JPH02159351A - Low-expansion fe-ni alloy with high strength and its production - Google Patents

Low-expansion fe-ni alloy with high strength and its production

Info

Publication number
JPH02159351A
JPH02159351A JP31564788A JP31564788A JPH02159351A JP H02159351 A JPH02159351 A JP H02159351A JP 31564788 A JP31564788 A JP 31564788A JP 31564788 A JP31564788 A JP 31564788A JP H02159351 A JPH02159351 A JP H02159351A
Authority
JP
Japan
Prior art keywords
alloy
expansion
low
strength
plastic working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31564788A
Other languages
Japanese (ja)
Inventor
Atsushi Kato
淳 加藤
Tsuyuki Watanabe
渡辺 津之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP31564788A priority Critical patent/JPH02159351A/en
Priority to US07/450,038 priority patent/US5084111A/en
Publication of JPH02159351A publication Critical patent/JPH02159351A/en
Priority to US07/778,256 priority patent/US5264052A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To manufacture a low-expansion Fe-Ni-Co alloy with high strength by subjecting an ingot having a specific composition consisting of Ni, Co, Mn, Si, Be, and Fe to plastic working and annealing required times, respectively, and then to aging by means of specific heat treatment. CONSTITUTION:Raw materials consisting of, by weight, 26-32% Ni, 11-16% Co, 0.1-0.8% Mn, <=0.5% Si, 0.05-2.0% Be, and the balance Fe with inevitable impurities are blended and subjected to vacuum melting in an Ar atmosphere so as to be formed into an ingot. Subsequently, plastic working and annealing treatment are applied to the above ingot required times until the desired shape is reached. After the final plastic working, the worked material is subjected to heat treatment at a temp. in the region of 300-700 deg.C, preferably for <= about 5hr to undergo aging. By this method, the high-strength low-expansion Fe-Ni-Co alloy excellent in hardness, tensile strength, and bendability, having high deformation resistance, and showing low coefficient of expansion equal to those of lead frame material, etc., can be obtained.

Description

【発明の詳細な説明】 「産業上の利用分野」 本願発明は、多ピンIC用リードフレーム材料などとし
て好適な高強度低膨張Fe−Ni合金およびその製法に
関1、FeとNiとCoとMnとSiを特定n1含有す
る合金に13 aを特定m添加することにより、従来の
合金よりら優れた変形抵抗を示し、従来の合金と同等の
低膨張性を確保したもの、および、FaとNiとGoと
MnとSiを特定量含汀し、更にIleを特定■添加し
た合金に、特定の温度域において特定時間の熱処理を行
うようにするらのである。
Detailed Description of the Invention "Field of Industrial Application" The present invention relates to a high-strength, low-expansion Fe-Ni alloy suitable as a lead frame material for multi-pin ICs, and a method for producing the same. By adding a specific amount of 13a to an alloy containing a specific amount of Mn and Si, an alloy that exhibits better deformation resistance than conventional alloys and has a low expansion property equivalent to that of conventional alloys, and An alloy containing specific amounts of Ni, Go, Mn, and Si, and further adding a specific amount of He, is subjected to heat treatment in a specific temperature range for a specific time.

「従来の技術」 近年、集積度の高い大規模集積回路(LSI)や超大規
模集積回路(超WILsf)などの開発が盛んとなって
きているが、このようなLSIや超しSlにおいては、
シリコン素子が大型化し、発熱mも多くなってきている
。従ってシリコン素子とリードフレームとの間の熱膨張
率の差異が大きい場合は、通電発熱によるリードフレー
ムの膨張と収縮によりシリコン素子が熱ストレスを受け
て割れたり、亀裂を生じたりするおそれがある。そこで
LSIや超LSI用などのリードフレーム材料にあって
は、特にその熱膨張率をシリコン素子の熱膨張率に近付
ける必要がある。
"Conventional technology" In recent years, the development of highly integrated large-scale integrated circuits (LSI) and ultra-large-scale integrated circuits (super WILsf) has become active.
Silicon elements are becoming larger and generating more heat m. Therefore, if the difference in coefficient of thermal expansion between the silicon element and the lead frame is large, there is a risk that the silicon element will be subject to thermal stress due to the expansion and contraction of the lead frame due to the heat generated by electricity, and may break or crack. Therefore, for lead frame materials for LSIs and VLSIs, it is particularly necessary to bring the coefficient of thermal expansion close to that of silicon elements.

このため従来から、リードフレーム用の材料においては
、シリコン素子などに作用する熱応力を緩和することを
目的とした低膨張のF e−N i合金として、42 
A 1loy(42%Ni−1?’e)(特開昭551
19156号など)、コバール(29%Ni−17%G
o−Fe)などが知られている。
For this reason, 42 has traditionally been used as a material for lead frames as a low-expansion Fe-Ni alloy for the purpose of relieving thermal stress acting on silicon elements.
A 1loy (42%Ni-1?'e) (Unexamined Japanese Patent Publication No. 551
No. 19156), Kovar (29%Ni-17%G)
o-Fe) and the like are known.

ところがこれら従来のリードフレーム材料にあってら、
シリコン素子との間に若干の熱膨張差があるので、本願
発明者らは先に、この熱膨張差を更に改善し、前記LS
Iや超LSI用などとしてより好適なリードフレーム材
料について特許出願を行っている。
However, with these conventional lead frame materials,
Since there is a slight difference in thermal expansion between the silicon element and the silicon element, the inventors of the present application first further improved this thermal expansion difference, and the LS
We have filed a patent application for a lead frame material that is more suitable for ICs and VLSIs.

このリードフレーム材料は、特開昭59−198741
号公報に開示されているように、Niを26〜30%、
COを11〜16%、Mnを0.1〜0.8%、残部F
eの組成を有する半導体集積回路用リードフレー12材
と、Niを26〜30%、GoをII〜I(i%、Mn
を0.1〜0.8%、Siを0.5%以下含有し、残部
Pcの組成を有する半導体集積回路用す、−ドフレーム
材である。
This lead frame material is disclosed in Japanese Patent Application Laid-Open No. 59-198741.
As disclosed in the publication, 26 to 30% Ni,
11-16% CO, 0.1-0.8% Mn, balance F
12 materials for leadflakes for semiconductor integrated circuits having a composition of e, Ni of 26 to 30%, Go of II to I (i%, Mn
This is a bonded frame material for use in semiconductor integrated circuits, containing 0.1 to 0.8% of Si, 0.5% or less of Si, and the remainder Pc.

「発明が解決しようとする課題」 ところか、最近、リードフレームの多ピン化に伴い、以
前はインナーリードの幅が0.3〜0.51程度であっ
たものが、0.15〜0.2mm程度の幅に形成される
場合が生じている。このようにインナーリードの幅が小
さくなった場合、インナーリードの材料強度が不足する
ことから、製造工程途中において、運搬時やセパレータ
のテーピング時に、インナーリードが外力による変形を
起こしやすくなる問題があった。
"Problem to be Solved by the Invention" Recently, as lead frames have increased in number of pins, the width of the inner leads, which used to be about 0.3 to 0.51, has become 0.15 to 0.0. In some cases, the width is about 2 mm. When the width of the inner lead becomes smaller in this way, the material strength of the inner lead becomes insufficient, which causes the problem that the inner lead becomes easily deformed by external force during transportation or taping of the separator during the manufacturing process. Ta.

本願発明は前記課題を解決するためになされた乙ので、
従来の合金よりも硬度と引張強度と曲げ性に優れ、変形
抵抗が大きいとともに、本願発明者らが先に特許出願し
ているリードフレーム材と同等の低膨張率を示す高強度
低膨張Fe−Ni合金を提供することおよびその製法を
提供することを目的とする。
Since the present invention was made to solve the above problem,
High-strength, low-expansion Fe- The object of the present invention is to provide a Ni alloy and a method for producing the same.

[課題を解決するための手段」 請求項1に記載した発明は、前記課題を解決ずろために
、 Ni  26〜32%(重量%、以下同じ)Co  1
l=llli%以下 Mn  0 1〜0.8% Si  0.5%以下 Be  0.05〜2.0% Fe  残部 の組成にしたものである。
[Means for solving the problem] In order to solve the problem, the invention described in claim 1 includes: Ni 26 to 32% (weight %, same hereinafter) Co 1
1=lli% or less Mn 0 1 to 0.8% Si 0.5% or less Be 0.05 to 2.0% Fe the balance.

請求項2に記載した発明は、11η記課題を解決するた
めに、請求項Iに記載した組成を満たずように原材料を
配合し、溶解して得たインゴットを目的の形状になるま
で塑性加工と焼鈍処理を必要回数施し、最終塑性加工と
同時に、もしくは、最終塑性加工後に300〜700℃
の温度域において5時間以下熱処理を行って時効するも
のである。
In order to solve the problem described in Item 11, the invention described in Claim 2 combines raw materials so that the composition does not satisfy the composition described in Claim I, and plastically processes the ingot obtained by melting it until it has a desired shape. and annealing treatment for the necessary number of times, and at 300 to 700°C at the same time as the final plastic working or after the final plastic working.
Aging is performed by heat treatment in a temperature range of 5 hours or less.

「作用」 FeとNiとCoとMnとSiを所定m含有する低膨張
率の合金に、13 cを少li?添加J−ることで高強
度になるととらに、lleの添加ntか少量で済むので
、合金の主成分は低膨張率の合金であり、このため、リ
ードフレーム用の材料として好適な熱膨張率が確保され
る。また、前記組成とした合金に、300〜700℃で
5時間以下の熱処理を施すと、引張り強さの制御が可能
になり、時効硬化する。
"Action" A small amount of 13c is added to a low expansion coefficient alloy containing a predetermined m of Fe, Ni, Co, Mn, and Si. In addition to the high strength achieved by adding J-, only a small amount of lle is required, so the main component of the alloy is an alloy with a low coefficient of expansion. Therefore, the coefficient of thermal expansion is suitable as a material for lead frames. is ensured. Further, when the alloy having the above composition is heat treated at 300 to 700° C. for 5 hours or less, the tensile strength can be controlled and age hardening occurs.

以下に本願発明を更に詳細に説明する。The present invention will be explained in more detail below.

本願発明の合金においては、Niにッケル)を26〜3
2%、Co(コバルト)を11〜16%以下、!3e(
ベリリウム)を0.05〜2.0%、Si(ケイ素)を
0.5%以下、Mn(マンガン)を0.1〜0.8%含
有している。前記組成において、Ni含fr fitを
26〜32%以外に、CO含有量を11〜16%以外に
すると、リードフレーム材料が適用されるシリコン素子
等の熱膨張率に適応した熱膨張率が得られなくなるため
に好ましくない。なお、この組成範囲は、本願発明者ら
が先に行った特許出願(特開昭59−198741号)
の明細書において、第1図と第2図に記載されているグ
ラフの関係から明らかにされている。また、Beの含a
mを0.05%未満とすると、析出硬化の効果が得られ
ずに時効不能であり、13eの含有mが2.0%を越え
る場合、強度向上の割に高価な[3eの使用量が多くな
ってコストが高くなり、不適当である。更に、Siは脱
酸剤として用いるが含有量が0.5%を越えると合金を
脆化さ仕るので不都合であり、Mnは鍛造性を向上さけ
るとともに脱酸剤として用いるが、含有量が0.1%未
満では十分な効果が得られず、0.8%を越えると曲げ
性を悪化さけるので好ましくない。
In the alloy of the present invention, Ni (nickel) is 26 to 3
2%, Co (cobalt) 11-16% or less! 3e(
It contains 0.05 to 2.0% of beryllium), 0.5% or less of Si (silicon), and 0.1 to 0.8% of Mn (manganese). In the above composition, if the Ni content is set to a value other than 26 to 32% and the CO content is set to a value other than 11 to 16%, a coefficient of thermal expansion adapted to the coefficient of thermal expansion of a silicon element, etc. to which the lead frame material is applied can be obtained. This is undesirable because it makes it difficult to use. Note that this composition range is based on the patent application previously filed by the inventors of the present invention (Japanese Patent Laid-Open No. 198741/1983).
This is made clear from the relationship between the graphs shown in FIGS. 1 and 2 in the specification of . In addition, the content of Be
If m is less than 0.05%, no precipitation hardening effect can be obtained and aging cannot be achieved, and if the m content of 13e exceeds 2.0%, the amount of 3e used is expensive compared to the improvement in strength. This increases the cost and is inappropriate. Furthermore, Si is used as a deoxidizing agent, but if the content exceeds 0.5%, it will cause the alloy to become brittle, which is disadvantageous.Mn is used as a deoxidizing agent while improving forgeability, but if the content exceeds 0.5%, it will cause the alloy to become brittle. If it is less than 0.1%, a sufficient effect cannot be obtained, and if it exceeds 0.8%, bendability may be deteriorated, which is not preferable.

前記合金を製造するには、まず、前記の組成になるよう
に原材料を配合した後に、不純物の混入を避ける目的で
A「ガスなどの雰囲気中で真空溶解を行って前記組成の
インゴットを得る。
To produce the alloy, first, raw materials are blended to have the composition as described above, and then vacuum melting is performed in an atmosphere of gas or the like in order to avoid contamination with impurities to obtain an ingot having the composition as described above.

次いでこのインゴットを1200〜1400℃で鍛造加
工し、目的の形状、例えば目的の板厚になるまで、好ま
しくは加工率70%以下で行う圧延加工と、800〜!
!00℃で行う焼鈍処理を繰り返し施す。そして、最終
圧延加工時に加工率を好ましくは50%以下程度に設定
し、この最終圧延中から連続して、ししくは、最終圧延
後に時効便化処理を目的として、300〜700℃の温
度域においζ、う2時間以内の熱処理を行い、所望の厚
さの板材を得る。
Next, this ingot is forged at 1,200 to 1,400°C, and then rolled to a desired shape, for example, to a desired thickness, preferably at a processing rate of 70% or less.
! The annealing treatment performed at 00°C is repeated. Then, during the final rolling process, the processing rate is preferably set to about 50% or less, and continuously from this final rolling process, or preferably after the final rolling process, for the purpose of aging treatment, the temperature range is 300 to 700°C. Heat treatment is performed for less than 2 hours to obtain a plate material of desired thickness.

前記時効処理温度において300℃以下では、tli出
粒子粒子さずぎて析出硬化が進まずに未時効となり、7
00℃以上では時効により強度がピークになるまでの熱
処理時間が短かずぎて温度コンl−rr−ルが困難であ
り、それを越えると析出粒子が大きくなりすぎて十分な
析出硬化が期待できない。
When the aging treatment temperature is 300°C or lower, precipitation hardening does not proceed immediately after the tli extruded particles, resulting in unaged condition.
At temperatures above 00°C, the heat treatment time until the strength reaches its peak due to aging is too short and temperature control is difficult; above that temperature, the precipitated particles become too large and sufficient precipitation hardening cannot be expected. .

以」二説明したような製造方法で119記組成の合金を
製造4゛るならば、従来の合金より6強度が高く曲げに
強いなど変形抵抗が高いとともに、シリコン素子やセラ
ミック封止材料の熱膨張率に近い熱膨張率のリードフレ
ーム用材料を得ることができろ。しかも前記合金は時効
処理の温度と時間を調節”4”ることにより引張強さを
調節できるので、所望の強さのリードフレーム材料を得
ることができる。更に、Beの添加量が少量でも引張強
度の向上効果が得られるので、高価な[3eの使用量が
少なくて済み、低コストで製造できる効果がある。
If an alloy with a composition of 119 is manufactured using the manufacturing method described below, it will have higher strength than conventional alloys and will have high deformation resistance such as bending resistance, and will also be able to withstand the heat of silicon elements and ceramic sealing materials. It would be possible to obtain a lead frame material with a coefficient of thermal expansion close to the coefficient of expansion. Moreover, since the tensile strength of the alloy can be adjusted by adjusting the temperature and time of the aging treatment, a lead frame material with desired strength can be obtained. Furthermore, even if the amount of Be added is small, the effect of improving the tensile strength can be obtained, so the amount of expensive [3e] used can be small, and there is an effect that production can be performed at low cost.

「実施例」 以下に示す第1表の組成になるように各々原材料を配合
し、各配合物をA「ガスを含む801”orrの真空雰
囲気において溶解してインゴットを作成し、次いでこの
インゴットに1200〜1400℃で熱間鍛造加工を施
し、次いで、加工率70%以下で行う圧延加工と800
〜ll00℃に加熱後に徐冷する焼鈍処理とを繰り返し
行い、最終圧延加工を加工率50%以下で行って圧延加
工を終了し、厚さ0.15m−の板材を得、次いで50
0℃に2時間加熱する特効処理を行って試料Not〜5
の板状の試験片を得た。
"Example" Each raw material was blended to have the composition shown in Table 1 below, and each blend was melted in a vacuum atmosphere of 801" orr containing A" gas to create an ingot. Hot forging at 1,200 to 1,400°C, followed by rolling at a processing rate of 70% or less and 800°C.
The annealing process of heating to ~ll00°C and then slow cooling is repeated, and the final rolling process is performed at a processing rate of 50% or less to complete the rolling process to obtain a plate material with a thickness of 0.15m.
After special treatment of heating to 0℃ for 2 hours, samples No. 5
A plate-shaped test piece was obtained.

各試験片の引張強度(kg/saりと伸び(%)と硬度
と平均熱膨張係数(30〜300℃、μ/Ito・℃)
を測定した。その結果を第2表に示す。
Tensile strength (kg/sa), elongation (%), hardness, and average coefficient of thermal expansion (30-300℃, μ/Ito・℃) of each test piece
was measured. The results are shown in Table 2.

(以下、余白) 第1表 第2表 第2表に示す結果から、本願発明品の試料3゜4におい
ては、いずれも従来品の試料1よりら引張強度が高く、
硬度ら高いことが明らかとなった。
(Hereinafter, blank space) From the results shown in Table 1, Table 2, and Table 2, the tensile strength of Sample 3゜4 of the invention product is higher than that of Sample 1 of the conventional product.
It became clear that the hardness was high.

また、Beを0.03%添加している試料2(比較品)
にあっては試料](従来品)に比較して引張強度の向上
効果が少ないことが明らかである。これらの結果から鑑
みて本願発明ではBeの添加量を0.05〜2.0%に
限定した。
In addition, sample 2 (comparative product) with 0.03% Be added
It is clear that the effect of improving tensile strength is smaller in the case of the sample [Sample] (conventional product). In view of these results, in the present invention, the amount of Be added is limited to 0.05 to 2.0%.

一方、前記の手順で製造した発明品の試料について、時
効処理時間と引張り強さの関係を求めた。
On the other hand, the relationship between the aging treatment time and the tensile strength was determined for the samples of the invention products manufactured by the above procedure.

その結果を第1図に示す。The results are shown in FIG.

第1図から明らかなように、時効処理の温度が300℃
の場合、処理時間の経過とともに引張強度は緩やかなカ
ーブで上昇し、処理時間5時間程度でピークに向かい、
500℃の場合、引張強さのピークは2時間程度に短縮
され、・700℃の場合、ピークは1時間程度に短縮さ
れるが1時間経過後の引張強度は^^少している。
As is clear from Figure 1, the aging treatment temperature was 300°C.
In the case of , the tensile strength increases with a gentle curve as the treatment time progresses, reaching a peak at around 5 hours of treatment time, and
At 500°C, the peak tensile strength is shortened to about 2 hours, and at 700°C, the peak is shortened to about 1 hour, but the tensile strength after 1 hour is slightly lower.

第1図に示す結果から鑑みて本願発明方法では時効処理
温度を300〜700℃の範囲に限定し、時効処理時間
を5時間以下に限定した。
In view of the results shown in FIG. 1, in the method of the present invention, the aging treatment temperature was limited to a range of 300 to 700°C, and the aging treatment time was limited to 5 hours or less.

また、前記の手順で製造した試料3(発明品)と試料l
(従来品)について曲げ性のテストを行った。
In addition, sample 3 (invention product) and sample l produced by the above procedure
(Conventional product) was tested for bendability.

このテストは、板状の各試料の一端側を把持して水平に
支持し、他端側に上方から垂直荷重を加えた場合に、他
端に生じたへたりm (ms)を測定して行った。その
結場を第2図に示す。
In this test, one end of each plate-shaped sample is gripped and supported horizontally, and when a vertical load is applied to the other end from above, the settling m (ms) that occurs at the other end is measured. went. The ending point is shown in Figure 2.

第2図から明らかなように試料3(発明品)は試料1(
従来品)よりらへたりmが少ないことが明らかとなった
As is clear from Figure 2, sample 3 (invention) is different from sample 1 (
It became clear that the sagging m was smaller than that of the conventional product.

「発明の効果」 以上説明したように本願発明によれば、FeとNiとc
oとMnとSiを所定m含aする低膨張率の合金に、B
eを少量添加することで高強度にしたので、シリコン素
子や封n用セラミックなどに近い熱膨張率を維持した上
に、従来合金よりし硬度と引張強度に曲げ性?こ侵れた
変形抵抗の大きな合金を提供することができる。従って
本願発明によれば、従来よりし優れたリードフレーム材
料を提供4°ることかできる。また、本願発明の合金に
あっては高価なりeの添加量が少量で済むので、低コス
トで得ることができる。
"Effects of the Invention" As explained above, according to the present invention, Fe, Ni and c
B is added to a low expansion coefficient alloy containing a predetermined m content of O, Mn, and Si.
By adding a small amount of e, it has high strength, so it maintains a coefficient of thermal expansion close to that of silicon elements and sealing ceramics, and has higher hardness, tensile strength, and bendability than conventional alloys. This makes it possible to provide an alloy with high resistance to deformation. Therefore, according to the present invention, it is possible to provide a lead frame material that is superior to the conventional lead frame material. Furthermore, since the alloy of the present invention requires only a small amount of expensive e added, it can be obtained at low cost.

一方、前記組成とした合金に、300〜700℃で5時
間以下の熱処理を施すと、時効硬化させることができる
ので、時効条件の選定により引張り強さなどの値の制御
が可能になり、所望の引張強さと硬度と曲げ性を有する
リードフレーム用に好適な合金を得ることができる。従
って本願発明方法により得られた合金を用いてリードフ
レームを形成するならば、’Rlji工程途中において
外力が作用しても変形を起こすおそれが少ないリードフ
レームを得ることができる効果がある。
On the other hand, if the alloy with the above composition is heat treated at 300 to 700°C for 5 hours or less, it can be age hardened, so values such as tensile strength can be controlled by selecting the aging conditions, making it possible to obtain the desired It is possible to obtain an alloy suitable for lead frames having tensile strength, hardness, and bendability of . Therefore, if a lead frame is formed using the alloy obtained by the method of the present invention, it is possible to obtain a lead frame that is less likely to be deformed even if an external force is applied during the 'Rlji process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は試験片の引張強さと時効処理時間の関係を示す
グラフ、 第2図は試験片の曲げ性のテスト結果を示すグラフであ
る。
Figure 1 is a graph showing the relationship between the tensile strength of the test piece and aging treatment time, and Figure 2 is a graph showing the test results of the bendability of the test piece.

Claims (2)

【特許請求の範囲】[Claims] (1)Ni26〜32%(重量%、以下同じ)Co11
〜16%以下 Mn0.1〜0.8% Si0.5%以下 Be0.05〜2.0% Fe残部 の組成を有する高強度低膨張Fe−Ni合金。
(1) Ni26-32% (weight%, same below) Co11
A high-strength, low-expansion Fe-Ni alloy having a composition of ~16% or less Mn 0.1-0.8% Si 0.5% or less Be 0.05-2.0% Fe balance.
(2)請求項1に記載した組成を満たすように原材料を
配合し、溶解して得たインゴットに目的の形状になるま
で塑性加工と焼鈍処理を必要回数施し、最終塑性加工と
同時に、もしくは、最終塑性加工後に、300〜700
℃の温度域において5時間以内の熱処理を行って時効す
ることを特徴とする高強度低膨張Fe−Ni合金の製法
(2) The raw materials are blended to satisfy the composition described in claim 1, and the ingot obtained by melting is subjected to plastic working and annealing treatment a necessary number of times until the desired shape is obtained, and simultaneously with the final plastic working, or After final plastic working, 300-700
A method for producing a high-strength, low-expansion Fe-Ni alloy, which is characterized by aging by heat treatment within 5 hours in a temperature range of °C.
JP31564788A 1988-12-14 1988-12-14 Low-expansion fe-ni alloy with high strength and its production Pending JPH02159351A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP31564788A JPH02159351A (en) 1988-12-14 1988-12-14 Low-expansion fe-ni alloy with high strength and its production
US07/450,038 US5084111A (en) 1988-12-14 1989-12-13 Fe-Ni alloy and method for treating ingot the same
US07/778,256 US5264052A (en) 1988-12-14 1991-10-17 Fe-Ni alloy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31564788A JPH02159351A (en) 1988-12-14 1988-12-14 Low-expansion fe-ni alloy with high strength and its production

Publications (1)

Publication Number Publication Date
JPH02159351A true JPH02159351A (en) 1990-06-19

Family

ID=18067886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31564788A Pending JPH02159351A (en) 1988-12-14 1988-12-14 Low-expansion fe-ni alloy with high strength and its production

Country Status (1)

Country Link
JP (1) JPH02159351A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5246511A (en) * 1990-05-14 1993-09-21 Hitachi Metals, Ltd. High-strength lead frame material and method of producing same
CN112453101A (en) * 2020-11-10 2021-03-09 华能国际电力股份有限公司 Forming preparation process of large-caliber thick-wall pipe made of iron-based high-temperature alloy

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS552733A (en) * 1978-06-21 1980-01-10 Hitachi Ltd Deformable alloy of high strength and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS552733A (en) * 1978-06-21 1980-01-10 Hitachi Ltd Deformable alloy of high strength and its manufacture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5246511A (en) * 1990-05-14 1993-09-21 Hitachi Metals, Ltd. High-strength lead frame material and method of producing same
CN112453101A (en) * 2020-11-10 2021-03-09 华能国际电力股份有限公司 Forming preparation process of large-caliber thick-wall pipe made of iron-based high-temperature alloy
CN112453101B (en) * 2020-11-10 2023-03-10 华能国际电力股份有限公司 Forming preparation process of large-caliber thick-wall pipe made of iron-based high-temperature alloy

Similar Documents

Publication Publication Date Title
JPS63186859A (en) Method for improving dynamical and statical mechanical properties of (alpha + beta)- titanium alloy
KR20210050546A (en) Creep-resistant titanium alloy
JPS62267438A (en) High-strength ti alloy material excellent in workability and its production
TWI537399B (en) Process for the production of articles or tools or the like made of iron-cobalt-molybdenum/tungsten-nitrogen-alloys
JPH0472037A (en) High strength and low thermal expansion alloy and its manufacture
JPH02159351A (en) Low-expansion fe-ni alloy with high strength and its production
JP2533625B2 (en) Manufacturing method of high strength and low expansion Fe-Ni alloy for lead frame for multi-pin IC package
JPH01127653A (en) Manufacture of alpha+beta type titanium alloy cold rolled plate
JPH0633206A (en) Method for heat-treating ni-base alloy
JPH03219054A (en) Fe-ni-co alloy for lead frame and its production
JPH03219051A (en) Fe-ni alloy for lead frame and its manufacture
US5217548A (en) Process for working β type titanium alloy
JPS6012421B2 (en) Manufacturing method of lead wire material
JPH0867914A (en) Production of ic lead frame material
JPS63130755A (en) Working heat treatment of alpha+beta type titanium alloy
KR101573709B1 (en) Amorphous matrix composites modified from titanium alloys and method of manufactruing the same
JPH0115562B2 (en)
JPS63255340A (en) Flat tension shadow mask material and production thereof
JPS5933857A (en) Ic lead frame material and manufacture thereof
JPH03240939A (en) Manufacture of high ductility and high toughness titanium alloy
JPH01222038A (en) Manufacture of alpha+beta type ti alloy member having high strength and high toughness
JPS63241150A (en) Heat treatment for titanium alloy
JPS63103055A (en) Manufacture of thin iron-copper alloy strip for lead frame
JPH03170652A (en) Production of ti alloy having high strength and high ductility
JPH062059A (en) Superelastic material low in residual strain