JP2533625B2 - Manufacturing method of high strength and low expansion Fe-Ni alloy for lead frame for multi-pin IC package - Google Patents

Manufacturing method of high strength and low expansion Fe-Ni alloy for lead frame for multi-pin IC package

Info

Publication number
JP2533625B2
JP2533625B2 JP31564688A JP31564688A JP2533625B2 JP 2533625 B2 JP2533625 B2 JP 2533625B2 JP 31564688 A JP31564688 A JP 31564688A JP 31564688 A JP31564688 A JP 31564688A JP 2533625 B2 JP2533625 B2 JP 2533625B2
Authority
JP
Japan
Prior art keywords
alloy
lead frame
less
pin
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31564688A
Other languages
Japanese (ja)
Other versions
JPH02159348A (en
Inventor
淳 加藤
津之 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP31564688A priority Critical patent/JP2533625B2/en
Priority to US07/450,038 priority patent/US5084111A/en
Publication of JPH02159348A publication Critical patent/JPH02159348A/en
Priority to US07/778,256 priority patent/US5264052A/en
Application granted granted Critical
Publication of JP2533625B2 publication Critical patent/JP2533625B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 本願発明は、多ピンIC用リードフレーム材料として好
適な高強度低膨張Fe−Ni合金の製法に関し、FeとNiとCo
とMnとSiを特定量含有し、更にBeを特定量添加した合金
に、特定の温度域において特定時間の熱処理を行うよう
にするものである。
The present invention relates to a method for producing a high-strength, low-expansion Fe-Ni alloy suitable as a lead frame material for a multi-pin IC, including Fe, Ni and Co.
The alloy containing a specified amount of Mn and Si and further added a specified amount of Be is subjected to heat treatment for a specified time in a specified temperature range.

「従来の技術」 近年、集積度の高い大規模集積回路(LSI)や超大規
模集積回路(超LSI)などの開発が盛んとなってきてい
るが、このようなLSIや超LSIにおいては、シリコン素子
が大型化し、発熱量も多くなってきている。従ってシリ
コン素子とリードフレームとの間の熱膨張率の差異が大
きい場合は、通電発熱によるリードフレームの膨張と収
縮によりシリコン素子が熱ストレスを受けて割れたり、
亀裂を生じたりするおそれがある。そこでLSIや超LSI用
などのリードフレーム材料にあっては、特にその熱膨張
率をシリコン素子の熱膨張率に近付ける必要がある。
“Conventional technology” In recent years, development of highly integrated large-scale integrated circuits (LSIs) and ultra-large-scale integrated circuits (VLSIs) has become popular. The size of the device is increasing and the amount of heat generation is increasing. Therefore, when the difference in the coefficient of thermal expansion between the silicon element and the lead frame is large, the silicon element is cracked due to the thermal stress due to the expansion and contraction of the lead frame due to the heat generation by energization.
It may cause cracks. Therefore, in the case of lead frame materials for LSI and VLSI, it is necessary to make the coefficient of thermal expansion particularly close to that of silicon elements.

このため従来から、リードフレーム用の材料において
は、シリコン素子などに作用する熱応力を緩和すること
を目的とした低膨張のFe−Ni合金として、42Alloy(42
%Ni−Fe)(特開昭55−119156号など)、コバール(29
%Ni−17%Co−Fe)、および、低膨張コバール(29%Ni
−13%Co−Fe)(特開昭59−198741号)などが知られて
いる。
Therefore, conventionally, in the material for the lead frame, as a low expansion Fe-Ni alloy for the purpose of relaxing the thermal stress acting on the silicon element or the like, 42 Alloy (42
% Ni-Fe) (JP-A-55-119156, etc.), Kovar (29
% Ni-17% Co-Fe) and low expansion Kovar (29% Ni
-13% Co-Fe) (JP-A-59-198741) and the like are known.

「発明が解決しようとする課題」 ところが、最近、リードフレームの多ピン化に伴い、
以前はインナーリードの幅が0.3〜0.5mm程度であったも
のが、0.15〜0.2mm程度の幅に形成される場合が生じて
いる。このようにインナーリードの幅が小さくなった場
合、インナーリードの材料強度が不足することから、製
造工程途中において、運搬時やセパレータのテーピング
時に、インナーリードが外力による変形を起こしやすく
なる問題があった。
“Problems to be solved by the invention” However, with the recent increase in the number of pins in the lead frame,
Previously, the inner lead had a width of about 0.3 to 0.5 mm, but now it is formed to have a width of about 0.15 to 0.2 mm. When the width of the inner lead is reduced as described above, the material strength of the inner lead is insufficient, so that there is a problem that the inner lead is likely to be deformed by an external force during the manufacturing process during transportation or when taping the separator. It was

本願発明は前記課題を解決するためになされたもの
で、従来の合金よりも硬度と引張強度と曲げ性に優れ、
変形抵抗が大きく、しかもシリコン素子に近い低膨張率
を示す多ピンICパッケージ用リードフレーム用高強度低
膨張Fe−Ni合金の製法を提供することを目的とする。
The present invention has been made to solve the above problems, and is superior in hardness, tensile strength and bendability to conventional alloys,
An object of the present invention is to provide a method for producing a high-strength, low-expansion Fe-Ni alloy for a lead frame for a multi-pin IC package, which has a large deformation resistance and a low expansion coefficient close to that of a silicon element.

「課題を解決するための手段」 本発明は、下記組成を満たすように原材料を配合し、
溶解して得たインゴットを目的の形状になるまで塑性加
工と焼鈍処理を必要回数施し、最終塑性加工と同時に、
もしくは、最終塑性加工後に300〜700℃の温度域におい
て望ましくは5時間以下の時間で熱処理を行って時効す
るものである。
"Means for Solving the Problem" The present invention blends raw materials so as to satisfy the following composition,
The ingot obtained by melting is subjected to plastic working and annealing treatment a required number of times until it has a desired shape, and at the same time as the final plastic working,
Alternatively, after the final plastic working, heat treatment is performed in a temperature range of 300 to 700 ° C., preferably for a time of 5 hours or less, and aging is performed.

Ni 30〜50% (重量%、以下同じ) Co 2.0%以下 Mn 0.1〜0.8% Si 0.5%以下 Be 0.05〜2.0% Fe 残部 及び不可避不純物 「作用」 FeとNiとCoとMnとSiを所定量含有する低膨張率の合金
に、Beを少量添加することで高強度になるとともに、Be
の添加量が少量で済むので、合金の主成分は低膨張率の
合金であり、このため、リードフレーム用の材料として
好適な熱膨張率が確保される。また、前記組成とした合
金に、300〜700℃で望ましくは5時間以下の時間で熱処
理を施すと、引張り強さの制御が可能になり、時効硬化
する。
Ni 30-50% (wt%, same below) Co 2.0% or less Mn 0.1-0.8% Si 0.5% or less Be 0.05-2.0% Fe balance and inevitable impurities "action" Fe, Ni, Co, Mn and Si specified amounts By adding a small amount of Be to the low expansion coefficient contained alloy, it becomes high strength and
The main component of the alloy is an alloy having a low expansion coefficient, and therefore, a thermal expansion coefficient suitable as a material for a lead frame is secured. Further, when the alloy having the above composition is subjected to a heat treatment at 300 to 700 ° C. for a time of preferably 5 hours or less, the tensile strength can be controlled and the alloy is age hardened.

以下に本願発明を更に詳細に説明する。 The present invention will be described in more detail below.

本願発明の製法で製造する合金は、Ni(ニッケル)を
30〜50%、Co(コバルト)を2.0%以下、Be(ベリリウ
ム)を0.05〜2.0%、Si(ケイ素)を0.5%以下、Mn(マ
ンガン)を0.1〜0.8%含有している。前記組成におい
て、Ni含有量を30〜50%以外にすると、リードフレーム
材料が適用されるシリコン素子等の熱膨張率に適応した
熱膨張率が得られなくなるために好ましくなく、Coの含
有量が2.0%を越える場合、熱膨張率が大きくなりすぎ
て好ましくなく、Beの含有量を0.05%未満とすると、析
出硬化の効果が得られずに時効不能であり、Beの含有量
が2.0%を越える場合、強度向上の割に高価なBeの使用
量が多くなってコストが高くなり、不適当である。更
に、Siは脱酸剤として用いるが、含有量が0.5%を越え
ると合金を脆化させるので不都合であり、また、Mnは鍛
造性を向上させるとともに脱酸剤として用いるが、含有
量が0.1%未満では十分な効果が得られず、0.8%を越え
ると曲げ性を悪化させるので好ましくない。
The alloy manufactured by the manufacturing method of the present invention contains Ni (nickel).
30-50%, Co (cobalt) 2.0% or less, Be (beryllium) 0.05-2.0%, Si (silicon) 0.5% or less, and Mn (manganese) 0.1-0.8%. In the above composition, if the Ni content is other than 30 to 50%, it is not preferable because the thermal expansion coefficient adapted to the thermal expansion coefficient of the silicon element or the like to which the lead frame material is applied cannot be obtained, and the Co content is If it exceeds 2.0%, the coefficient of thermal expansion becomes too large, which is not preferable. If the Be content is less than 0.05%, the precipitation hardening effect cannot be obtained and aging is impossible, and the Be content is 2.0%. If it exceeds the above range, the amount of Be, which is expensive for the purpose of improving the strength, increases and the cost increases, which is not suitable. Further, Si is used as a deoxidizing agent, but if the content exceeds 0.5%, it is disadvantageous because it makes the alloy brittle, and Mn is used as a deoxidizing agent while improving forgeability, but the content is 0.1 If it is less than 0.8%, a sufficient effect cannot be obtained, and if it exceeds 0.8%, bendability is deteriorated, which is not preferable.

本発明の製法では、まず、前記の組成になるように原
材料を配合した後に、不純物の混入を避ける目的でArガ
スなどの雰囲気中で真空溶解を行って前記組成のインゴ
ットを得る。
In the manufacturing method of the present invention, first, the raw materials are mixed so as to have the above composition, and then vacuum melting is performed in an atmosphere of Ar gas or the like to avoid mixing of impurities to obtain an ingot of the above composition.

次いでこのインゴットを1200〜1400℃で鍛造加工し、
目的の形状、例えば目的の板厚になるまで、好ましくは
加工率70%以下で行う圧延加工と、800〜1100℃で行う
焼鈍処理を繰り返し施す。そして、最終圧延加工時に加
工率を好ましくは50%以下程度に設定し、最終圧延後に
時効硬化処理を目的として、300〜700℃の温度域におい
て、望ましくは5時間以内の時間で熱処理を行い、所望
の厚さの板材を得る。
Next, this ingot is forged at 1200-1400 ° C,
A rolling process preferably performed at a working rate of 70% or less and an annealing process performed at 800 to 1100 ° C. are repeatedly performed until a desired shape, for example, a desired sheet thickness is obtained. Then, at the time of final rolling, the working rate is preferably set to about 50% or less, and after the final rolling, heat treatment is performed within a temperature range of 300 to 700 ° C., preferably within 5 hours for the purpose of age hardening treatment. A plate material having a desired thickness is obtained.

前記時効処理温度において300℃以下では、析出粒子
が小さすぎて析出硬化が進まずに未時効となり、700℃
を越えると時効により強度がピークになるまでの熱処理
時間が短かすぎて温度コントロールが困難であり、それ
を越えると析出粒子が大きくなりすぎて十分な析出硬化
が期待できない。
If the aging treatment temperature is 300 ° C or lower, the precipitation particles are too small and precipitation hardening does not proceed, resulting in unaging.
If it exceeds, the heat treatment time until the strength reaches the peak due to aging is too short, and it is difficult to control the temperature. If it exceeds, the precipitation particles become too large and sufficient precipitation hardening cannot be expected.

以上説明したような本願発明の製法では、従来の合金
よりも強度が高く曲げに強いなど変形抵抗が高いととも
に、シリコン素子やセラミック封止材料の熱膨張率に近
い熱膨張率のリードフレーム用材料を得ることができ
る。しかも前記合金は時効処理の温度と時間を調節する
ことにより引張強さを調節できるので、所望と強さのリ
ードフレーム材料を得ることができる。更に、Beの添加
量が少量でも引張強度の向上効果が得られるので、高価
なBeの使用量が少なくて済み、低コストで製造できる効
果がある。
In the manufacturing method of the present invention as described above, a lead frame material having a higher coefficient of thermal expansion than a conventional alloy and high deformation resistance such as bending resistance and a thermal expansion coefficient close to that of a silicon element or a ceramic sealing material. Can be obtained. Moreover, since the tensile strength of the alloy can be adjusted by adjusting the aging temperature and time, it is possible to obtain a lead frame material having a desired strength. Furthermore, since the effect of improving tensile strength can be obtained even with a small amount of Be added, there is an effect that the amount of expensive Be used can be small and the manufacturing can be performed at low cost.

「実施例」 以下に示す第1表の組成になるように各々原材料を配
合し、各配合物をArガスを含む80Torrの真空雰囲気にお
いて溶解してインゴットを作成し、次いでこのインゴッ
トに1200〜1400℃で熱間鍛造加工を施し、次いで、加工
率70%以下で行う圧延加工と800〜1100℃に加熱後に徐
冷する焼鈍処理とを繰り返し行い、最終圧延加工を加工
率50%以下で行って圧延加工を終了し、次いで、500℃
に2時間加熱する時効処理を行って試料No1〜5の板状
の試験片を得た。
[Examples] Raw materials were blended so as to have the compositions shown in Table 1 below, and each blend was melted in a vacuum atmosphere of 80 Torr containing Ar gas to prepare an ingot. Perform hot forging at ℃, then perform rolling at a working rate of 70% or less and annealing to heat at 800 to 1100 ° C and then slowly cool, and perform final rolling at a working rate of 50% or less. Finish rolling, then 500 ℃
Aging treatment of heating for 2 hours was performed to obtain plate-shaped test pieces of Sample Nos. 1 to 5.

各試験片の引張強度(kg/mm2)と伸び(%)と硬度
(HV)と平均熱膨張係数(30〜300℃、μ/μ・℃)
を測定し、その結果を第2表に示す。
The tensile strength of each specimen (kg / mm 2) and elongation (%) and hardness (HV) and the average thermal expansion coefficient (30~300 ℃, μ / μ 0 · ℃)
Was measured and the results are shown in Table 2.

第2表に示す結果から、本発明品の試料3,4において
は、いずれも従来品の試料1よりも引張強度が高く、硬
度も高いことが明らかとなった。また、Beを0.03%添加
している試料2(比較品)にあっては試料1(従来品)
に比較して引張強度の向上効果が少ないことが明らかで
あり、Beを2.5%添加している試料5(比較品)におい
ては、引張強度の向上効果は大きいものの、平均膨張係
数の低下が大きくなっている。これらの結果から鑑みて
本願発明ではBeの添加量を0.05〜2.0%に限定した。
From the results shown in Table 2, it was revealed that the samples 3 and 4 of the present invention have higher tensile strength and higher hardness than the conventional sample 1. In addition, for sample 2 (comparative product) containing 0.03% Be, sample 1 (conventional product)
It is clear that the effect of improving the tensile strength is smaller than that of Sample No. 5, and in Sample 5 (comparative product) in which 2.5% of Be is added, the effect of increasing the tensile strength is large, but the decrease in the average expansion coefficient is large. Has become. In view of these results, the amount of Be added is limited to 0.05 to 2.0% in the present invention.

一方、前記の手順で製造した発明品の試料について、
時効処理時間の引張り強さの関係を求めた。その結果を
第1図に示す。
On the other hand, for the sample of the invention product manufactured by the above procedure,
The relationship between the aging treatment time and the tensile strength was obtained. The results are shown in FIG.

第1図から明らかなように、時効処理の温度が300℃
の場合、処理時間の経過とともに引張強度は緩やかなカ
ーブで上昇し、処理時間5時間程度でピークに向かい、
500℃の場合、引張強さのピークは2時間程度に短縮さ
れ、700℃の場合、ピークは1時間程度に短縮されるが
1時間経過後の引張強度は減少している。
As is clear from Fig. 1, the aging temperature is 300 ℃.
In the case of, the tensile strength rises with a gradual curve with the lapse of treatment time, and reaches a peak in about 5 hours of treatment time.
At 500 ° C., the peak of tensile strength is shortened to about 2 hours, and at 700 ° C., the peak is shortened to about 1 hour, but the tensile strength after 1 hour has decreased.

第1図に示す結果から鑑みて本願発明方法では時効処
理温度を300〜700℃の範囲に限定し、時効処理時間を望
ましく5時間以下と認定した。
In view of the results shown in FIG. 1, in the method of the present invention, the aging treatment temperature was limited to the range of 300 to 700 ° C., and the aging treatment time was determined to be desirably 5 hours or less.

また、前記の手順で製造した試料3(発明品)と試料
1(従来品)について曲げ性のテストを行った。このテ
ストは、板状の各試料の一端側を把持して水平に支持
し、他端側に上方から垂直荷重を加えた場合に、他端に
生じたへたり量(mm)を測定して行った。その結果を第
2図に示す。
A bendability test was conducted on Sample 3 (invention product) and Sample 1 (conventional product) manufactured by the above procedure. In this test, one end of each plate-shaped sample is gripped and supported horizontally, and when the vertical load is applied to the other end from above, the amount of sag (mm) generated at the other end is measured. went. The results are shown in FIG.

第2図から明らかなように試料3(発明品)は試料1
(従来品)よりもへたり量が少ないことが明らかとなっ
た。
As is clear from FIG. 2, sample 3 (invention product) is sample 1
It became clear that the amount of sag was smaller than that of the conventional product.

「発明の効果」 以上説明したように本願発明によれば、FeとNiとCoと
MnとSiを所定量含有する低膨張率の合金に、Beを少量添
加することで高強度にしたので、シリコン素子や封着用
セラミックなどに近い熱膨張率を維持した上に、従来よ
りも硬度と引張強度と曲げ性に優れた変形抵抗の大きな
合金を提供することができる。従って本願発明によれ
ば、従来よりも優れたリードフレーム用材料を提供でき
る。また、本願発明の合金は高価なBeの添加量が少量で
済むので、低コストで得ることができる。
"Effects of the Invention" As described above, according to the present invention, Fe, Ni, Co
A low expansion alloy containing a specified amount of Mn and Si was added with a small amount of Be to make it strong, so that it maintains a thermal expansion coefficient close to that of silicon elements and sealing ceramics, and also has a hardness higher than that of conventional products. It is also possible to provide an alloy having excellent tensile strength and bendability and high deformation resistance. Therefore, according to the present invention, it is possible to provide a lead frame material superior to the conventional one. Further, the alloy of the present invention can be obtained at a low cost because the amount of expensive Be added is small.

さらに、300〜700℃で熱処理を施すので、時効硬化さ
せることができ時効条件の選定により引張り強さなどの
値の制御が可能になり、所望の引張強さと硬度を曲げ性
を有するリードフレーム用に好適な合金を得ることがで
きる。従って本願発明方法により得られた合金を用いて
リードフレームを形成するならば、製造工程途中におい
て外力が作用しても変形を起こすおそれが少ないリード
フレームを得ることができる効果がある。
Furthermore, since it is heat-treated at 300-700 ° C, it can be age-hardened and the values such as tensile strength can be controlled by selecting the aging conditions. For lead frames that have the desired tensile strength and hardness and bendability. A suitable alloy can be obtained. Therefore, if the lead frame is formed by using the alloy obtained by the method of the present invention, it is possible to obtain a lead frame that is less likely to be deformed even when an external force is applied during the manufacturing process.

【図面の簡単な説明】[Brief description of drawings]

第1図は試験片の引張強さと時効処理時間の関係を示す
グラフ、 第2図は試験片の曲げ性のテスト結果を示すグラフであ
る。
FIG. 1 is a graph showing the relationship between the tensile strength of the test piece and the aging treatment time, and FIG. 2 is a graph showing the bendability test result of the test piece.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】下記組成を満たすように原材料を配合し、
溶解して得たインゴットを目的の形状になるまで塑性加
工と焼鈍処理を必要回数施し、最終塑性加工後に、300
〜700℃の温度域において熱処理を行って時効すること
を特徴とする多ピンICパッケージ用リードフレーム用高
強度低膨張Fe−Ni合金の製法。 Ni 30〜50% (重量%、以下同じ) Co 2.0%以下 Mn 0.1〜0.8% Si 0.5%以下 Be 0.05〜2.0% Fe 残部 及び不可避不純物
1. A raw material is blended so as to satisfy the following composition,
The ingot obtained by melting is subjected to plastic working and annealing treatment as many times as necessary until it has a desired shape, and after the final plastic working, 300
A method for producing a high-strength, low-expansion Fe-Ni alloy for a lead frame for a multi-pin IC package, which is characterized by performing heat treatment in a temperature range of up to 700 ° C. Ni 30 to 50% (wt%, same below) Co 2.0% or less Mn 0.1 to 0.8% Si 0.5% or less Be 0.05 to 2.0% Fe Remainder and unavoidable impurities
JP31564688A 1988-12-14 1988-12-14 Manufacturing method of high strength and low expansion Fe-Ni alloy for lead frame for multi-pin IC package Expired - Fee Related JP2533625B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP31564688A JP2533625B2 (en) 1988-12-14 1988-12-14 Manufacturing method of high strength and low expansion Fe-Ni alloy for lead frame for multi-pin IC package
US07/450,038 US5084111A (en) 1988-12-14 1989-12-13 Fe-Ni alloy and method for treating ingot the same
US07/778,256 US5264052A (en) 1988-12-14 1991-10-17 Fe-Ni alloy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31564688A JP2533625B2 (en) 1988-12-14 1988-12-14 Manufacturing method of high strength and low expansion Fe-Ni alloy for lead frame for multi-pin IC package

Publications (2)

Publication Number Publication Date
JPH02159348A JPH02159348A (en) 1990-06-19
JP2533625B2 true JP2533625B2 (en) 1996-09-11

Family

ID=18067872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31564688A Expired - Fee Related JP2533625B2 (en) 1988-12-14 1988-12-14 Manufacturing method of high strength and low expansion Fe-Ni alloy for lead frame for multi-pin IC package

Country Status (1)

Country Link
JP (1) JP2533625B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112143977A (en) * 2020-09-14 2020-12-29 中国科学院金属研究所 High-strength low-expansion alloy wire and preparation method thereof

Also Published As

Publication number Publication date
JPH02159348A (en) 1990-06-19

Similar Documents

Publication Publication Date Title
JPH06299280A (en) Molybdenum - rhenium alloy
US5147469A (en) Process for producing copper-based alloys having high strength and high electric conductivity
SE458450B (en) COPPER ALLOY WITH CHROME, TITAN AND SILICONE AND USE OF THIS FOR ELECTRONIC DETAILS
US5205878A (en) Copper-based electric and electronic parts having high strength and high electric conductivity
JP2533625B2 (en) Manufacturing method of high strength and low expansion Fe-Ni alloy for lead frame for multi-pin IC package
TWI275651B (en) TiCu alloy with excellent electrical conductivity and method for producing the same
JPH0453936B2 (en)
JPH0625395B2 (en) High-strength leadframe material and manufacturing method thereof
JPH0472037A (en) High strength and low thermal expansion alloy and its manufacture
JP3772319B2 (en) Copper alloy for lead frame and manufacturing method thereof
JPS59198741A (en) Lead frame member for semiconductor integrated circuit
JPH02159351A (en) Low-expansion fe-ni alloy with high strength and its production
JP2614395B2 (en) Method for producing thin sheet of Fe-Ni-based electronic material having excellent shrink resistance
JPH0633206A (en) Method for heat-treating ni-base alloy
JPH03219051A (en) Fe-ni alloy for lead frame and its manufacture
JPH09316569A (en) Copper alloy for lead frame and its production
JPS6376839A (en) Copper alloy for electronic equipment and its production
JPH03219054A (en) Fe-ni-co alloy for lead frame and its production
JP2724418B2 (en) High-strength sealing alloy with excellent Ag braze flowability and method for producing the same
JP4630025B2 (en) Method for producing copper alloy material
US5084111A (en) Fe-Ni alloy and method for treating ingot the same
JP2939118B2 (en) Fe-Ni alloy for electronic and electromagnetic applications
JPH06256890A (en) Heat resistant iron alloy for casting
JPS5933857A (en) Ic lead frame material and manufacture thereof
JPH0339446A (en) High strength low expansion fe-ni alloy

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees