JPH10229102A - Electronic product - Google Patents

Electronic product

Info

Publication number
JPH10229102A
JPH10229102A JP3165397A JP3165397A JPH10229102A JP H10229102 A JPH10229102 A JP H10229102A JP 3165397 A JP3165397 A JP 3165397A JP 3165397 A JP3165397 A JP 3165397A JP H10229102 A JPH10229102 A JP H10229102A
Authority
JP
Japan
Prior art keywords
board
chips
deformation
laminated material
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3165397A
Other languages
Japanese (ja)
Inventor
Shozo Nakamura
省三 中村
Kazuhiro Isaka
和博 井坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Hitachi Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP3165397A priority Critical patent/JPH10229102A/en
Publication of JPH10229102A publication Critical patent/JPH10229102A/en
Pending legal-status Critical Current

Links

Landscapes

  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To minimize deformation of a warpage of a laminated material subsequent to the connection of LSI chips with an organic wiring board in the case where the LSI chips are respectively mounted on the surface and backside of the board in an asymmetrical state to the minimum, by a method wherein the thicknesses and elastic coefficients of the LSI chips, the board and a resin which constitute the laminated material, are controlled. SOLUTION: As a method of preventing deformation of a warpage of a laminated material, which is caused by a difference between the linear expansion coefficients of LSI chips subsequent to the connection of the chips 1 with an organic wiring board 3 and a difference between the linear expansion coefficients of resins 2 and the organic wiring board 3, the chips 1 of the same thickness are aligned with chip side bump electrodes 5 and board side electrodes 4 using the resins 2, such that the chips 1 are mounted on the surface and backside of the board 3 in a symmetrical state with the center of the middle of the board 3 as an axis in the section of the laminated material and thereafter, are respectively mounted on the surface and backside of the board 3. At this point, laminated members of a structure, wherein the sum total of the bending rigidities of each laminated material, which is constituted of a member in the range of the bending rigidity of roughly 10 to 90W(kg mm<2> ) (W: the width (mm) of a composite member) of the chips 1 and a member in the range of the bending rigidity of roughly 0.0004 to 4W(kg mm<2> ) of the board 3 which is connected with these chips 1, is roughly 30W(kg mm<2> ) or higher, are respectively mounted on the surface and backside of the board 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は有機配線基板にLSI
チップをフリップチップ方式により接続してなる実装構
造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic circuit
The present invention relates to a mounting structure in which chips are connected by a flip chip method.

【0002】[0002]

【従来の技術】これまで電子部品等におけるLSIチップ
の実装は主にワイヤボンデングによるフェースアップ
方式であったが、実装密度が高くなるにつれ、次第に樹
脂によるフェースダウン方式が採用されるようになって
きており、将来このフェースダウン方式による実装が中
心になるものと期待されている。
BACKGROUND ART LSI chip implementation in an electronic component such as a far primarily but there was a face-up method according Waiyabonde Lee ring, as the packing density increases, becoming increasingly so face-down type of a resin is employed It is expected that this face-down mounting will be the main focus in the future.

【0003】この樹脂を用いたフェースダウン方式によ
る実装は、LSIチップの電極と有機配線基板の配線電極
を電気的に接続しながら、且つ同時に樹脂で固定すると
いう方式であるため、接続後のLSIチップ,樹脂および
有機配線基板の線膨張係数の差による積層体の反り変形
による接続信頼性の悪化が懸念されている。反り変形を
防ぐ方法として図1に示すように積層体の断面におい
て、配線基板3の中央を軸として基板の表裏で対称とな
るように同じ厚さのLSIチップ1をチップ側突起電極5と
基板側電極4を樹脂2を用いて位置合わせ後、実装する方
法がある。
[0003] The mounting by the face-down method using the resin is a method in which the electrodes of the LSI chip and the wiring electrodes of the organic wiring board are electrically connected and simultaneously fixed with the resin. There is a concern that the reliability of the connection may be degraded due to the warpage of the laminate due to the difference in linear expansion coefficient between the chip, the resin, and the organic wiring substrate. As a method for preventing warpage deformation, as shown in FIG. 1, an LSI chip 1 of the same thickness is symmetrical on the front and back sides of the substrate with respect to the center of the wiring substrate 3 in the cross section of the laminate as shown in FIG. There is a method of mounting the side electrode 4 after positioning using the resin 2.

【0004】[0004]

【発明が解決しようとする課題】しかし、このような方
法では、常に基板の表裏に対称に実装しなければならな
い。
However, in such a method, it is necessary to always mount the board symmetrically on the front and back sides of the board.

【0005】本発明は、LSIチップと有機配線基板を樹
脂を用いたフェースダウン方式によって実装する場合
で、積層体に何ら外力を加えることなく積層体を構成す
るLSIチップ,有機配線基板,樹脂の厚さと弾性係数を
制御することにより、基板の表裏に非対称に実装した場
合の接続後の積層体の反り変形を最小限に抑えようとす
るものである。
The present invention relates to a case in which an LSI chip and an organic wiring board are mounted by a face-down method using a resin, and the LSI chip, the organic wiring board, and the resin constituting the laminate without applying any external force to the laminate. By controlling the thickness and the elastic modulus, the warpage of the laminated body after connection when mounted asymmetrically on the front and back of the substrate is to be minimized.

【0006】[0006]

【課題を解決するための手段】一般に、はりの機械的な
曲げによる変形に対して、曲げ剛性EIははりの変形抵
抗の大きさを示し、変形量はEIに反比例することが分
かっている(参考文献;中原一郎著 材料力学)。ここ
で、Eは材質の弾性係数、Iは材質には無関係で断面の
形状と大きさによって定まる断面二次モーメントであ
る。
In general, it is known that the bending rigidity EI indicates the magnitude of the deformation resistance of a beam and the amount of deformation is inversely proportional to the deformation of the beam due to mechanical bending of the beam. References: Ichiro Nakahara, Mechanics of Materials). Here, E is a modulus of elasticity of the material, and I is a second moment of area determined by the shape and size of the cross section regardless of the material.

【0007】図2にn層からなる積層体の斜視図を示
す。配線基板10上にn層から成るLSIチップ11を樹脂12
を用いて実装した図である。長さL(mm),幅w(mm)(L
≧w)の積層体をAA’方向にとったときの断面図を図
3に示す。先に述べたように断面二次モーメントは断面
の形状と大きさによって定まる。積層体の断面は長方形
型であり、この場合の断面二次モーメントIはwh3/12
(h;厚さ)となる。したがって、図3に示した積層体の
曲げ剛性の総和ΣEnnは、
FIG. 2 is a perspective view of a laminate comprising n layers. An n-layer LSI chip 11 is mounted on a wiring board 10 with a resin 12
FIG. Length L (mm), width w (mm) (L
FIG. 3 is a cross-sectional view when the laminate of ≧ w) is taken in the AA ′ direction. As described above, the second moment of area is determined by the shape and size of the cross section. The cross section of the laminate has a rectangular form, moment of inertia of area I in this case is wh 3/12
(H; thickness). Therefore, the sum? En n I n the flexural rigidity of the stacked body illustrated in FIG. 3,

【0008】[0008]

【数1】 ΣEnn=E1w1h1 3/12+E2w2h2 3/12+・・・・・+Enwnhn 3/12 …(数1) と表される。[Number 1] is represented as ΣE n I n = E 1 w 1 h 1 3/12 + E 2 w 2 h 2 3/12 + ····· + E n w n h n 3/12 ... ( Equation 1).

【0009】層構成の異なる積層体の曲げ剛性の総和Σ
nnと変形量の関係を求めると図4に示すように、変
形量は曲げ剛性の和ΣEnnに反比例し、ΣEnnが30
w(kgmm2)以上で変形量は小さくなり安定する。本発明
は、この事実に基づいて積層体の適正な層構成を提案す
るものである。
Sum of bending stiffness of laminates having different layer structures 異 な る
E n I n the deformation amount of the seek relationship as shown in FIG. 4, the deformation amount is inversely proportional to the sum? En n I n the bending stiffness, is ΣE n I n 30
Above w (kgmm 2 ), the deformation becomes small and stable. The present invention proposes an appropriate layer configuration of the laminate based on this fact.

【0010】[0010]

【発明の実施の形態】第一の実施例の図を図5に示す。
線膨張係数α=3.0×10~6/℃,弾性係数E=169.8GPaの物
性を有するLSIチップ20と、ガラス転移温度以下におけ
る線膨張係数α1=11.6×10~6/℃、ガラス転移温度以上
における線膨張係数α2=1.4×10~6/℃、ガラス状領域の
弾性係数EG=17.5GPa、ゴム状領域の弾性係数ER=5.2GP
a、Tg=158℃の物性を有するガラスエポキシ基板21を線
膨張係数α1=65.6×10~6/℃,線膨張係数α2=184.9×10
~6/℃,ガラス状領域の弾性係数EG=2.5GPa,ゴム状領
域の弾性係数ER=0.01GPa,Tg=115℃の物性を有する微
少量のフィラー入り樹脂22を用いて各構成材の厚さを変
えて180℃で接続し、積層体を20℃まで冷却したときの
積層体の変形量を測定した。積層体の大きさは長さ13mm
×幅3mmで長さ方向の変形量を測定した。この場合、樹
脂の厚さはほぼ0.01mmである。ガラスエポキシ基板21の
厚さを0.4mm一定としたときのLSIチップ20の厚さと変形
量の関係を図6に示す。LSIチップ20の厚さが増すほ
ど、変形量は小さくなる。このときの曲げ剛性の総和Σ
nnと変形量の関係を図7に示す。ΣEnnの値が大
きくなるほど積層体全体の剛性が大きくなり、変形量は
小さくなる。LSIチップ20とガラスエポキシ基板21の厚
さを変えたときのΣEnnに対する変形量の関係をプロ
ットして図8に示す。図8よりΣEnn=90kgmm2(w=3m
m)以上にて変形量は小さく安定することが判る。変形量
が小さく安定な領域では、信頼性の面で問題は生じなか
った。このときのチップ厚/基板厚と熱変形量の関係を
図9に示す。この図から、熱変形量が小さく安定する領
域はガラスエポキシ基板の厚さに対するLSIチップの比
が1.4以上であることが判る。
FIG. 5 shows a first embodiment of the present invention.
Linear expansion coefficient α = 3.0 × 10 ~ 6 / ℃, the LSI chip 20 having physical properties of elastic modulus E = 169.8GPa, linear expansion coefficient at a temperature lower than the glass transition temperature α 1 = 11.6 × 10 ~ 6 / ℃, the glass transition temperature The coefficient of linear expansion α 2 = 1.4 × 10 6 / ° C. above, the elastic modulus E G of the glassy region = 17.5 GPa, and the elastic modulus E R of the rubbery region E R = 5.2 GP
a, a glass epoxy substrate 21 having a physical property of Tg = 158 ° C. is subjected to a linear expansion coefficient α 1 = 65.6 × 10 to 6 / ° C. and a linear expansion coefficient α 2 = 184.9 × 10
~ 6 / ° C., the elastic coefficient of the glass-like region E G = 2.5 GPa, rubbery region coefficient of elasticity E R = 0.01GPa, Tg = 115 ℃ constituent materials using small amount of filler-containing resin 22 having the properties of Were connected at 180 ° C. while changing the thickness of the laminate, and the amount of deformation of the laminate when the laminate was cooled to 20 ° C. was measured. The size of the laminate is 13 mm in length
X The amount of deformation in the length direction was measured at a width of 3 mm. In this case, the thickness of the resin is approximately 0.01 mm. FIG. 6 shows the relationship between the thickness of the LSI chip 20 and the amount of deformation when the thickness of the glass epoxy substrate 21 is constant at 0.4 mm. As the thickness of the LSI chip 20 increases, the amount of deformation decreases. Sum of bending stiffness at this time Σ
The amount of deformation of the relationship between E n I n shown in FIG. ? En n I rigidity of the entire laminate as the value increases the n is increased, the amount of deformation is small. 8 by plotting the deformation amount of the relationship? En n I n when varying the thickness of the LSI chip 20 and the glass epoxy substrate 21. ΣE from Figure 8 n I n = 90kgmm 2 ( w = 3m
It can be seen that the deformation amount is small and stable above m). In a stable region where the deformation amount is small, no problem occurred in terms of reliability. FIG. 9 shows the relationship between the chip thickness / substrate thickness and the amount of thermal deformation at this time. From this figure, it can be seen that the ratio of the LSI chip to the thickness of the glass epoxy substrate is 1.4 or more in the region where the amount of thermal deformation is small and stable.

【0011】第二の実施例の図を図10に示す。LSIチ
ップ31をプリント配線基板32上に異方導電接着剤33を用
いて実装した例である。電極34の接触部の断面図を図1
1に示す。チップ側の突起電極35と基板側の電極36は異
方導電接着剤中の導電性粒子37により、電気的に接続し
ており、異方導電接着剤中の樹脂38により、接着固定さ
れている。この場合におけるΣEnnの計算については
導電性粒子の粒子径、両電極の高さは他の構成材料の厚
さに比べ極めて小さいこと、LSIチップの接続面積に占
める電極および導電性粒子の割合が非常に小さいことか
ら導電性粒子,チップ側の突起電極および基板側電極を
無視する。ここで、用いた異方導電接着剤のレジンの弾
性係数(20℃)はほぼ2.5GPaである。
FIG. 10 shows a second embodiment. In this example, an LSI chip 31 is mounted on a printed wiring board 32 using an anisotropic conductive adhesive 33. FIG. 1 is a sectional view of a contact portion of the electrode 34.
It is shown in FIG. The protruding electrode 35 on the chip side and the electrode 36 on the substrate side are electrically connected by conductive particles 37 in the anisotropic conductive adhesive, and are bonded and fixed by the resin 38 in the anisotropic conductive adhesive. . Particle diameter of the conductive particles for calculation of? En n I n in this case, the height of the electrodes is very small compared to the thickness of other constituent materials, electrodes and conductive particles occupying the connection area of the LSI chip Since the ratio is very small, conductive particles, protruding electrodes on the chip side, and electrodes on the substrate side are ignored. Here, the elastic modulus (20 ° C.) of the resin of the anisotropic conductive adhesive used is approximately 2.5 GPa.

【0012】[0012]

【数2】 ΣEnn=EI(LSIチップ)+EI(レジン)+EI(基板) =(16980×w×0.553/12)+(250×w×0.0593/12) +(1750×w×0.83/12) =310.1w kgmm2 …(数2) 以上のようになり、この材料構成における変形量とΣE
nnの関係は図4にしたがう。
[Number 2] ΣE n I n = EI (LSI chip) + EI (resin) + EI (substrate) = (16980 × w × 0.55 3 /12)+(250×w×0.059 3/12) + (1750 × w × 0.8 3/12) = 310.1w kgmm 2 ... ( it becomes Equation 2) above, deformation amount and ΣE in the material structure
relationship n I n is according to Figure 4.

【0013】第三の実施例を図12に示す。厚さ0.4mm
のガラスエポキシ基板41に0.4mm厚のLSIチップ42を銀ペ
ースト43で接着し、ガラスエポキシ基板41の裏側に0.17
mm厚のLSIチップ44を異方導電接着剤45で電気的に接続
した図である。この場合におけるΣEnnの計算につい
ては電極および導電性粒子,銀を第二の実施例の場合と
同様の理由で無視した。銀ペースト43の接着剤の弾性係
数はほぼ1GPaである。
FIG. 12 shows a third embodiment. 0.4mm thick
A 0.4 mm thick LSI chip 42 is bonded to a glass epoxy substrate 41 with a silver paste 43, and 0.17
FIG. 4 is a diagram in which an LSI chip 44 having a thickness of mm is electrically connected by an anisotropic conductive adhesive 45. This for the calculation of? En n I n when ignoring electrode and conductive particles, silver for the same reason as in the second embodiment. The elastic modulus of the adhesive of the silver paste 43 is approximately 1 GPa.

【0014】[0014]

【数3】 ΣEnn=EI(基板)+EI(銀ペースト)+EI(0.4mm厚LSIチップ) +EI(異方導電接着剤)+EI(0.17mm厚LSIチップ) =106.8w kgmm2 …(数3) 以上のようになり、この場合も変形量とΣEnnの関係
は図4にしたがうが、基板41の両側に実装された構成材
の材料が対称的に同一であり、厚さも同一である場合は
例外である。
Equation 3] ΣE n I n = EI (substrate) + EI (silver paste) + EI (0.4 mm thick LSI chip) + EI (anisotropic conductive adhesives) + EI (0.17 mm thick LSI chip) = 106.8w kgmm 2 ... (Number 3) becomes above, this case is the relationship of the deformation amount and the? En n I n but according to FIG. 4, a material is symmetrically identical construction material mounted on both sides of the substrate 41, even thickness identical Is an exception.

【0015】[0015]

【発明の効果】本発明により、簡単な予備実験或いはシ
ミュレーションを行い、積層体の曲げ剛性の和を制御す
る。即ち層構成を適正に制御することにより、基板の表
裏に対して非対称に実装した場合で、熱による変形およ
び機械的な外力に対する変形を最小限に抑えた最適な半
導体素子の実装構造を有する電子製品を提供できる。
According to the present invention, a simple preliminary experiment or simulation is performed to control the sum of the bending stiffness of the laminate. That is, by appropriately controlling the layer configuration, an electronic device having an optimal semiconductor element mounting structure that minimizes deformation due to heat and mechanical external force when mounted asymmetrically on the front and back of the substrate. We can provide products.

【図面の簡単な説明】[Brief description of the drawings]

【図1】両面実装例の断面図。FIG. 1 is a cross-sectional view of a double-sided mounting example.

【図2】n層からなる積層体の斜視図。FIG. 2 is a perspective view of a laminate including n layers.

【図3】長さL(mm),幅w(mm)(L≧w)の積層体の断面
図。
FIG. 3 is a cross-sectional view of a laminate having a length L (mm) and a width w (mm) (L ≧ w).

【図4】曲げ剛性の総和ΣEnnと変形量の関係の特性
図。
[4] Bending characteristic diagram of the amount of deformation of the relationship between the sum? En n I n rigidity.

【図5】LSIチップ/樹脂/ガラスエポキシ基板の積層
体の説明図。
FIG. 5 is an explanatory diagram of a laminate of an LSI chip / resin / glass epoxy substrate.

【図6】LSIチップ/樹脂(0.01mmt)/ガラスエポキシ基
板(0.4mmt)積層体におけるLSIチップの厚さと変形量の
関係の特性図。
FIG. 6 is a characteristic diagram showing a relationship between a thickness of an LSI chip and a deformation amount in an LSI chip / resin (0.01 mmt) / glass epoxy substrate (0.4 mmt) laminate.

【図7】LSIチップ/樹脂(0.01mmt)/ガラスエポキシ基
板(0.4mmt)積層体における曲げ剛性の総和ΣEnnと変
形量の関係の特性図。
[7] LSI chip / resin (0.01mmt) / glass epoxy substrate (0.4mmt) characteristic diagram of the amount of deformation of the relationship between the sum? En n I n the flexural rigidity in the laminate.

【図8】LSIチップ/樹脂/ガラスエポキシ基板積層体
における曲げ剛性の総和ΣEnnと変形量の関係の特性
図。
[8] LSI chip / resin / characteristic diagram of the amount of deformation of the relationship between the sum? En n I n the flexural rigidity in a glass epoxy substrate laminate.

【図9】チップ厚/基板厚と熱変形量の関係の特性図。FIG. 9 is a characteristic diagram showing a relationship between a chip thickness / substrate thickness and an amount of thermal deformation.

【図10】COB(チップオンボード)の実装例の斜視
図。
FIG. 10 is a perspective view of a mounting example of a COB (chip-on-board).

【図11】COBの電極の接続部の断面図。FIG. 11 is a sectional view of a connection portion of a COB electrode.

【図12】COBの両面実装例の断面図。FIG. 12 is a cross-sectional view of a COB double-sided mounting example.

【符号の説明】[Explanation of symbols]

1…LSIチップ、2…樹脂、3…配線基板、4…基板側
電極、5…チップ側突起電極。
DESCRIPTION OF SYMBOLS 1 ... LSI chip, 2 ... resin, 3 ... wiring board, 4 ... board side electrode, 5 ... chip side protrusion electrode.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】LSIチップおよび基板の他に樹脂,金属,
セラミックスのn層からなる複合部材において、上記LS
Iチップの曲げ剛性EIがほぼ10w〜90w(kgmm2)(w;複合
部材の幅(mm))であり、これに接続される上記基板の曲
げ剛性EIがほぼ0.0004w〜4w(kgmm2)の範囲の部材で構
成される積層部材の曲げ剛性の総和ΣEnn(E;弾性
係数,I;断面二次モーメント)がほぼ30w(kgmm2)以上
となる構造を有する積層部材を実装したことを特徴とす
る電子製品。
(1) In addition to an LSI chip and a substrate, a resin, a metal,
In a composite member comprising an n-layer of ceramics, the LS
The flexural rigidity EI of the I chip is approximately 10 w to 90 w (kgmm 2 ) (w; width of the composite member (mm)), and the flexural rigidity EI of the substrate connected thereto is approximately 0.0004 w to 4 w (kgmm 2 ). total? En n I n the bending range of the member composed laminated rigid member mounting the laminated member having (; modulus of elasticity, I E geometrical moment of inertia) approximately 30w (kgmm 2) or more and consisting structure An electronic product characterized by that:
【請求項2】LSIチップおよび基板の他に樹脂,金属,
セラミックスのn層からなる複合部材において、上記LS
Iチップの厚が上記基板の厚に対してほぼ1.4倍以上を有
する積層部材を実装したことを特徴とする電子製品。
2. In addition to the LSI chip and the substrate, resin, metal,
In a composite member comprising an n-layer of ceramics, the LS
An electronic product wherein a laminated member having an I-chip thickness of at least 1.4 times the thickness of the substrate is mounted.
JP3165397A 1997-02-17 1997-02-17 Electronic product Pending JPH10229102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3165397A JPH10229102A (en) 1997-02-17 1997-02-17 Electronic product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3165397A JPH10229102A (en) 1997-02-17 1997-02-17 Electronic product

Publications (1)

Publication Number Publication Date
JPH10229102A true JPH10229102A (en) 1998-08-25

Family

ID=12337135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3165397A Pending JPH10229102A (en) 1997-02-17 1997-02-17 Electronic product

Country Status (1)

Country Link
JP (1) JPH10229102A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6518666B1 (en) 1999-11-25 2003-02-11 Nec Corporation Circuit board reducing a warp and a method of mounting an integrated circuit chip
EP1534052A2 (en) * 2003-11-20 2005-05-25 Delphi Technologies, Inc. Circuit board with localized stiffener for enchanced circuit component reliability
JP2006210566A (en) * 2005-01-27 2006-08-10 Akita Denshi Systems:Kk Semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6518666B1 (en) 1999-11-25 2003-02-11 Nec Corporation Circuit board reducing a warp and a method of mounting an integrated circuit chip
EP1534052A2 (en) * 2003-11-20 2005-05-25 Delphi Technologies, Inc. Circuit board with localized stiffener for enchanced circuit component reliability
EP1534052A3 (en) * 2003-11-20 2007-10-24 Delphi Technologies, Inc. Circuit board with localized stiffener for enchanced circuit component reliability
JP2006210566A (en) * 2005-01-27 2006-08-10 Akita Denshi Systems:Kk Semiconductor device

Similar Documents

Publication Publication Date Title
US7872869B2 (en) Electronic chip module
WO1985002515A1 (en) Printed-circuit board for mounting electronic element and method of manufacture thereof
KR20010104217A (en) Semiconductor device, method of manufacture thereof, circuit board, and electronic device
JPH09306954A (en) Semiconductor device, mounting thereof and mounting structure
JP2000150695A (en) Semiconductor device
JPH07297560A (en) Multilayer printed wiring board and its mounting structure
JP2000138453A (en) Wiring board
JPH05500733A (en) Printed wiring board composite structure
JP2000294721A (en) Semiconductor chip mounting structure
JPH10229102A (en) Electronic product
US6784536B1 (en) Symmetric stack up structure for organic BGA chip carriers
JP2000216550A (en) Laminate printed wiring board
JP2001068512A (en) Tab tape with stiffener and bga package
JP2010206132A (en) Semiconductor device, and method of manufacturing semiconductor device
JP3241140B2 (en) Semiconductor device and chip deformation prevention method
JPH06334286A (en) Circuit board
JP2770485B2 (en) Circuit board
JP2006237324A (en) Semiconductor device and manufacturing method thereof
JPH11121525A (en) Semiconductor device
JP2003258197A (en) Semiconductor device
JP2004247630A (en) Package substrate
JPH1126897A (en) Substrate mounting structure
JP3170004B2 (en) Ceramic circuit board
JPS61272956A (en) Hybrid type semiconductor device
JPH04162454A (en) Hybrid integrated circuit device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040119

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060307