portion is fixed to the IC electrode portion and protrudes into the bonding portion. A first protruding portion, and the substrate electrode portion has
A second protrusion fixed to the substrate electrode portion and protruding into the joint; As a result, the first and second protrusions reinforce the bonding strength between the bonding portion and the IC electrode portion and the bonding interface between the bonding portion and the substrate electrode portion, and are less likely to break at the bonding interface. A highly reliable semiconductor device can be provided.

【0014】請求項2に記載の本発明によれば、第1お
よび第2の突出部が、接合部以上の弾性係数(剛性率)
を有する。これにより、第1および第2の突出部は、接
合部以上に硬いので、接合部およびIC電極部と、接合
部および基板電極部の間の接合界面における両者の接合
強度をより十分に補強し、これらの接合界面でより断線
しにくい、より信頼性の高い半導体装置を提供すること
ができる。
According to the second aspect of the present invention, the first and second projections have an elastic coefficient (rigidity) equal to or higher than the joint.
Having. Accordingly, the first and second protrusions are harder than the joints, and therefore, the joint strength between the joints and the IC electrode part and the joint interface between the joints and the substrate electrode part are more sufficiently reinforced. It is possible to provide a more reliable semiconductor device that is less likely to be disconnected at these bonding interfaces.

【0015】請求項3に記載の本発明によれば、第1お
よび第2の突出部が、接合部以上の融点を有する。これ
により、第1および第2の突出部は、接合部以上に硬い
ので、接合部およびIC電極部と、接合部および基板電
極部の間の接合界面における両者の接合強度をより十分
に補強し、これらの接合界面でより断線しにくい、より
信頼性の高い半導体装置を提供することができる。
According to the third aspect of the present invention, the first and second protrusions have a melting point higher than that of the joint. Accordingly, the first and second protrusions are harder than the joints, and therefore, the joint strength between the joints and the IC electrode part and the joint interface between the joints and the substrate electrode part are more sufficiently reinforced. It is possible to provide a more reliable semiconductor device that is less likely to be disconnected at these bonding interfaces.

【0016】請求項4に記載の本発明によれば、接合部
が半田材からなる。これにより、例えば、スクリーン印
刷法などを用いて、第1および第2の突出部を、安価に
大量生産するとともに、信頼性の高い半導体装置を提供
することができる。
According to the present invention, the joint is made of a solder material. This makes it possible to mass-produce the first and second protrusions at low cost by using, for example, a screen printing method, and to provide a highly reliable semiconductor device.

【0017】請求項5に記載の本発明によれば、半導体
ICチップ部と実装基板部の表面と垂直な断面を有し、
半導体ICチップ部と実装基板部の熱膨張係数が異な
り、第1および第2の突出部が、周囲温度変化に伴って
接合部に負荷される水平方向の歪み応力を緩和するよう
な垂直断面形状を有する。これにより、水平方向の歪み
応力に耐える、信頼性の高い半導体装置を提供すること
ができる。
According to the fifth aspect of the present invention, the semiconductor device has a cross section perpendicular to the surfaces of the semiconductor IC chip portion and the mounting substrate portion,
The semiconductor IC chip portion and the mounting substrate portion have different thermal expansion coefficients, and the first and second protrusions have a vertical cross-sectional shape that relieves the horizontal strain stress applied to the joint due to a change in ambient temperature. Having. Thus, a highly reliable semiconductor device that can withstand horizontal strain stress can be provided.

【0018】請求項6に記載の本発明によれば、第1お
よび第2の突出部の垂直断面形状が、矩形である。これ
により、水平方向の歪み応力に耐える、信頼性の高い半
導体装置を提供することができる。
According to the present invention, the vertical cross-sectional shape of the first and second protrusions is rectangular. Thus, a highly reliable semiconductor device that can withstand horizontal strain stress can be provided.

【0019】請求項7に記載の本発明によれば、第1お
よび第2の突出部の垂直断面形状が、周囲温度変化に伴
って接合部に負荷される水平方向の歪み応力を緩和する
ような実質的に垂直な辺を含む三角形である。これによ
り、水平方向の歪み応力に耐える、信頼性の高い半導体
装置を提供することができる。
According to the present invention, the vertical cross-sectional shape of the first and second protrusions relieves the horizontal strain stress applied to the joint due to a change in ambient temperature. Is a triangle including substantially vertical sides. Thus, a highly reliable semiconductor device that can withstand horizontal strain stress can be provided.

【0020】請求項8に記載の本発明によれば、半導体
ICチップ部と実装基板部の表面と垂直な断面を有し、
半導体ICチップ部と実装基板部の熱膨張係数が異な
り、第1および第2の突出部が、周囲温度変化に伴って
接合部に負荷される垂直方向の湾曲応力を緩和するよう
な垂直断面形状を有する。これにより、垂直方向の湾曲
歪み応力に耐える、信頼性の高い半導体装置を提供する
ことができる。
According to the present invention, the semiconductor device has a cross section perpendicular to the surfaces of the semiconductor IC chip portion and the mounting substrate portion,
A vertical cross-sectional shape in which the semiconductor IC chip part and the mounting substrate part have different thermal expansion coefficients, and the first and second protrusions relieve a vertical bending stress applied to the joint due to a change in ambient temperature. Having. This makes it possible to provide a highly reliable semiconductor device that can withstand vertical bending strain stress.

【0021】請求項9に記載の本発明によれば、第1の
突出部の垂直断面形状が、台形であり、第2の突出部の
垂直断面形状が、逆台形である。これにより、水平方向
の歪み応力および垂直方向の湾曲歪み応力に耐える、信
頼性の高い半導体装置を提供することができる。
According to the ninth aspect of the present invention, the vertical cross section of the first protrusion is trapezoidal, and the vertical cross section of the second protrusion is inverted trapezoid. This makes it possible to provide a highly reliable semiconductor device that withstands horizontal distortion stress and vertical distortion stress.

【0022】請求項10に記載の本発明によれば、第1
および第2の突出部が、IC電極部および基板電極部と
一体成形される。これにより、IC突出部16および基
板突出部22を別途形成する必要がないので、工程を簡
略化することができる。さらに、第1の突出部およびI
C電極部と、第2の突出部および基板電極部の間の接合
界面は、突出部および電極部を各々別途形成する場合に
比較して、両者の接合強度を最大化することができるの
で、より信頼性の高い半導体装置を提供することができ
る。
According to the tenth aspect of the present invention, the first
And the second protrusion is integrally formed with the IC electrode portion and the substrate electrode portion. This eliminates the need to separately form the IC protrusion 16 and the substrate protrusion 22, thereby simplifying the process. Further, the first protrusion and I
Since the bonding interface between the C electrode portion, the second protruding portion and the substrate electrode portion can maximize the bonding strength between them, as compared with the case where the protruding portion and the electrode portion are separately formed, A more reliable semiconductor device can be provided.

【0023】請求項11に記載の本発明によれば、複数
のIC電極部が一方の表面に形成された半導体ICチッ
プ部と、複数の基板電極部が一方の表面に形成された実
装基板部と、IC電極部と対応する基板電極部を接合す
る複数の接合部とを備えた半導体装置において、半導体
ICチップ部と実装基板部の表面と垂直な断面を有し、
IC電極部と接合部の接合界面における垂直断面形状
が、複数の凹凸状または鋸状である。これにより、IC
電極部と接合部の接合強度を向上させ、信頼性の高い半
導体装置を提供することができる。
According to the eleventh aspect of the present invention, a semiconductor IC chip portion having a plurality of IC electrode portions formed on one surface and a mounting substrate portion having a plurality of board electrode portions formed on one surface. And a semiconductor device having a plurality of bonding portions for bonding the IC electrode portion and the corresponding substrate electrode portion, the semiconductor device having a cross section perpendicular to the surfaces of the semiconductor IC chip portion and the mounting substrate portion,
The vertical cross-sectional shape at the bonding interface between the IC electrode portion and the bonding portion is a plurality of irregularities or saw-like shapes. Thereby, IC
The bonding strength between the electrode portion and the bonding portion can be improved, and a highly reliable semiconductor device can be provided.

【0024】請求項12に記載の本発明によれば、複数
のIC電極部が一方の表面に形成された半導体ICチッ
プ部と、複数の基板電極部が一方の表面に形成された実
装基板部と、IC電極部と対応する基板電極部を接合す
る複数の接合部とを備えた半導体装置において、半導体
ICチップ部と実装基板部の表面と垂直な断面を有し、
基板電極部と接合部の接合界面における垂直断面形状
が、複数の凹凸状または鋸状である。これにより、基板
電極部と接合部の接合強度を向上させ、信頼性の高い半
導体装置を提供することができる。
According to the present invention, a semiconductor IC chip portion having a plurality of IC electrode portions formed on one surface and a mounting substrate portion having a plurality of board electrode portions formed on one surface. And a semiconductor device having a plurality of bonding portions for bonding the IC electrode portion and the corresponding substrate electrode portion, the semiconductor device having a cross section perpendicular to the surfaces of the semiconductor IC chip portion and the mounting substrate portion,
The vertical cross-sectional shape at the bonding interface between the substrate electrode portion and the bonding portion is a plurality of irregularities or saw-like shapes. Thus, the bonding strength between the substrate electrode portion and the bonding portion can be improved, and a highly reliable semiconductor device can be provided.

【0025】[0025]

【発明の実施の形態】図面を参照しながら、以下に、本
発明に係る半導体装置の実施利の形態について説明す
る。各実施の形態の説明において、理解を容易にするた
めに方向を表す用語(例えば、「上部」、「下部」、
「右側」、「左側」等)を適宜用いるが、これは説明の
ためのものであって、これらの用語は本発明を限定する
ものでない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a semiconductor device according to the present invention will be described below with reference to the drawings. In the description of the embodiments, terms indicating directions (for example, “upper”, “lower”,
“Right”, “left”, etc.) are used as appropriate, but this is for explanation only, and these terms do not limit the invention.

【0026】実施の形態1.図1および図2を参照しな
がら、本発明に係る半導体装置の実施の形態1について
説明する。図1は、実施の形態1による半導体装置1の
断面図である。図1で示すように、この半導体装置1
は、概略、半導体ICチップ部2、実装回路部3、およ
びこれらを接合する複数の接合部4(4aないし4gを
示す)から構成される。図2は、図1において最も左側
(周縁)部に配置された接合部4aの一部を拡大した図
である。
Embodiment 1 First Embodiment A semiconductor device according to a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a sectional view of a semiconductor device 1 according to the first embodiment. As shown in FIG. 1, this semiconductor device 1
Generally comprises a semiconductor IC chip section 2, a mounting circuit section 3, and a plurality of joining sections 4 (showing 4a to 4g) for joining them. FIG. 2 is an enlarged view of a part of the joint 4a disposed at the leftmost (peripheral) portion in FIG.

【0027】半導体ICチップ部2は、ICチップ1
0、ダイボンド樹脂11、およびICチップ10を保護
するためのモールド樹脂12を有している。ICチップ
10は、ダイボンド樹脂11の上に搭載されており、外
部回路に接続すべき複数のICチップ端子(図示せず)
を有する。このICチップ端子は、各々、金線13およ
びダイボンド樹脂11上のパターン配線(図示せず)を
介して、ダイボンド樹脂11の下側表面に形成されたI
Cパッド14と接続している。さらに、半導体ICチッ
プ部2は、ICパッド14を包囲するように、ガラスエ
ポキシ樹脂で形成されたインタポーザ15を有する。ま
た、ICパッド14は、後述の接合される接合部4との
間にIC−接合界面17を有する。
The semiconductor IC chip unit 2 includes an IC chip 1
0, a die bond resin 11, and a mold resin 12 for protecting the IC chip 10. The IC chip 10 is mounted on the die bond resin 11 and has a plurality of IC chip terminals (not shown) to be connected to an external circuit.
Having. The IC chip terminals are formed on the lower surface of the die bond resin 11 via the gold wire 13 and the pattern wiring (not shown) on the die bond resin 11, respectively.
Connected to C pad 14. Further, the semiconductor IC chip unit 2 has an interposer 15 formed of glass epoxy resin so as to surround the IC pad 14. Further, the IC pad 14 has an IC-bonding interface 17 between the IC pad 14 and a bonding portion 4 to be bonded later.

【0028】さらに、本発明の半導体ICチップ部2
は、ICパッド14にしっかりと固定され、下方向に突
出するIC突出部16を有する。この状態で、各接合部
4が、例えば、スクリーン印刷法などにより、各ICパ
ッド14上に半田などで形成される。
Further, the semiconductor IC chip part 2 of the present invention
Has an IC protruding portion 16 which is firmly fixed to the IC pad 14 and protrudes downward. In this state, each joint 4 is formed on each IC pad 14 by solder or the like by, for example, a screen printing method.

【0029】このIC突出部16は、任意の材料で構成
することができるが、高い弾性係数(剛性率)を有する
ことが望ましい。さらに、接合部4が、上述の温度変化
に伴い、ICパッド14に対して水平左側方向の歪み応
力(F1、図8参照)を受けた場合であっても、IC突
出部16が、ICパッド14と接合部の間の接合強度を
補強して、接合部4のIC−接合界面17において亀裂
が生じることを防止できるように、IC突出部16はI
Cパッド14に強固に固定されなければならない。
The IC protrusion 16 can be made of any material, but preferably has a high elastic coefficient (rigidity). Further, even when the joint 4 receives a horizontal leftward strain stress (F 1 , see FIG. 8) with respect to the IC pad 14 due to the above-described temperature change, the IC protrusion 16 is The IC protrusion 16 is provided with an I-shaped protrusion 16 so as to reinforce the bonding strength between the pad 14 and the bonding portion and prevent a crack from being generated at the IC-bonding interface 17 of the bonding portion 4.
It must be firmly fixed to the C pad 14.

【0030】実装回路部3は、ガラスエポキシ樹脂など
により形成された実装基板20と、複数の基板パッド2
1から構成される。また、基板パッド21は、接合され
る接合部4との間に基板−接合界面23を有する。さら
に、実装回路部3は、基板パッド21にしっかりと固定
され、上方向に突出する基板突出部22を有する。こう
して、半導体ICチップ部2と実装回路部3は、図2で
示すように、基板パッド21と接合部4の各々が互いに
対向するように配置された状態でリフロー処理される。
これにより、半導体ICチップ部2が実装回路部3に接
合された半導体装置1を形成することができる。
The mounting circuit section 3 includes a mounting board 20 formed of glass epoxy resin or the like and a plurality of board pads 2.
1 Further, the substrate pad 21 has a substrate-bonding interface 23 between the substrate pad 21 and the bonding portion 4 to be bonded. Further, the mounting circuit section 3 has a board protruding section 22 that is firmly fixed to the board pad 21 and protrudes upward. Thus, the semiconductor IC chip section 2 and the mounting circuit section 3 are subjected to reflow processing in a state where the substrate pad 21 and the bonding section 4 are arranged so as to face each other, as shown in FIG.
Thereby, the semiconductor device 1 in which the semiconductor IC chip unit 2 is joined to the mounting circuit unit 3 can be formed.

【0031】同様に、この基板突出部22は、任意の材
料で構成することができるが、高い弾性係数(剛性率)
を有することが望ましい。さらに、接合部4が、上述の
温度変化に伴い、基板パッド20に対して水平右側方向
の歪み応力(F2、図8参照)温度変化に伴って水平方
向の歪み応力が生じた場合であっても、基板突出部22
が、基板パッド21と接合部4の間の接合強度を補強し
て、接合部4の基板−接合界面23において亀裂が生じ
ることを防止できるように、基板突出部22は基板パッ
ド21に強固に固定されなければならない。
Similarly, the substrate projection 22 can be made of any material, but has a high elastic modulus (rigidity).
It is desirable to have Further, the joint 4 causes a horizontal right-sided strain stress (F 2 , see FIG. 8) with respect to the substrate pad 20 due to the above-described temperature change. However, the substrate protrusion 22
However, the substrate protruding portion 22 is firmly attached to the substrate pad 21 so that the bonding strength between the substrate pad 21 and the bonding portion 4 is reinforced and a crack is prevented from being generated at the substrate-bonding interface 23 of the bonding portion 4. Must be fixed.

【0032】このように構成されたIC突出部16と基
板突出部22は、一般に、合金層で形成された接合部4
のIC−接合界面17および基板−接合界面23におい
て、ICパッド部14および接合部4と、基板パッド部
21および接合部4の間の接合強度を補強し、たとえ、
温度サイクル試験や半導体装置の動作オン・オフによる
温度変化に伴う水平方向の歪み応力F1、F2が生じて
も、接合部4の上記接合界面17、23に亀裂が生じる
ことを防止することができる。こうして、温度変化に伴
って生じる歪み応力に耐える、信頼性の高い半導体装置
を実現することができる。
The IC protrusion 16 and the substrate protrusion 22 configured as described above are generally connected to the joint 4 formed of an alloy layer.
In the IC-bonding interface 17 and the substrate-bonding interface 23, the bonding strength between the IC pad portion 14 and the bonding portion 4 and the substrate pad portion 21 and the bonding portion 4 is reinforced.
Even if horizontal strain stresses F 1 and F 2 are generated due to a temperature change due to a temperature cycle test and a temperature change due to operation ON / OFF of the semiconductor device, cracks are prevented from being generated at the bonding interfaces 17 and 23 of the bonding portion 4. Can be. Thus, a highly reliable semiconductor device that can withstand the strain stress generated due to the temperature change can be realized.

【0033】実施の形態2.図3を参照して、実施の形
態2による半導体装置1について説明する。実施の形態
2の半導体装置1は、IC突出部16と基板突出部22
の垂直断面形状が異なる点以外は、実施の形態1の半導
体装置1と同様に構成されているので、詳細な説明を省
略する。
Embodiment 2 FIG. The semiconductor device 1 according to the second embodiment will be described with reference to FIG. The semiconductor device 1 according to the second embodiment includes an IC protrusion 16 and a substrate protrusion 22.
Since the configuration is the same as that of the semiconductor device 1 of the first embodiment except that the vertical cross-sectional shape is different, detailed description will be omitted.

【0034】実施の形態1のIC突出部16と基板突出
部22は、円柱または多角柱の形状を有する一方、実施
の形態2のそれらは、図3で示すように、接合部4に向
かって広がる(より広い底面積を有する)円錐台または
角錐台の垂直断面形状を有する。つまり、IC突出部1
6が台形断面形状を有し、基板突出部22が逆台形断面
形状を有する。
The IC projecting portion 16 and the substrate projecting portion 22 of the first embodiment have a columnar or polygonal column shape, while those of the second embodiment have a shape toward the joint 4 as shown in FIG. It has a frustoconical or truncated pyramid vertical cross-sectional shape that expands (has a wider base area). That is, the IC protrusion 1
6 has a trapezoidal cross section, and the substrate projection 22 has an inverted trapezoidal cross section.

【0035】上述のように、接合部4は、ICチップ1
0に対しては垂直方向下側に湾曲応力f1を受け、実装
基板20に対しては反対方向である上側に同じ大きさの
湾曲応力f2を受ける。しかし、IC突出部16と基板
突出部22を図3で示すような形状で構成した場合、こ
れら突出部16、22が垂直方向の湾曲応力f1、f2
吸収し、接合部4が受ける湾曲応力f1、f2を低減する
ことができる。その結果、たとえ、温度サイクル試験や
半導体装置の動作オン・オフによる温度変化に伴う垂直
方向の湾曲応力f1、f2が生じても、接合部4の上記接
合界面17、23で亀裂が生じることを防止することが
できる。こうして、温度変化に伴って生じる湾曲応力に
も同様に耐える、より信頼性の高い半導体装置を実現す
ることができる。
As described above, the bonding portion 4 is connected to the IC chip 1
For 0, a bending stress f 1 is received on the lower side in the vertical direction, and on the mounting board 20, a bending stress f 2 of the same magnitude is received on the upper side in the opposite direction. However, when the IC protruding portion 16 and the substrate protruding portion 22 are configured as shown in FIG. 3, these protruding portions 16 and 22 absorb the vertical bending stresses f 1 and f 2, and are received by the joint portion 4. The bending stresses f 1 and f 2 can be reduced. As a result, even if vertical bending stresses f 1 and f 2 are generated due to a temperature change due to a temperature cycle test or a temperature change due to operation on / off of the semiconductor device, cracks are generated at the bonding interfaces 17 and 23 of the bonding portion 4. Can be prevented. In this manner, a more reliable semiconductor device that can withstand a bending stress caused by a temperature change similarly can be realized.

【0036】実施の形態3.図4を参照して、実施の形
態3による半導体装置1について説明する。実施の形態
3の半導体装置1は、IC突出部16と基板突出部22
の垂直断面形状が異なる点以外は、実施の形態1の半導
体装置1と同様に構成されているので、詳細な説明を省
略する。
Embodiment 3 FIG. The semiconductor device 1 according to the third embodiment will be described with reference to FIG. The semiconductor device 1 according to the third embodiment includes an IC protrusion 16 and a substrate protrusion 22.
Since the configuration is the same as that of the semiconductor device 1 of the first embodiment except that the vertical cross-sectional shape is different, detailed description will be omitted.

【0037】図8を用いて説明したように、温度変化に
伴う水平方向の歪み応力F1、F2は、接合部4の半導体
装置1における位置に依存する。つまり、図1で示す接
合部4aないし4cがIC基板10に対して受ける歪み
応力F1は、水平左側方向であり、逆に、実装基板20
に対して受ける歪み応力F2は、水平右側方向である。
As described with reference to FIG. 8, the horizontal strain stresses F 1 and F 2 due to the temperature change depend on the position of the junction 4 in the semiconductor device 1. In other words, strain stress F 1 to no junction 4a shown in FIG. 1, 4c receives the IC substrate 10 is a horizontal left direction, conversely, the mounting board 20
Strain stress F 2 for receiving respect is a horizontal right direction.

【0038】このように、不具合をもたらす歪み応力F
1、F2の水平方向が、その接合部4の位置から推定され
る場合、IC突出部16と基板突出部22の断面形状を
接合部4の位置に依存して変えることにより、水平方向
の歪み応力F1、F2を効率よく緩和することができる。
図4で示すように、例えば、接合部4aの内部に突出す
る基板突出部22は、左側だけにほぼ垂直な壁を含む三
角断面形状を有するように形成される。また、接合部4
aの内部に突出するIC突出部16は、これとは反対
に、右側だけにほぼ垂直な壁を含む三角断面形状を有す
るように形成される。こうして、より少量のIC突出部
16および基板突出部22を用いて、水平方向の歪み応
力F1、F2を効率よく緩和することができる。付言する
と、図1で示す接合部4eないし4gがIC基板10に
対して受ける歪み応力F1は、水平右側方向となる。
As described above, the strain stress F which causes a defect is obtained.
When the horizontal direction of 1 and F 2 is estimated from the position of the joint 4, the cross-sectional shape of the IC protrusion 16 and the substrate protrusion 22 is changed depending on the position of the joint 4, whereby The strain stresses F 1 and F 2 can be efficiently reduced.
As shown in FIG. 4, for example, the substrate protruding portion 22 protruding into the joint portion 4a is formed to have a triangular cross-sectional shape including a substantially vertical wall only on the left side. Also, the joint 4
On the contrary, the IC protruding portion 16 protruding into the inside a is formed so as to have a triangular cross-sectional shape including a substantially vertical wall only on the right side. In this manner, the horizontal strain stresses F 1 and F 2 can be efficiently reduced by using a smaller amount of the IC protrusion 16 and the substrate protrusion 22. When an additional note, the strain stress F 1 to no junction 4e shown in Figure 1, 4g receives the IC substrate 10 is a horizontal right direction.

【0039】実施の形態4.図5を参照して、実施の形
態4による半導体装置1について説明する。実施の形態
4の半導体装置1は、実施の形態1の半導体装置1のI
C突出部16と基板突出部22を、特に、接合部4の弾
性係数(剛性率)またはそれより高い弾性係数(剛性
率)を有する半田材を用いて形成したものであるので、
詳細な説明を省略する。接合部4以上の弾性係数(剛性
率)を有する材料の一例として、接合部4を構成する半
田材よりも融点の高い半田材が挙げられる。
Embodiment 4 Fourth Embodiment A semiconductor device 1 according to a fourth embodiment will be described with reference to FIG. The semiconductor device 1 of the fourth embodiment is the same as the semiconductor device 1 of the first embodiment.
Since the C protruding portion 16 and the substrate protruding portion 22 are formed by using a solder material having an elastic modulus (rigidity) of the joint 4 or a higher elastic modulus (rigidity) than that,
Detailed description is omitted. An example of a material having an elastic coefficient (rigidity) equal to or higher than that of the joint 4 is a solder material having a higher melting point than the solder material forming the joint 4.

【0040】図5で示すIC突出部16と基板突出部2
2は、例えば、スクリーン印刷法などを用いて、弾性係
数(剛性率または融点)の高い半田材を、ICパッド1
7および基板パッド21上に貼付することにより、形成
される。こうして、実施の形態1と同様に信頼性の高い
半導体装置1を、安価に大量生産できる。
The IC protrusion 16 and the substrate protrusion 2 shown in FIG.
2, a solder material having a high modulus of elasticity (rigidity or melting point) is applied to the IC pad 1 using a screen printing method or the like.
7 and the substrate pad 21. Thus, the semiconductor device 1 having high reliability as in the first embodiment can be mass-produced at low cost.

【0041】さらに、その他の適当な方法を用いて、こ
の高い弾性係数(剛性率)または高い融点を有する半田
材を、実施の形態1ないし3で説明した半導体装置のI
C突出部16と基板突出部22のような形状に成型する
ことにより、実施の形態4による半導体装置1よりも信
頼性の高い半導体装置1を実現することができる。
Further, by using another appropriate method, the solder material having the high elastic modulus (rigidity) or the high melting point is applied to the semiconductor device described in the first to third embodiments.
By molding into a shape like the C protruding portion 16 and the substrate protruding portion 22, a semiconductor device 1 having higher reliability than the semiconductor device 1 according to the fourth embodiment can be realized.

【0042】実施の形態5.図6を参照して、実施の形
態5による半導体装置1について説明する。実施の形態
5の半導体装置1は、ICパッド17および基板パッド
21自身が接合部4に突出した形状を有し、IC突出部
16および基板突出部22を省略する点以外は、実施の
形態1の半導体装置1と同様に構成されているので、詳
細な説明を省略する。つまり、ICパッド17およびI
C突出部16と、基板パッド21および基板突出部22
を一体成形して、両者の接合強度を最大化する。
Embodiment 5 FIG. The semiconductor device 1 according to the fifth embodiment will be described with reference to FIG. The semiconductor device 1 according to the fifth embodiment has the same configuration as that of the first embodiment except that the IC pad 17 and the substrate pad 21 have a shape protruding from the bonding portion 4 and the IC projection 16 and the substrate projection 22 are omitted. Since the configuration is the same as that of the semiconductor device 1, the detailed description is omitted. That is, the IC pads 17 and I
C projection 16, substrate pad 21 and substrate projection 22
To maximize the joint strength between the two.

【0043】このように、IC突出部16および基板突
出部22を別途形成する必要がないので、工程を簡略化
することができる。さらに、ICパッド17および基板
パッド21が、IC突出部16および基板突出部22の
機能を果たし、しかも一体成型されているので、より信
頼性の高い半導体装置1を実現することができる。
As described above, since it is not necessary to separately form the IC protruding portion 16 and the substrate protruding portion 22, the process can be simplified. Further, since the IC pad 17 and the substrate pad 21 function as the IC protrusion 16 and the substrate protrusion 22 and are integrally formed, the semiconductor device 1 with higher reliability can be realized.

【0044】このときのICパッド17および基板パッ
ド21の形状は、実施の形態1ないし3で説明したよう
な任意の形状に成形することができる。
At this time, the shapes of the IC pad 17 and the substrate pad 21 can be formed into any shapes as described in the first to third embodiments.

【0045】実施の形態6.図7を参照して、実施の形
態6による半導体装置1について説明する。実施の形態
6の半導体装置1は、ICパッド17および基板パッド
21によりIC突出部16および基板突出部22を一体
成形する代わりに、ICパッドおよび基板パッド21の
接合部4と対向する表面が、凹凸または鋸状段差を有す
るように形成した点以外は、従来式の半導体装置101
と同様に構成されているので、詳細な説明を省略する。
このような凹凸は、めっき法、およびエッチング法など
広く知られた方法を用いて形成することができる。
Embodiment 6 FIG. Sixth Embodiment A semiconductor device 1 according to a sixth embodiment will be described with reference to FIG. In the semiconductor device 1 according to the sixth embodiment, instead of forming the IC protruding portion 16 and the substrate protruding portion 22 integrally with the IC pad 17 and the substrate pad 21, A conventional semiconductor device 101 except that it is formed to have irregularities or sawtooth steps.
Since the configuration is the same as that described above, detailed description is omitted.
Such unevenness can be formed using a widely known method such as a plating method and an etching method.

【0046】この実施の形態6のICパッド17および
基板パッド21は、実施の形態1と同様に、接合部4に
負荷される水平方向の歪み応力F1、F2を低減すること
ができる。しかも、これらICパッド17および基板パ
ッド21を少量の材料(例えば、金など)で形成するこ
とができるので、安価に信頼性の高い半導体装置を製造
することができる。
The IC pad 17 and the substrate pad 21 according to the sixth embodiment can reduce horizontal strain stresses F 1 and F 2 applied to the joint 4, as in the first embodiment. Moreover, since the IC pad 17 and the substrate pad 21 can be formed of a small amount of material (for example, gold), a highly reliable semiconductor device can be manufactured at low cost.

【0047】[0047]

【発明の効果】請求項1に記載の本発明によれば、第1
および第2の突出部が、接合部およびIC電極部と、接
合部および基板電極部の間の接合界面における両者の接
合強度を補強し、これらの接合界面で断線しにくい、信
頼性の高い半導体装置を提供することができる。
According to the first aspect of the present invention, the first
And the second protruding portion reinforces the bonding strength between the bonding portion and the IC electrode portion, and the bonding interface between the bonding portion and the substrate electrode portion, and makes it difficult for the semiconductor device to be disconnected at the bonding interface. An apparatus can be provided.

【0048】請求項2および3に記載の本発明によれ
ば、第1および第2の突出部は、接合部以上に硬いの
で、接合部およびIC電極部と、接合部および基板電極
部の間の接合界面における両者の接合強度をより十分に
補強し、これらの接合界面でより断線しにくい、より信
頼性の高い半導体装置を提供することができる。
According to the second and third aspects of the present invention, since the first and second protrusions are harder than the joint, the gap between the joint and the IC electrode and between the joint and the substrate electrode is increased. It is possible to provide a more reliable semiconductor device in which the bonding strength between the two at the bonding interface is more sufficiently reinforced, and disconnection is more difficult at the bonding interface.

【0049】請求項4に記載の本発明によれば、第1お
よび第2の突出部を、安価に大量生産するとともに、信
頼性の高い半導体装置を提供することができる。
According to the present invention, the first and second projections can be mass-produced at low cost and provide a highly reliable semiconductor device.

【0050】請求項5ないし7に記載の本発明によれ
ば、水平方向の歪み応力に耐える、信頼性の高い半導体
装置を提供することができる。
According to the present invention, it is possible to provide a highly reliable semiconductor device which can withstand horizontal strain stress.

【0051】請求項8および9に記載の本発明によれ
ば、垂直方向の湾曲歪み応力に耐える、信頼性の高い半
導体装置を提供することができる。
According to the eighth and ninth aspects of the present invention, it is possible to provide a highly reliable semiconductor device that withstands a bending stress in a vertical direction.

【0052】請求項10に記載の本発明によれば、IC
突出部16および基板突出部22を別途形成する必要が
ないので、工程を簡略化することができ、さらに、第1
の突出部およびIC電極部と、第2の突出部および基板
電極部の間の接合界面は、突出部および電極部を各々別
途形成する場合に比較して、両者の接合強度を最大化す
ることができるので、より信頼性の高い半導体装置を提
供することができる。
According to the tenth aspect of the present invention, an IC
Since it is not necessary to separately form the protruding portion 16 and the substrate protruding portion 22, the process can be simplified, and the first
The bonding interface between the second protrusion and the substrate electrode portion, and the bonding interface between the second protrusion and the substrate electrode portion should maximize the bonding strength between the two in comparison with the case where the protrusion and the electrode portion are separately formed. Therefore, a more reliable semiconductor device can be provided.

【0053】請求項11に記載の本発明によれば、IC
電極部と接合部の接合強度を向上させ、信頼性の高い半
導体装置を提供することができる。
According to the eleventh aspect of the present invention, an IC
The bonding strength between the electrode portion and the bonding portion can be improved, and a highly reliable semiconductor device can be provided.

【0054】請求項12に記載の本発明によれば、基板
電極部と接合部の接合強度を向上させ、信頼性の高い半
導体装置を提供することができる。
According to the twelfth aspect of the present invention, the bonding strength between the substrate electrode portion and the bonding portion can be improved, and a highly reliable semiconductor device can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 図1は、本発明に係る実施の形態1の半導体
装置の断面図である。
FIG. 1 is a cross-sectional view of a semiconductor device according to a first preferred embodiment of the present invention.

【図2】 図2は、図1で示した最も左側(周縁)部に
配置された接合部の一部を拡大した断面図である。
FIG. 2 is an enlarged cross-sectional view of a part of a bonding portion arranged at a leftmost (peripheral) portion shown in FIG.

【図3】 図3は、本発明に係る実施の形態2の半導体
装置の図2と同様の一部拡大断面図である。
FIG. 3 is a partially enlarged cross-sectional view similar to FIG. 2 of a semiconductor device according to a second embodiment of the present invention;

【図4】 図4は、本発明に係る実施の形態3の半導体
装置の図2と同様の一部拡大断面図である。
FIG. 4 is a partially enlarged cross-sectional view similar to FIG. 2 of a semiconductor device according to a third embodiment of the present invention.

【図5】 図5は、本発明に係る実施の形態4の半導体
装置の図2と同様の一部拡大断面図である。
FIG. 5 is a partially enlarged sectional view similar to FIG. 2 of a semiconductor device according to a fourth embodiment of the present invention.

【図6】 図6は、本発明に係る実施の形態5の半導体
装置の図2と同様の一部拡大断面図である。
FIG. 6 is a partially enlarged sectional view similar to FIG. 2 of a semiconductor device according to a fifth embodiment of the present invention.

【図7】 図7は、本発明に係る実施の形態6の半導体
装置の図2と同様の一部拡大断面図である。
FIG. 7 is a partially enlarged sectional view similar to FIG. 2 of a semiconductor device according to a sixth embodiment of the present invention.

【図8】 図8は、従来式の半導体装置の断面図であ
る。
FIG. 8 is a sectional view of a conventional semiconductor device.

【図9】 図9は、図8で示した最も左側(周縁)部に
配置された接合部の一部を拡大した断面図であって、水
平方向の歪み応力と垂直方向の湾曲応力を示す。
FIG. 9 is an enlarged cross-sectional view of a part of a bonding portion arranged at the leftmost (peripheral) portion shown in FIG. 8, and shows a horizontal strain stress and a vertical bending stress. .

【図10】 図10は、基板−接合界面付近に亀裂が生
じた様子を示す図9と同様の一部拡大断面図である。
FIG. 10 is a partially enlarged cross-sectional view similar to FIG. 9, showing a state in which a crack has occurred near a substrate-bonding interface.

【図11】 図11は、反復的な温度変化により、基板
−接合界面に亀裂が生じて断線した様子を示す図9と同
様の一部拡大断面図である。
FIG. 11 is a partially enlarged cross-sectional view similar to FIG. 9, showing a state in which a crack is generated at a substrate-bonding interface due to a repetitive temperature change and the wire is broken.

【符号の説明】[Explanation of symbols]

1 半導体装置、2 半導体ICチップ部、3 実装回
路部、4 接合部、10ICチップ、11 ダイボンド
樹脂、13 金線、14 ICパッド、15インタポー
ザ、16 IC突出部、17 IC−接合界面、20
実装基板、21 基板パッド、22 基板突出部、23
基板−接合界面。
REFERENCE SIGNS LIST 1 semiconductor device, 2 semiconductor IC chip section, 3 mounting circuit section, 4 bonding section, 10 IC chip, 11 die bond resin, 13 gold wire, 14 IC pad, 15 interposer, 16 IC protrusion, 17 IC-bonding interface, 20
Mounting board, 21 board pad, 22 board protrusion, 23
Substrate-joining interface.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 谷 周一 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 Fターム(参考) 5F044 KK17 LL01 LL04 QQ02  ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shuichi Tani 2-3-2 Marunouchi, Chiyoda-ku, Tokyo F-term (reference) 5F044 KK17 LL01 LL04 QQ02

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 複数のIC電極部が一方の表面に形成さ
れた半導体ICチップ部と、複数の基板電極部が一方の
表面に形成された実装基板部と、IC電極部と対応する
基板電極部を接合する複数の接合部とを備えた半導体装
置において、 IC電極部が、該IC電極部に固定され、接合部内部に
突出する第1の突出部を有し、 基板電極部が、該基板電極部に固定され、接合部内部に
突出する第2の突出部を有することを特徴とする半導体
装置。
1. A semiconductor IC chip portion having a plurality of IC electrode portions formed on one surface, a mounting board portion having a plurality of substrate electrode portions formed on one surface, and a substrate electrode corresponding to the IC electrode portion. A semiconductor device comprising a plurality of joints for joining the parts, wherein the IC electrode part has a first protrusion fixed to the IC electrode part and projecting inside the joint part; A semiconductor device having a second protrusion fixed to a substrate electrode portion and projecting into a joint portion.
【請求項2】 第1および第2の突出部が、接合部以上
の弾性係数を有することを特徴とすることを特徴とする
半導体装置。
2. The semiconductor device according to claim 1, wherein the first and second protrusions have an elastic coefficient higher than that of the joint.
【請求項3】 第1および第2の突出部が、接合部以上
の融点を有することを特徴とする請求項1の半導体装
置。
3. The semiconductor device according to claim 1, wherein the first and second protrusions have a melting point equal to or higher than the junction.
【請求項4】 接合部が半田材からなることを特徴とす
る請求項1の半導体装置。
4. The semiconductor device according to claim 1, wherein the joint is made of a solder material.
【請求項5】 半導体ICチップ部と実装基板部の表面
と垂直な断面を有し、 半導体ICチップ部と実装基板部の熱膨張係数が異な
り、 第1および第2の突出部が、周囲温度変化に伴って接合
部に負荷される水平方向の歪み応力を緩和するような垂
直断面形状を有することを特徴とする請求項1の半導体
装置。
5. A semiconductor IC chip portion having a cross section perpendicular to a surface of a mounting substrate portion, wherein the semiconductor IC chip portion and the mounting substrate portion have different thermal expansion coefficients, and the first and second protrusions have an ambient temperature. 2. The semiconductor device according to claim 1, wherein the semiconductor device has a vertical cross-sectional shape so as to relieve a horizontal strain stress applied to the joint portion with the change.
【請求項6】 第1および第2の突出部の垂直断面形状
が、矩形であることを特徴とする請求項5の半導体装
置。
6. The semiconductor device according to claim 5, wherein the vertical cross-sectional shape of the first and second protrusions is rectangular.
【請求項7】 第1および第2の突出部の垂直断面形状
が、周囲温度変化に伴って接合部に負荷される水平方向
の歪み応力を緩和するような実質的に垂直な辺を含む三
角形であることを特徴とする請求項5の半導体装置。
7. A triangle wherein the vertical cross-sectional shape of the first and second protrusions includes substantially vertical sides to relieve horizontal strain stresses applied to the joint due to changes in ambient temperature. 6. The semiconductor device according to claim 5, wherein
【請求項8】 半導体ICチップ部と実装基板部の表面
と垂直な断面を有し、 半導体ICチップ部と実装基板部の熱膨張係数が異な
り、 第1および第2の突出部が、周囲温度変化に伴って接合
部に負荷される垂直方向の湾曲応力を緩和するような垂
直断面形状を有することを特徴とする請求項1の半導体
装置。
8. A semiconductor IC chip and a mounting substrate having a cross section perpendicular to a surface of the mounting substrate, wherein the semiconductor IC chip and the mounting substrate have different coefficients of thermal expansion, and the first and second projections have an ambient temperature. 2. The semiconductor device according to claim 1, wherein the semiconductor device has a vertical cross-sectional shape so as to relieve a vertical bending stress applied to the joint portion with the change.
【請求項9】 第1の突出部の垂直断面形状が、台形で
あり、 第2の突出部の垂直断面形状が、逆台形であることを特
徴とする請求項8の半導体装置。
9. The semiconductor device according to claim 8, wherein the vertical cross section of the first protrusion is a trapezoid, and the vertical cross section of the second protrusion is an inverted trapezoid.
【請求項10】 第1および第2の突出部が、IC電極
部および基板電極部と一体成形されたことを特徴とする
請求項1ないし9のいずれかの半導体装置。
10. The semiconductor device according to claim 1, wherein the first and second projecting portions are formed integrally with the IC electrode portion and the substrate electrode portion.
【請求項11】 複数のIC電極部が一方の表面に形成
された半導体ICチップ部と、複数の基板電極部が一方
の表面に形成された実装基板部と、IC電極部と対応す
る基板電極部を接合する複数の接合部とを備えた半導体
装置において、 半導体ICチップ部と実装基板部の表面と垂直な断面を
有し、 IC電極部と接合部の接合界面における垂直断面形状
が、複数の凹凸状または鋸状であることを特徴とする半
導体装置。
11. A semiconductor IC chip portion having a plurality of IC electrode portions formed on one surface, a mounting substrate portion having a plurality of board electrode portions formed on one surface, and a substrate electrode corresponding to the IC electrode portion. A semiconductor device having a plurality of joints for joining the parts, the semiconductor device having a cross section perpendicular to the surface of the semiconductor IC chip part and the surface of the mounting substrate part, and having a plurality of vertical cross-sectional shapes at the joint interface between the IC electrode part and the joint part A semiconductor device characterized by having an uneven shape or a saw-like shape.
【請求項12】 複数のIC電極部が一方の表面に形成
された半導体ICチップ部と、複数の基板電極部が一方
の表面に形成された実装基板部と、IC電極部と対応す
る基板電極部を接合する複数の接合部とを備えた半導体
装置において、 半導体ICチップ部と実装基板部の表面と垂直な断面を
有し、 基板電極部と接合部の接合界面における垂直断面形状
が、複数の凹凸状または鋸状であることを特徴とする半
導体装置。
12. A semiconductor IC chip portion having a plurality of IC electrode portions formed on one surface, a mounting board portion having a plurality of substrate electrode portions formed on one surface, and a substrate electrode corresponding to the IC electrode portion. A semiconductor device having a plurality of joints for joining the parts, the semiconductor device having a cross section perpendicular to the surface of the semiconductor IC chip part and the surface of the mounting substrate part, and having a plurality of vertical cross-sectional shapes at the joint interface between the substrate electrode part and the joint part. A semiconductor device characterized by having an uneven shape or a saw-like shape.
JP2000167737A 2000-06-05 2000-06-05 Semiconductor device Pending JP2001351946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000167737A JP2001351946A (en) 2000-06-05 2000-06-05 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000167737A JP2001351946A (en) 2000-06-05 2000-06-05 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2001351946A true JP2001351946A (en) 2001-12-21

Family

ID=18670856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000167737A Pending JP2001351946A (en) 2000-06-05 2000-06-05 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2001351946A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6462414B1 (en) * 1999-03-05 2002-10-08 Altera Corporation Integrated circuit package utilizing a conductive structure for interlocking a conductive ball to a ball pad
WO2004051748A1 (en) * 2002-11-27 2004-06-17 Freescale Semiconductor, Inc. Solder bond pad with a convex shape
JP2005101614A (en) * 2003-09-23 2005-04-14 Samsung Electronics Co Ltd Reinforced solder bump and method of forming reinforced solder bump structure
US7446399B1 (en) 2004-08-04 2008-11-04 Altera Corporation Pad structures to improve board-level reliability of solder-on-pad BGA structures
JP2009099637A (en) * 2007-10-15 2009-05-07 Fujitsu Ltd Circuit board, semiconductor device, and manufacturing method of semiconductor device
JP2011181953A (en) * 2011-05-16 2011-09-15 Fujitsu Ltd Semiconductor device and method of manufacturing the same
WO2014155455A1 (en) * 2013-03-26 2014-10-02 日本特殊陶業株式会社 Wiring board
JP2015115363A (en) * 2013-12-09 2015-06-22 富士通株式会社 Electronic device and method of manufacturing electronic device
JP2018107302A (en) * 2016-12-27 2018-07-05 日立オートモティブシステムズ株式会社 Semiconductor device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6462414B1 (en) * 1999-03-05 2002-10-08 Altera Corporation Integrated circuit package utilizing a conductive structure for interlocking a conductive ball to a ball pad
US6929978B2 (en) 1999-03-05 2005-08-16 Altera Corporation Method of fabricating an integrated circuit package utilizing a conductive structure for improving the bond strength between an IC package and a printed circuit board
WO2004051748A1 (en) * 2002-11-27 2004-06-17 Freescale Semiconductor, Inc. Solder bond pad with a convex shape
JP2005101614A (en) * 2003-09-23 2005-04-14 Samsung Electronics Co Ltd Reinforced solder bump and method of forming reinforced solder bump structure
US7446399B1 (en) 2004-08-04 2008-11-04 Altera Corporation Pad structures to improve board-level reliability of solder-on-pad BGA structures
JP2009099637A (en) * 2007-10-15 2009-05-07 Fujitsu Ltd Circuit board, semiconductor device, and manufacturing method of semiconductor device
JP2011181953A (en) * 2011-05-16 2011-09-15 Fujitsu Ltd Semiconductor device and method of manufacturing the same
WO2014155455A1 (en) * 2013-03-26 2014-10-02 日本特殊陶業株式会社 Wiring board
JP2015115363A (en) * 2013-12-09 2015-06-22 富士通株式会社 Electronic device and method of manufacturing electronic device
US9761552B2 (en) 2013-12-09 2017-09-12 Fujitsu Limited Electronic apparatus and method for fabricating the same
US9812418B2 (en) 2013-12-09 2017-11-07 Fujitsu Limited Electronic apparatus and method for fabricating the same
JP2018107302A (en) * 2016-12-27 2018-07-05 日立オートモティブシステムズ株式会社 Semiconductor device

Similar Documents

Publication Publication Date Title
JP2842361B2 (en) Semiconductor device
KR101661442B1 (en) Stud bump structure for semiconductor package assemblies
TWI419287B (en) Methods and apparatus for a quad flat no-lead (qfn) package
JP2007165420A (en) Semiconductor device
US6756686B2 (en) Semiconductor device
JPH11354677A (en) Method and structure for mounting semiconductor device
US7005749B2 (en) Flip chip package structure
KR100368776B1 (en) Semiconductor device and method for manufacturing same
JP2001351946A (en) Semiconductor device
JP3243956B2 (en) Semiconductor device and manufacturing method thereof
CN107978582B (en) Chip packaging structure and related pin bonding method
US20030025201A1 (en) Integrated circuit chip with little possibility of becoming damaged and structure for mounting the same
JPH11265967A (en) Lsi mounting board structure and its manufacture
JPH09307022A (en) Surface mount semiconductor package, printed wiring board and module substrate
JP2000133668A (en) Semiconductor device and packaging structure
JP2007317754A (en) Semiconductor device
JP4894159B2 (en) Semiconductor device and manufacturing method thereof
JPH11204692A (en) Semiconductor device
JP2004047758A (en) Semiconductor device
JP2020136624A (en) Semiconductor device
JP2004128364A (en) Semiconductor package and its mounting structure
JP2000307016A (en) Semiconductor device, semiconductor module and manufacture thereof
JP2000164628A (en) Electronic part and face-down mounting structure
JPH08236575A (en) Semiconductor device and manufacturing method thereof
JPH10335386A (en) Semiconductor mounting method