JPH0339446A - High strength low expansion fe-ni alloy - Google Patents
High strength low expansion fe-ni alloyInfo
- Publication number
- JPH0339446A JPH0339446A JP17250989A JP17250989A JPH0339446A JP H0339446 A JPH0339446 A JP H0339446A JP 17250989 A JP17250989 A JP 17250989A JP 17250989 A JP17250989 A JP 17250989A JP H0339446 A JPH0339446 A JP H0339446A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- less
- thermal expansion
- lead frame
- high strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000990 Ni alloy Inorganic materials 0.000 title 1
- 239000000956 alloy Substances 0.000 claims abstract description 39
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 38
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 claims abstract description 10
- 239000000203 mixture Substances 0.000 claims description 11
- 239000012535 impurity Substances 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 abstract description 19
- 239000000463 material Substances 0.000 abstract description 14
- 229910052802 copper Inorganic materials 0.000 abstract description 9
- 229910052717 sulfur Inorganic materials 0.000 abstract description 9
- 229910052790 beryllium Inorganic materials 0.000 abstract description 7
- 229910052748 manganese Inorganic materials 0.000 abstract description 7
- 229910052759 nickel Inorganic materials 0.000 abstract description 6
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 4
- 229910052760 oxygen Inorganic materials 0.000 abstract description 4
- 238000000137 annealing Methods 0.000 abstract description 3
- 229910052799 carbon Inorganic materials 0.000 abstract description 3
- 230000032683 aging Effects 0.000 abstract description 2
- 238000005097 cold rolling Methods 0.000 abstract 1
- 238000005242 forging Methods 0.000 abstract 1
- 238000005098 hot rolling Methods 0.000 abstract 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 12
- 239000010703 silicon Substances 0.000 description 12
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 10
- 239000010949 copper Substances 0.000 description 9
- 239000011572 manganese Substances 0.000 description 8
- 239000011347 resin Substances 0.000 description 8
- 229920005989 resin Polymers 0.000 description 8
- 230000000694 effects Effects 0.000 description 6
- 238000012545 processing Methods 0.000 description 5
- 238000005096 rolling process Methods 0.000 description 5
- 238000007789 sealing Methods 0.000 description 4
- 239000011575 calcium Substances 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- -1 AI 0.1% or less Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910000833 kovar Inorganic materials 0.000 description 2
- 230000007257 malfunction Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- 150000003568 thioethers Chemical class 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910020598 Co Fe Inorganic materials 0.000 description 1
- 229910002519 Co-Fe Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 244000089486 Phragmites australis subsp australis Species 0.000 description 1
- 235000014676 Phragmites communis Nutrition 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000003483 aging Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
「産業上の利用分野」
本願発明は、IC用リードフレーム材料などとして好適
なF e−N i合金に関し、FeとNiとCoとMn
とSiとCuを特定量含有する合金にBeとSを特定量
添加することにより、高強度と低熱膨張率を有するよう
にした上に、プレス加工性を向上させたものである。Detailed Description of the Invention "Field of Industrial Application" The present invention relates to an Fe-Ni alloy suitable as a lead frame material for IC, etc.
By adding specific amounts of Be and S to an alloy containing specific amounts of Si and Cu, it is made to have high strength and a low coefficient of thermal expansion, and also has improved press workability.
「従来の技術」
近年、集積度の高い大規模集積回路(LSI)や超大規
模集積回路(超LS I)などの開発が盛んとなってき
ているが、このようなLSIや超LSIにおいては、シ
リコン素子が大型化し、通電時の発熱量ら多くなってき
ている。従ってシリコン素子とリードフレームとの間の
熱膨張率の差異が大きい場合は、シリコン素子が熱スト
レスを受けるおそれがある。そこでLSIや超LSI用
などのリードフレーム材料にあっては、特にその熱膨張
率をシリコン素子の熱膨張率に近付ける必要がある。"Conventional Technology" In recent years, the development of highly integrated large-scale integrated circuits (LSI) and very large-scale integrated circuits (VLSI) has become active. Silicon devices are becoming larger and the amount of heat generated when energized is increasing. Therefore, if there is a large difference in coefficient of thermal expansion between the silicon element and the lead frame, there is a risk that the silicon element will be subjected to thermal stress. Therefore, for lead frame materials for LSIs and VLSIs, it is particularly necessary to bring the coefficient of thermal expansion close to that of silicon elements.
このため従来から、リードフレーム用の材料においては
、シリコン素子などに作用する熱応力を緩和することを
目的とした低熱膨張率のF e−N i合金として、4
2 A l1oy(42%N i−F e)(特開昭5
5−119156号など)、コバール(29%Ni−1
7%Co−F e)、および、低膨張コバール(29%
Ni−13%Co−F eX特開昭59−198741
号)などが知られている。For this reason, lead frame materials have traditionally been made of 4-Fe-Ni alloy, which has a low coefficient of thermal expansion and is intended to alleviate the thermal stress that acts on silicon elements.
2 A l1oy (42%N i-F e)
5-119156 etc.), Kovar (29% Ni-1
7% Co-Fe) and low expansion Kovar (29%
Ni-13%Co-F eX JP-A-59-198741
No.) are known.
「発明が解決しようとする課題」
ところが、最近、IC5LSIなどのリードフレームの
多ピン化に伴い、リードの幅が小さくなってきているの
で、リードの材料強度が不足する傾向があり、製造途中
においてリードが外力による変形を受けやすくなる問題
があった。更に、最近、IC,LSIなどの大型化とと
もに、実装の小型化に伴い、面実装タイプのリードフレ
ームやチップサイズの大きなリードフレームなどにおい
て、アッセンブリー工程中の熱履歴等によって、封止樹
脂とリードフレームとの間に亀裂が発生し、この亀裂が
ICやLSIの作動不良の原因となる問題が発生してい
る。``Problem to be solved by the invention'' However, as lead frames such as IC5LSI have recently increased in number of pins, the width of the leads has become smaller, so the material strength of the leads tends to be insufficient. There was a problem in that the reeds were susceptible to deformation due to external forces. Furthermore, with the recent increase in the size of ICs, LSIs, etc., and the miniaturization of packaging, the sealing resin and leads have become damaged due to heat history during the assembly process in surface mount type lead frames and lead frames with large chip sizes. A problem has arisen in which cracks occur between the frame and the frame, and these cracks cause malfunctions of ICs and LSIs.
そこで本願発明者らは先に、リードの強度を向上させた
合金として特願昭63−315646号明細書において
提案するとともに、この提案の後に、樹脂密着性を向上
させた合金としてFeとNiとCoとMnとSiとCu
を所定量含有する合金に少量のBeを添加した合金の提
案も行っている。この提案の合金は、Ni30〜55%
、Co2.0%以下、M n 1%以下、St0.5%
以下、Be0.01〜0.05%、Cu5.0%以下、
残部Feの組成を有するものである。Therefore, the inventors of the present application first proposed in Japanese Patent Application No. 63-315646 as an alloy with improved lead strength, and after this proposal, Fe and Ni were proposed as an alloy with improved resin adhesion. Co, Mn, Si, and Cu
We have also proposed an alloy in which a small amount of Be is added to an alloy containing a predetermined amount of Be. This proposed alloy has 30-55% Ni
, Co 2.0% or less, M n 1% or less, St 0.5%
Below, Be 0.01 to 0.05%, Cu 5.0% or less,
The remainder has a composition of Fe.
これらの提案の合金は高強度と低膨張性を併せ持ち、樹
脂密着性にも優れた合金である。ところが、この合金を
プレス加工が施されて製造される多ピンリードフレーム
用として検討した場合、従来の42A11oyに比較す
ると、強度が高い分、プレス加工性に劣る問題があった
。These proposed alloys have both high strength and low expansion, and are also alloys with excellent resin adhesion. However, when this alloy was considered for use in a multi-pin lead frame produced by press working, there was a problem in that it had poor press workability due to its high strength compared to the conventional 42A11oy.
本願発明は前記課題を解決するためになされたもので、
シリコン素子に近い低熱膨張率を示し、強度が高い上に
、プレス加工性に優れた高強度低膨張F e−N i合
金を提供することを目的とする。The present invention has been made to solve the above problems,
The present invention aims to provide a high-strength, low-expansion Fe-Ni alloy that exhibits a low coefficient of thermal expansion close to that of silicon elements, has high strength, and has excellent press workability.
「課題を解決するための手段」
本願発明は前記課題を解決するために、Ni 30
〜55%
Co 2.0%以下
Mn1%以下
Si 0.5%以下
Be 0.01〜2.0 %
Cu 5.0%以下
S 0.003〜0.050 %C0.t%以下
0 0.1%以下
N 0.1%以下
残部 Fe 及び不可避不純物
の組成を有するものである。なお、不可避不純物として
、AI 0.1%以下、Mg0.1%以下、Ca0.1
%以下、Cr0.5%以下を含んでいても差し支えない
。"Means for Solving the Problems" In order to solve the problems described above, the present invention provides Ni 30
~55% Co 2.0% or less Mn 1% or less Si 0.5% or less Be 0.01-2.0% Cu 5.0% or less S 0.003-0.050% C0. It has a composition of t% or less 0 0.1% or less N 0.1% or less balance Fe and unavoidable impurities. In addition, as unavoidable impurities, AI 0.1% or less, Mg 0.1% or less, Ca 0.1
% or less, and may contain 0.5% or less of Cr.
「作用」
FeとNiとcoとMnとSiとCuを所定量含有する
合金に添加するBe量とS量が少なくて済み、合金の主
成分は低熱膨張率の合金であるので、リードフレーム用
などの材料として好適な低熱膨張率が確保される。また
、Beを少量添加することで素材表面にBe0層が生成
され、このBe0層が封゛止樹脂との密着性を向上させ
、更に従来のFe−Ni合金よりも高強度な合金を得る
ことができる。"Function" The amount of Be and S added to the alloy containing predetermined amounts of Fe, Ni, Co, Mn, Si, and Cu is small, and since the main component of the alloy is an alloy with a low coefficient of thermal expansion, it is suitable for lead frames. A low coefficient of thermal expansion suitable for materials such as these is ensured. In addition, by adding a small amount of Be, a Be0 layer is generated on the surface of the material, and this Be0 layer improves the adhesion with the sealing resin, making it possible to obtain an alloy with higher strength than conventional Fe-Ni alloys. I can do it.
その上、少量のSを添加することで、組織内に微細な硫
化物が均一に分散するので、高強度を維持した状態でプ
レス加工性が向上する。更に、C10、Nの添加量が各
々0.1%を越えると熱間加工性が劣化するので好まし
くない。Furthermore, by adding a small amount of S, fine sulfides are uniformly dispersed within the structure, so press workability is improved while maintaining high strength. Furthermore, if the amounts of C10 and N added exceed 0.1% each, hot workability deteriorates, which is not preferable.
以下に本願発明を更に詳細に説明する。The present invention will be explained in more detail below.
本願発明の合金においては、Niにッケル)を30〜5
5%、Go(コバルト)を2.0%以下、Mn(マンガ
ン)を1%以下、Si(ケイ素)を0.5%以下、Be
(ベリリウム)を0.01〜2.0%、Cu(銅)を5
.0%以下、S(イオウ)を0.003〜0.050%
、C(炭素)を0.1%以下、O(酸素)を0.1%以
下、N(窒素)を001%以下含有している。In the alloy of the present invention, Ni (nickel) is 30 to 5
5%, Go (cobalt) 2.0% or less, Mn (manganese) 1% or less, Si (silicon) 0.5% or less, Be
(beryllium) 0.01-2.0%, Cu (copper) 5%
.. 0% or less, S (sulfur) 0.003-0.050%
, C (carbon) at 0.1% or less, O (oxygen) at 0.1% or less, and N (nitrogen) at 0.01% or less.
これらの組成において、NiとGoとMnとSiの含有
量は、本発明者らが先に特願昭63−315646号明
細書において特許出願している高強度低膨張F e−N
i合金およびその製法において記載されている合金、
あるいは、前記提案の後で本願発明者らが提案している
合金の組成に準じるものである。なお、本願発明の合金
においては、不可避不純物として、A1(アルミニウム
)0.1%以下、Mg(マグネシウム)0.1%以下、
Ca(カルシウム)0」%以下、Cr(クロム)0.5
%以下を含んでいても差し支えない。In these compositions, the contents of Ni, Go, Mn, and Si are determined by the high-strength, low-expansion Fe-N, which the present inventors have previously applied for in Japanese Patent Application No. 63-315646.
Alloys described in i-alloys and their production methods,
Alternatively, it is based on the alloy composition proposed by the inventors of the present invention after the above proposal. In addition, in the alloy of the present invention, as unavoidable impurities, A1 (aluminum) 0.1% or less, Mg (magnesium) 0.1% or less,
Ca (calcium) 0% or less, Cr (chromium) 0.5
There is no problem even if it contains less than %.
前記組成において、Niの含有量を30〜55%以外に
すると、リードフレーム材料が適用されるシリコン素子
等の熱膨張率に適応した熱膨張率が得られなくなるため
に好ましくなく、COの含有量が2.0%を越える場合
、熱膨張率が大きくなりすぎて好ましくない。また、B
eの含有量を0.01%未満とすると、BeOの酸化膜
が形成されず、封止樹脂との密着性が不十分になるので
好ましくない。なお、Be含有量が2.0%を越えても
これ以上の強度の向上効果を生じない上に、高価なりe
の添加により不必要にコストを上げるのでBe添加量は
2.0%以下が好ましい。更にSiは脱酸剤として用い
るが、含有量が0.5%を越えると合金を脆化させるの
で不都合であり、また、Mnは鍛造性を向上させるとと
もに脱酸剤として用いるが、含有量が1.0%を越える
と曲げ性を悪化させるので好ましくない。また、Cu含
有量が5.0%を越えると熱膨張が大きくなりすぎるの
で不適当である。Sは、組織内に微細な硫化物を分散さ
せてプレス加工性を改善するために用いるが、0.00
3%未満ではその効果が得られず、0.050%を越え
ると熱間加工性を悪化させるので不適当である。更に、
添加元素のC、N 、0は、共に、添加量が0.1%を
越えると熱間加工性が低下する。In the above composition, if the Ni content is other than 30 to 55%, it is not preferable because the lead frame material will not be able to obtain a thermal expansion coefficient adapted to the thermal expansion coefficient of the silicon element, etc. to which the lead frame material is applied. If it exceeds 2.0%, the coefficient of thermal expansion becomes too large, which is not preferable. Also, B
If the content of e is less than 0.01%, a BeO oxide film will not be formed and the adhesion with the sealing resin will become insufficient, which is not preferable. It should be noted that even if the Be content exceeds 2.0%, there will be no further strength improvement effect, and it will be expensive and e.g.
Since the addition of Be increases costs unnecessarily, the amount of Be added is preferably 2.0% or less. Furthermore, Si is used as a deoxidizing agent, but if the content exceeds 0.5%, it will cause the alloy to become brittle, which is disadvantageous.Also, Mn improves forgeability and is used as a deoxidizing agent, but if the content exceeds 0.5%, it will cause the alloy to become brittle. If it exceeds 1.0%, it is not preferable because it deteriorates bendability. Further, if the Cu content exceeds 5.0%, the thermal expansion becomes too large, which is inappropriate. S is used to improve press workability by dispersing fine sulfides within the structure, but 0.00
If it is less than 3%, the effect cannot be obtained, and if it exceeds 0.050%, hot workability is deteriorated, which is inappropriate. Furthermore,
When the additive amounts of C, N, and O exceed 0.1%, hot workability decreases.
以下に前記組成の合金を製造する方法の一例について説
明する。An example of a method for manufacturing an alloy having the above composition will be described below.
前記合金を製造するには、まず、前記の組成になるよう
に原材料を配合した後に、不純物の混入を避ける目的で
Arガスなどの雰囲気中で真空溶解を行って前記組成の
インゴットを得る。To manufacture the alloy, first, raw materials are blended to have the composition as described above, and then vacuum melting is performed in an atmosphere of Ar gas or the like to avoid contamination with impurities to obtain an ingot having the composition as described above.
次いでこのインゴットを1200〜1400℃で鍛造加
工し、目的の形状、例えば目的の板厚になるまで、好ま
しくは加工率70%以下で行う圧延加工と、800〜1
100℃で行う焼鈍処理を繰り返し施す。そして、最終
圧延加工時に加工率を好ましくは50%以下程度に設定
し、最終圧延後に時効硬化処理を目的として、300〜
700℃の温度域において、好ましくは5時間以内の熱
処理を行い、所望の厚さの板材を得る。Next, this ingot is forged at 1200 to 1400°C, and then rolled to a desired shape, for example, a desired thickness, preferably at a processing rate of 70% or less, and
Repeated annealing treatment at 100°C is performed. Then, during the final rolling process, the processing rate is preferably set to about 50% or less, and after the final rolling process, for the purpose of age hardening treatment,
Heat treatment is preferably performed in a temperature range of 700° C. for 5 hours or less to obtain a plate material with a desired thickness.
以上のように製造された合金は、F e−N i系の低
熱膨張率合金を主体としてBeを少量添加することによ
り、シリコン素子の熱膨張率に近い熱膨張率を維持しな
がら、従来のF e−N i合金よりも強度の高いリー
ドフレーム用材料得ることができる。また、添加された
Beの効果により素材表面にBe0層が生じ、このBe
0層が樹脂材との密着性を向上させるので、リードフレ
ームを構成して樹脂封止した場合、封止樹脂とリードフ
レームの密着性が向上し、tCやLSIの作動不良を防
出できる効果がある。更に、Sの添加によりプレス加工
性が良好になっているので、プレス加工により所望形状
のリードフレームを形成する場合に容易に加工できる効
果がある。The alloy manufactured as described above is mainly composed of Fe-Ni-based low thermal expansion coefficient alloy and by adding a small amount of Be, it maintains a thermal expansion coefficient close to that of silicon elements while maintaining a thermal expansion coefficient similar to that of conventional silicon elements. A lead frame material having higher strength than Fe-Ni alloy can be obtained. Also, due to the effect of added Be, a Be0 layer is formed on the surface of the material, and this Be
Since the 0 layer improves the adhesion with the resin material, when a lead frame is constructed and sealed with resin, the adhesion between the sealing resin and the lead frame is improved, which has the effect of preventing TC and LSI malfunctions. There is. Furthermore, since the addition of S improves the press workability, there is an effect that when forming a lead frame of a desired shape by press work, it can be easily processed.
「実施例」
後記する第1表の組成になるように各々原材料を配合し
、各配合物をArガスを含む80Torrの真空雰囲気
において溶解してインゴットを作成し、次いでこのイン
ゴットに1200〜1400℃で熱間鍛造加工を施し、
次いで、加工率70%以下で行う圧延加工と800〜1
100℃に加熱後に徐冷する焼鈍処理とを繰り返し行い
、最終圧延加工を加工率50%以下で行って圧延加工を
終了し、次いで、500℃に2時間加熱する時効処理を
行って厚さ0.15amの板状体を得た。この板状体に
ついて、平均熱膨張係数を測定し、その結果を以下の第
2表に示す。"Example" Each raw material was blended to have the composition shown in Table 1 below, each blend was melted in a vacuum atmosphere of 80 Torr containing Ar gas to create an ingot, and then this ingot was heated at 1200 to 1400 °C Hot forged with
Next, rolling processing performed at a processing rate of 70% or less and 800 to 1
The annealing process of heating to 100°C and slow cooling is repeated, the final rolling process is performed at a processing rate of 50% or less to complete the rolling process, and then the aging process of heating to 500°C for 2 hours is performed to reduce the thickness to 0. A plate of .15 am was obtained. The average coefficient of thermal expansion of this plate-shaped body was measured, and the results are shown in Table 2 below.
(以下、余白) 第 ! 表 第2表 第2表に示すように、本願発明の合金試料N。(Hereafter, margin) No. ! table Table 2 As shown in Table 2, alloy sample N of the present invention.
3〜No6は、シリコン素子などと同程度の低熱膨張率
を有している。Nos. 3 to 6 have low thermal expansion coefficients comparable to those of silicon elements.
次に前述の試料No1〜6を用いてプレス加工性評価試
験を行った。試料No1=No6を金型でプレスして破
断させ、第1図に示すようなプレス破断面の剪断面厚さ
と板厚の比を測定した。その結果を第3表に示す。Next, a press workability evaluation test was conducted using the aforementioned samples Nos. 1 to 6. Samples No. 1 and No. 6 were pressed with a mold to break, and the ratio of the sheared surface thickness and plate thickness of the press-broken surface as shown in FIG. 1 was measured. The results are shown in Table 3.
第 3 表
第3表において明らかなように、本願発明品の試料No
3〜No6は、比較例の試料Nol、No2よりも小さ
な値を示し、プレス加工性が改善されたことが明らかに
なった。また、Sを0.002%含有させた試料No2
は数値の改善割合が少なく、Sを0.003%含有させ
た試料No3は数値の改善割合が大きい。したがってS
の含有量は、0.003%以上必要であることか明らで
ある。Table 3 As is clear from Table 3, sample No. of the invention product
Samples No. 3 to No. 6 showed smaller values than samples No. 1 and No. 2 of the comparative example, and it became clear that the press workability was improved. In addition, sample No. 2 containing 0.002% S
Sample No. 3, which contained 0.003% S, showed a large numerical improvement rate. Therefore S
It is clear that the content of 0.003% or more is required.
「発明の効果」
以上説明したように本願発明によれば、FeとNiとc
oとMnとSiとCuを所定量含有する低膨張率の合金
に、BeとSを少量添加したので、シリコン素子などに
近い熱膨張率を維持した上に、従来合金よりも高強度で
樹脂密着性の良好な合金を提供することができる。しか
も、Sを少量添加しているので、プレス加工性を向上さ
せた合金を提供することができる。また、高価なりeの
添加量が少量で済むので、低コストで得ることができる
。"Effects of the Invention" As explained above, according to the present invention, Fe, Ni and c
By adding a small amount of Be and S to a low expansion coefficient alloy containing predetermined amounts of O, Mn, Si, and Cu, it maintains a thermal expansion coefficient close to that of silicon elements, and has a higher strength than conventional alloys. An alloy with good adhesion can be provided. Moreover, since a small amount of S is added, an alloy with improved press workability can be provided. Further, since only a small amount of expensive e is added, it can be obtained at low cost.
第1図はプレス加工性評価試験方法を説明するための断
面図である。FIG. 1 is a sectional view for explaining the press workability evaluation test method.
Claims (1)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17250989A JPH0339446A (en) | 1989-07-04 | 1989-07-04 | High strength low expansion fe-ni alloy |
US07/450,038 US5084111A (en) | 1988-12-14 | 1989-12-13 | Fe-Ni alloy and method for treating ingot the same |
US07/778,256 US5264052A (en) | 1988-12-14 | 1991-10-17 | Fe-Ni alloy and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17250989A JPH0339446A (en) | 1989-07-04 | 1989-07-04 | High strength low expansion fe-ni alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0339446A true JPH0339446A (en) | 1991-02-20 |
Family
ID=15943283
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17250989A Pending JPH0339446A (en) | 1988-12-14 | 1989-07-04 | High strength low expansion fe-ni alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0339446A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016050332A (en) * | 2014-08-29 | 2016-04-11 | 日本冶金工業株式会社 | Low thermal expansion alloy for bimetal |
-
1989
- 1989-07-04 JP JP17250989A patent/JPH0339446A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016050332A (en) * | 2014-08-29 | 2016-04-11 | 日本冶金工業株式会社 | Low thermal expansion alloy for bimetal |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5205878A (en) | Copper-based electric and electronic parts having high strength and high electric conductivity | |
JPH0453936B2 (en) | ||
JPH0339446A (en) | High strength low expansion fe-ni alloy | |
JPH0339447A (en) | High strength low expansion fe-ni-co alloy | |
JP3000154B2 (en) | Lead frame material manufacturing method | |
JPH04231418A (en) | Production of lead frame material | |
JPH0681035A (en) | Production of lead frame material | |
JP2533625B2 (en) | Manufacturing method of high strength and low expansion Fe-Ni alloy for lead frame for multi-pin IC package | |
JPS60238450A (en) | Alloy for lead frame for ic with superior corrosion resistance | |
JPH04221039A (en) | Alloy material for lead frame and its production | |
JPS62180025A (en) | Copper alloy for electronic apparatus and its production | |
JPS61242052A (en) | Copper alloy lead material for semiconductor device | |
JPS6270542A (en) | Cu-alloy lead material for semiconductor device | |
JPH04224630A (en) | Manufacture of lead frame material | |
JPH03219051A (en) | Fe-ni alloy for lead frame and its manufacture | |
JP2825814B2 (en) | Alloy for IC lead frames with excellent stress corrosion cracking resistance | |
JPS6050866B2 (en) | Alloy for soft glass sealing | |
JP2724418B2 (en) | High-strength sealing alloy with excellent Ag braze flowability and method for producing the same | |
JPH03219054A (en) | Fe-ni-co alloy for lead frame and its production | |
JPS62270739A (en) | Copper alloy for lead frame | |
JPS60251251A (en) | Alloy for lead frame for ic with superior corrosion resistance | |
JPH0331449A (en) | Fe-ni alloy for lead frame | |
JPH02159351A (en) | Low-expansion fe-ni alloy with high strength and its production | |
JPH0331450A (en) | Fe-ni-co alloy for lead frame | |
JPH04191317A (en) | Manufacture of lead frame material |