JPH062059A - Superelastic material low in residual strain - Google Patents

Superelastic material low in residual strain

Info

Publication number
JPH062059A
JPH062059A JP18982992A JP18982992A JPH062059A JP H062059 A JPH062059 A JP H062059A JP 18982992 A JP18982992 A JP 18982992A JP 18982992 A JP18982992 A JP 18982992A JP H062059 A JPH062059 A JP H062059A
Authority
JP
Japan
Prior art keywords
superelastic material
superelastic
alloy
residual strain
workability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18982992A
Other languages
Japanese (ja)
Inventor
Hiroshi Horikawa
宏 堀川
Kazuo Matsubara
和男 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP18982992A priority Critical patent/JPH062059A/en
Publication of JPH062059A publication Critical patent/JPH062059A/en
Pending legal-status Critical Current

Links

Landscapes

  • Corsets Or Brassieres (AREA)
  • Adornments (AREA)

Abstract

PURPOSE:To obtain the objective Ni-Ti superelastic material high in the workability of manufacture, low in residual strain after deformation and excellent in superelastic properties by adding Fe into an alloy consisting of approximately equivalent amounts of Ni and Ti and forming its compsn. into a specified one. CONSTITUTION:This superelastic material has a compsn. in a region surrounded by angles A, B, C, D and E of A (50.7% Ni and 49.3% Ti, by atom), B (51.0% Ni and 49.0% Ti), C (51.0% Ni, 47.0% Ti and 2.0% Fe), D (50.2% Ni, 47.8% Ti and 2.0% Fe) and E (50.2% Ni, 49.3% Ti and 0.5% Fe) in the phase diagram of a ternary alloy of Ni, Ti and Fe, and is high in workability, and in which the increase of cost is not caused. The material is obtd. by subjecting the alloy having the compsn. to final annealing, thereafter subjecting it to cold working at about 20 to 60% draft, and subsequently executing superelasticity heat treatment at about 400 to 570 deg.C for about 20 to 200min.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は製造工程における加工性
と、残留歪みの小さい超弾性特性の優れたNi−Ti系
超弾性材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Ni-Ti superelastic material having excellent workability in the manufacturing process and excellent superelasticity with a small residual strain.

【0002】[0002]

【従来の技術】原子%で1対1近傍のNi−Ti合金は
高温相の母相状態で立方晶構造をとり、これを冷却する
とマルテンサイト変態温度で変態して単斜晶構造のマル
テンサイト相となる。形状記憶効果を期待する場合は、
まさにこの変態による結晶構造の変化による形状回復現
象を利用する。これに対して、これらの合金は、マルテ
ンサイト変態温度が使用環境温度以下である場合に限っ
て超弾性材料として、使用できる。これは、母相状態
で、外力が加わると、応力によって誘起マルテンサイト
変態が起こるためである。したがって、超弾性材料では
変態温度を比較的低温域にする必要が生じる。変態温度
を低温にするには、Ni−Ti合金において、Niを原
子比で1対1から過剰組成にする、或いは、Feなどの
第三元素を微量添加することが既に公知の事実となって
いる。(参考文献;T. Honma, M. Matsumoto, Y. Shug
o, M. Nishida, and I. Yamasaki; Effect of thermal
cycles and substitution elementson the phase trnas
formations of Ti-Ni; Proceedings of the Fourth Int
ernational Conference on Titanium.: 1456 (1980) 、
特願61−53307号)。上記のように、超弾性材料
と形状記憶材料ではマルテンサイト変態温度が異なるの
であるが、それぞれ使用の仕方、要求される特性、効果
には大きな相違点がある。例えば、超弾性材料は、6〜
8%もの大きな弾性域を要求されるのに対して、形状記
憶材料は適した形状変化温度や大きな形状回復力、形状
回復量、また、繰り返し使用後の劣化の少ない材料が要
求される。その結果、当然ながら、製造方法、合金組成
が異なる場合もあるし、重なる場合もある。形状記憶材
料と超弾性材料の組成域が重なってしまう場合も、得ら
れる効果は全く異なるものとなる。上述のように超弾性
材料を得るための一方法として、Niを過剰にすると、
変態温度は低下するが、加工性の劣化が激しく、製造上
問題となる。またNiを増やすことは工業上、コスト高
になり、好ましくない。上記参考文献における、第三元
素による合金組成においても、全く同様で、加工性、超
弾性特性を考慮した、合金組成の選び方が、形状記憶材
料とは違った観点から必要となってくる。特に、第三元
素添加の場合、第三元素を多くして変態温度を低下させ
て超弾性特性を出させても、NiとTiの組成によって
は、大きく変形させたあとの回復量が少なく、残留歪み
が大きくなってしまったりする場合がある。従って超弾
性材料としては使用することが出来ない等の問題があっ
た。
2. Description of the Related Art A Ni-Ti alloy having an atomic percentage of about 1: 1 has a cubic structure in the parent phase of a high temperature phase, and when cooled, it transforms at a martensitic transformation temperature and has a monoclinic structure. Be in phase. If you expect a shape memory effect,
The shape recovery phenomenon due to the change in the crystal structure due to this transformation is utilized. On the other hand, these alloys can be used as a superelastic material only when the martensitic transformation temperature is equal to or lower than the use environment temperature. This is because when an external force is applied in the matrix phase, stress causes induced martensitic transformation. Therefore, it is necessary to change the transformation temperature of the superelastic material to a relatively low temperature range. In order to lower the transformation temperature, it is already known that Ni-Ti alloy is made to have an excessive composition of Ni in an atomic ratio of 1: 1 or a small amount of a third element such as Fe is added. There is. (Reference: T. Honma, M. Matsumoto, Y. Shug
o, M. Nishida, and I. Yamasaki; Effect of thermal
cycles and substitution elementson the phase trnas
formations of Ti-Ni; Proceedings of the Fourth Int
ernational Conference on Titanium .: 1456 (1980),
Japanese Patent Application No. 61-53307). As described above, the superelastic material and the shape memory material have different martensite transformation temperatures, but there are great differences in the usage, required properties, and effects. For example, the super elastic material is 6 to
While a large elastic region of 8% is required, a shape memory material is required to have a suitable shape change temperature, a large shape recovery force, a shape recovery amount, and a material with little deterioration after repeated use. As a result, as a matter of course, the manufacturing method and the alloy composition may be different or may be overlapped. Even when the composition regions of the shape memory material and the superelastic material overlap, the effect obtained is completely different. As described above, if Ni is excessive, one method for obtaining a superelastic material is as follows.
Although the transformation temperature is lowered, the workability is severely deteriorated, which causes a problem in manufacturing. In addition, increasing Ni increases the cost in the industry and is not preferable. The same applies to the alloy composition of the third element in the above reference, and it is necessary to select the alloy composition in consideration of workability and superelasticity from the viewpoint different from that of the shape memory material. In particular, in the case of adding the third element, even if the transformation temperature is lowered by increasing the amount of the third element to give superelasticity characteristics, the recovery amount after large deformation is small depending on the composition of Ni and Ti, The residual strain may become large. Therefore, there is a problem that it cannot be used as a superelastic material.

【0003】[0003]

【発明が解決しようとする課題】本発明は上述従来技術
の問題点を解決するため、超弾性材料において、製造上
の加工性が良好で、超弾性特性における変形後の残留歪
みが小さい、優れた超弾性を有する材料を開発したもの
である。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems of the prior art, the present invention is excellent in superelastic material because it has good workability in manufacturing and has a small residual strain after deformation in superelastic characteristics. It is the development of a material with superelasticity.

【0004】[0004]

【課題を解決するための手段】本発明はNi,Ti及び
Feの三元合金状態図において、A,B,C,D,及び
Eで示す角の組成が原子%で、 A:Ni 50.7%, Ti 49.3% B:Ni 51.0%, Ti 49.0% C:Ni 51.0%, Ti 47.0%, F
e 2.0% D:Ni 50.2%, Ti 47.8%, F
e 2.0% E:Ni 50.2%, Ti 49.3%, F
e 0.5% で囲まれた領域内にある組成を有することを特徴とする
残留歪みの小さい超弾性材料である。
According to the present invention, in the ternary alloy phase diagram of Ni, Ti and Fe, the composition of the corners indicated by A, B, C, D and E is atomic%, and A: Ni 50. 7%, Ti 49.3% B: Ni 51.0%, Ti 49.0% C: Ni 51.0%, Ti 47.0%, F
e 2.0% D: Ni 50.2%, Ti 47.8%, F
e 2.0% E: Ni 50.2%, Ti 49.3%, F
e A superelastic material having a small residual strain, which has a composition within a region surrounded by 0.5%.

【0005】[0005]

【作用】本発明は超弾性合金のうち、その組成を上記の
範囲に規定することにより、加工性に優れ、かつ残留歪
みの小さい超弾性材料が得られることを見出したもので
ある。しかして本発明において超弾性材料の合金組成を
前記のように規定したのは、図1に示すNi−Ti−F
e三元合金状態図において、B,Cの角で結ばれるライ
ンより右側と、D,Cの角で結ばれるラインより上側に
では加工性が劣り、製造上好ましくないからである。ま
た、A,E,Dの角で結ばれるラインより左側では、残
留歪みが大きく超弾性材料としては使用できない。した
がって超弾性材料としてはA,B,C,D,Eの角で結
ばれる領域内にある合金が適切である。そして上記の合
金の製造方法としては、最終焼鈍後の冷間加工時の加工
率を20〜60%とし、その後の超弾性熱処理を400
〜570℃で20〜200分施すことにより、所期の特
性の超弾性が得られる。このような改善された特性を有
する超弾性材料は、ブラジャー用ワイヤー、眼鏡フレー
ム材料、歯列矯正用ワイヤー及びカテーテル用ガイドワ
イヤー等に好適である。また加工性に優れているため、
製造コストが安く、かつ細線の加工が容易である。
The present invention has found that by defining the composition of the superelastic alloy within the above range, a superelastic material having excellent workability and small residual strain can be obtained. In the present invention, the alloy composition of the superelastic material is defined as described above because the Ni--Ti--F shown in FIG.
e In the ternary alloy phase diagram, the workability is inferior on the right side of the line connecting the corners B and C and on the upper side of the line connecting the corners D and C, which is not preferable in manufacturing. On the left side of the line connecting the corners A, E, and D, the residual strain is large and it cannot be used as a superelastic material. Therefore, as the superelastic material, an alloy in the region connected by the corners A, B, C, D and E is suitable. And as a manufacturing method of the above-mentioned alloy, the processing rate at the time of cold working after the final annealing is set to 20 to 60%, and the subsequent superelastic heat treatment is performed at 400%.
By applying it at ˜570 ° C. for 20 to 200 minutes, desired superelasticity can be obtained. The superelastic material having such improved properties is suitable for brassiere wires, spectacle frame materials, orthodontic wires, catheter guide wires, and the like. Also, because it has excellent workability,
The manufacturing cost is low and the processing of thin wires is easy.

【0006】[0006]

【実施例】以下に本発明の一実施例について説明する。
表1に示す組成の合金を鋳造、熱間加工後、焼鈍と冷間
加工を繰り返し、最終加工率30%で線径2mmの合金線
を作製した。加工性の試験は、上記の2mm線材を750
℃15分の焼鈍後、ダイスによる伸線加工を行い、断線
が3回以上起こる加工率を測定し、限界加工率とした。
したがって、製造上からは限界加工率が大きいほど、工
程数が減り、製造コストが低減される。次に、超弾性特
性における残留歪みの測定は、線径2mmの線材を480
℃1時間の焼鈍を行い、室温で引張り試験を行った。引
張り試験の応力−歪み曲線は、図2に示すようになる。
残留歪みは、歪み6%まで引っ張り、その後除荷したと
きの歪み量を測定した。この残留歪みが少なくとも1%
以下でないと、ブラジャー用ワイヤーの様に曲げ力を利
用されることの多い超弾性材料としては使用に耐えな
い。なお限界加工率が30%以下のものは超弾性の試験
は省略した。限界加工率、残留歪みの測定結果を表1に
併記した。
EXAMPLES An example of the present invention will be described below.
Alloys having the compositions shown in Table 1 were cast, hot-worked, then annealed and cold-worked repeatedly to produce an alloy wire with a final working rate of 30% and a wire diameter of 2 mm. For the workability test, the above-mentioned 2 mm wire rod is 750
After annealing at 15 ° C. for 15 minutes, wire drawing was carried out with a die, and the work ratio at which wire breakage occurred 3 times or more was measured and defined as the limit work ratio.
Therefore, from the viewpoint of manufacturing, the larger the critical machining rate, the smaller the number of steps and the manufacturing cost. Next, for the measurement of residual strain in the superelastic property, a wire rod with a wire diameter of 2 mm was 480
Annealing was performed at 1 ° C. for 1 hour, and a tensile test was performed at room temperature. The stress-strain curve of the tensile test is as shown in FIG.
The residual strain was measured by pulling the strain up to 6% and then unloading the strain. This residual strain is at least 1%
Unless it is below, it cannot be used as a super elastic material that often uses bending force, such as a wire for a brassiere. Note that the superelasticity test was omitted for those with a critical working rate of 30% or less. Table 1 also shows the measurement results of the limit working rate and the residual strain.

【0007】[0007]

【表1】 [Table 1]

【0008】表1及び図1より明らかなように、角B,
Cで結ばれるラインより右側と、角D,Cで結ばれるラ
インより上側においては加工性が劣る。また角A,E,
Dで結ばれるラインより左側では、残留歪みが大きく、
超弾性材料としては使用できない。したがって超弾性材
料としては、角A,B,C,D,Eで結ばれる領域内に
ある合金が適切であることが判る。
As is clear from Table 1 and FIG. 1, the corners B,
Workability is inferior on the right side of the line connected by C and on the upper side of the line connected by corners D and C. Also the corners A, E,
On the left side of the line connected by D, the residual strain is large,
It cannot be used as a super elastic material. Therefore, it can be seen that the alloy within the region bounded by the corners A, B, C, D and E is suitable as the superelastic material.

【0009】[0009]

【発明の効果】以上に説明したように本発明によれば、
製造コストが低減でき、超弾性特性の優れたNi−Ti
系超弾性材料が得られるもので、この材料によりさらに
超弾性材料の適用範囲が広がる等、工業上顕著な効果を
奏する。
As described above, according to the present invention,
Manufacturing cost can be reduced, and Ni-Ti has excellent superelasticity.
A system-based superelastic material is obtained, and this material has a remarkable industrial effect such as expanding the range of application of the superelastic material.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係るNi−Ti−Fe三元
合金状態図。
FIG. 1 is a phase diagram of a Ni—Ti—Fe ternary alloy according to an embodiment of the present invention.

【図2】本発明の一実施例に係る超弾性合金の応力−歪
み曲線図。
FIG. 2 is a stress-strain curve diagram of a superelastic alloy according to an example of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Ni,Ti及びFeの三元合金状態図に
おいて、A,B,C,D,及びEで示す角の組成が原子
%で A:Ni 50.7%, Ti 49.3% B:Ni 51.0%, Ti 49.0% C:Ni 51.0%, Ti 47.0%, F
e 2.0% D:Ni 50.2%, Ti 47.8%, F
e 2.0% E:Ni 50.2%, Ti 49.3%, F
e 0.5% で囲まれた領域内にある組成を有することを特徴とする
残留歪みの小さい超弾性材料。
1. In a ternary alloy phase diagram of Ni, Ti and Fe, the composition of the corners indicated by A, B, C, D and E is atomic% and A: Ni 50.7%, Ti 49.3%. B: Ni 51.0%, Ti 49.0% C: Ni 51.0%, Ti 47.0%, F
e 2.0% D: Ni 50.2%, Ti 47.8%, F
e 2.0% E: Ni 50.2%, Ti 49.3%, F
e A superelastic material having a small residual strain, which has a composition within a region surrounded by 0.5%.
JP18982992A 1992-06-23 1992-06-23 Superelastic material low in residual strain Pending JPH062059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18982992A JPH062059A (en) 1992-06-23 1992-06-23 Superelastic material low in residual strain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18982992A JPH062059A (en) 1992-06-23 1992-06-23 Superelastic material low in residual strain

Publications (1)

Publication Number Publication Date
JPH062059A true JPH062059A (en) 1994-01-11

Family

ID=16247911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18982992A Pending JPH062059A (en) 1992-06-23 1992-06-23 Superelastic material low in residual strain

Country Status (1)

Country Link
JP (1) JPH062059A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1627786A1 (en) * 2004-08-20 2006-02-22 Federal-Mogul S.A. Windscreen wiper device
JP2007510064A (en) * 2003-10-27 2007-04-19 パラコー メディカル インコーポレイテッド Nitinol with long service life

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007510064A (en) * 2003-10-27 2007-04-19 パラコー メディカル インコーポレイテッド Nitinol with long service life
EP1627786A1 (en) * 2004-08-20 2006-02-22 Federal-Mogul S.A. Windscreen wiper device
WO2006018453A1 (en) * 2004-08-20 2006-02-23 Federal-Mogul S.A. Windscreen wiper device
JP2008510643A (en) * 2004-08-20 2008-04-10 フェデラル−モーグル ソシエテ アノニム Windshield wiper device

Similar Documents

Publication Publication Date Title
Zhou et al. Pseudo-elastic deformation behavior in a Ti/Mo-based alloy
US5885381A (en) Ni-Ti-Pd superelastic alloy material, its manufacturing method, and orthodontic archwire made of this alloy material
JP6696202B2 (en) α + β type titanium alloy member and manufacturing method thereof
JPH0474856A (en) Production of beta ti alloy material having high strength and high ductility
JP6156865B2 (en) Super elastic alloy
JP5278987B2 (en) Manufacturing method for eyeglass frames
JPH062059A (en) Superelastic material low in residual strain
JP2009215650A (en) Shape memory alloy
JP3379767B2 (en) Method for producing NiTi-based superelastic material
JPH08311587A (en) Superplastic ni-co-base alloy and superplastic working method therefor
JP3141328B2 (en) Manufacturing method of super elastic spring alloy
JPH0762506A (en) Production of superelastic spring
JPS6314834A (en) Tiniv shape memory alloy
JP2706273B2 (en) Superelastic Ni-Ti-Cu alloy and method for producing the same
JP4028008B2 (en) NiTiPd-based superelastic alloy material, manufacturing method thereof, and orthodontic wire using the alloy material
JPH07207390A (en) Super elastic spring
JPH0860277A (en) Nickel-titanium alloy
JPH09165633A (en) Titanium-aluminum base shape memory alloy
JP2002182162A (en) Method of manufacturing spectacles frame using ultraelastic material
JP2781713B2 (en) Method of manufacturing super-elastic NiTi alloy eyeglass frame member
JP2003089834A (en) Ni-Ti ALLOY WITH HIGH RIGIDITY TYPE REVERSIBLE DEFORMATION
JPS6365042A (en) Ti alloy excellent in crevice corrosion resistance and combining high strength with high ductility and its manufacture
JPH08176766A (en) Production of ni-ti based alloy
JPH08176765A (en) Production of ni-ti based alloy
JPH02159351A (en) Low-expansion fe-ni alloy with high strength and its production