JPH04231418A - Production of lead frame material - Google Patents
Production of lead frame materialInfo
- Publication number
- JPH04231418A JPH04231418A JP41524090A JP41524090A JPH04231418A JP H04231418 A JPH04231418 A JP H04231418A JP 41524090 A JP41524090 A JP 41524090A JP 41524090 A JP41524090 A JP 41524090A JP H04231418 A JPH04231418 A JP H04231418A
- Authority
- JP
- Japan
- Prior art keywords
- less
- lead frame
- frame material
- rolling
- final
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 65
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 238000005530 etching Methods 0.000 claims abstract description 45
- 238000000137 annealing Methods 0.000 claims abstract description 34
- 238000007789 sealing Methods 0.000 claims abstract description 24
- 238000005096 rolling process Methods 0.000 claims abstract description 21
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 17
- 239000000956 alloy Substances 0.000 claims abstract description 17
- 238000005097 cold rolling Methods 0.000 claims abstract description 17
- 238000000034 method Methods 0.000 claims abstract description 9
- 239000012535 impurity Substances 0.000 claims abstract description 6
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 5
- 239000013078 crystal Substances 0.000 claims description 8
- 229910052750 molybdenum Inorganic materials 0.000 claims description 8
- 229910052758 niobium Inorganic materials 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- 229910052721 tungsten Inorganic materials 0.000 claims description 7
- 229910052735 hafnium Inorganic materials 0.000 claims description 6
- 229910052715 tantalum Inorganic materials 0.000 claims description 6
- 229910052720 vanadium Inorganic materials 0.000 claims description 6
- 229910052726 zirconium Inorganic materials 0.000 claims description 6
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229910052698 phosphorus Inorganic materials 0.000 abstract description 8
- 239000004065 semiconductor Substances 0.000 abstract description 7
- 239000000203 mixture Substances 0.000 abstract description 6
- 229910052799 carbon Inorganic materials 0.000 abstract description 3
- 229910052760 oxygen Inorganic materials 0.000 abstract description 2
- 229910052717 sulfur Inorganic materials 0.000 abstract description 2
- 229910052757 nitrogen Inorganic materials 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 19
- 238000005452 bending Methods 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 13
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 238000000465 moulding Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 150000001247 metal acetylides Chemical class 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- UETQVDZZPKAQIC-UHFFFAOYSA-N chlorane Chemical compound Cl.Cl.Cl.Cl UETQVDZZPKAQIC-UHFFFAOYSA-N 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000012858 packaging process Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】この発明は、エッチング加工性、
封着性並びに成形加工性に優れ、かつ高強度を有したリ
ードフレーム材の製造方法に関するものである。[Industrial Application Field] This invention provides etching processability,
The present invention relates to a method for manufacturing a lead frame material that has excellent sealing properties and moldability, and has high strength.
【0002】0002
【従来の技術】一般に、半導体機器類にあっては、使用
されるリード材の特性もその性能やコストに大きな影響
を及ぼすことが知られているが、従来、このような半導
体機器のリード材には、熱膨張係数が低く、かつ半導体
素子やセラミックスと比較的良好な接着性、封着性を示
すFe−Ni系合金が好んで使用されてきた。しかし、
例えば『LSIをプラスチックパッケージングするプロ
セス』におけるレジンモールド工程後の冷却過程やプリ
ント基盤への実装時、更には使用環境において温度サイ
クルを受けた時等ではレジンとリード材との間に熱応力
がかかるのを避けることができないが、この応力が過大
になった場合には、使用するリード材が『従来から用い
られてきた実績のあるFe−Ni系合金(例えば42%
Ni−Fe合金)製のもの』であったとしてもパッケー
ジにクラックが発生したり、接着界面が剥離したりして
パッケージの耐湿信頼性が低下するという問題を避ける
ことは難しかった。この問題はモールドレジンとリード
材との熱膨張係数差に起因したもので、熱膨張係数差の
ために上記微小クラックや剥離界面が生じると、これを
通して外部から湿気が侵入し内部の半導体素子などを損
傷する恐れがあったのである。従って、LSIの耐湿信
頼性を向上させるためには、リードフレーム材として熱
膨張係数がモールドレジンのそれにできるだけ近い化学
組成のものを使用する必要があった。一方、最近、上記
タイプのLSIにおいても高集積化が進められており、
この傾向は使用するリードフレームの多ピン化を推進す
る結果をもたらしているが、リードフレームの多ピン化
に対処するためにより強度の高い素材を使用することが
要求される。なぜなら、リードフレームが多ピン化され
ると必然的にピン間隔が狭くなり、ピン自体の幅も小さ
くなるが、それを実現するには精度が一段と高いエッチ
ング加工あるいはプレス加工を要することとなる上、ピ
ン幅に比べて厚さが厚くなるという事態を生じて加工が
より一層難しくなる懸念も生じる。そこで、これに対処
すべく素材厚を薄くする必要が出てくるが、薄板化する
ためには従来以上の強度(リード変形に対する抵抗力)
を持ったリードフレーム材が要求されるのである。また
、特に多ピン、超多ピン用のリードフレーム材では、成
形のための加工はエッチング加工が中心となるため、『
エッチング加工性が優れていること』も重要な要求特性
となってきた。ここで、Fe−Ni系合金製リードフレ
ーム材のエッチング加工工程は、一般に、脱脂したリー
ドフレーム材の両面にフォトレジストを塗布し、パター
ンを焼き付けて現像した後、塩化第2鉄を主成分とする
エッチング液でエッチング加工し、その後前記レジスト
を除去する工程から構成されているのが普通である。
そして、この際のエッチング性を決める要因としては『
レジストの密着性』や『エッチング速度』等が挙げられ
るが、これらの中でも素材のエッチング速度が最も重要
な要因となっており、エッチング速度が速くなるにつれ
てリードフレーム材に形成されるピン幅、ピン間隔の制
御性が容易化することから、該エッチング速度によって
エッチング加工性の評価が概ね決定されてしまうと言っ
ても過言ではなかった。[Prior Art] In general, it is known that the characteristics of the lead material used in semiconductor devices have a large effect on their performance and cost. For this purpose, Fe--Ni alloys have been preferably used, which have a low coefficient of thermal expansion and exhibit relatively good adhesion and sealing properties with semiconductor elements and ceramics. but,
For example, thermal stress can occur between the resin and lead material during the cooling process after the resin molding process in the "LSI plastic packaging process", during mounting on a printed circuit board, and when subjected to temperature cycles in the usage environment. Although this cannot be avoided, if this stress becomes excessive, the lead material used should be made of a Fe-Ni alloy (e.g. 42%
Even if the package is made of Ni--Fe alloy), it is difficult to avoid problems such as cracks occurring in the package or peeling of the adhesive interface, which deteriorates the moisture resistance reliability of the package. This problem is caused by the difference in thermal expansion coefficient between the mold resin and the lead material. When the above-mentioned microcracks or peeling interface occur due to the difference in thermal expansion coefficient, moisture can enter from the outside through this and cause damage to the internal semiconductor elements. There was a risk of damaging the Therefore, in order to improve the moisture resistance reliability of LSI, it is necessary to use a lead frame material having a chemical composition whose coefficient of thermal expansion is as close as possible to that of mold resin. On the other hand, recently, the above-mentioned types of LSIs are also becoming more highly integrated.
This trend has resulted in an increase in the number of pins in the lead frame used, but in order to cope with the increase in the number of pins in the lead frame, it is required to use a material with higher strength. This is because when a lead frame has a large number of pins, the pin spacing inevitably becomes narrower and the width of the pin itself becomes smaller, but achieving this requires etching or press processing with even higher precision. There is also a concern that the thickness will become thicker than the pin width, making processing even more difficult. Therefore, in order to deal with this, it becomes necessary to reduce the material thickness, but in order to make the material thinner, it is necessary to increase the strength (resistance against lead deformation) than before.
Therefore, a lead frame material with the following characteristics is required. In addition, especially for lead frame materials for high-pin count and ultra-high-pin count, etching is the main process for molding.
'Excellent etching processability' has also become an important required property. In general, the etching process for Fe-Ni alloy lead frame materials involves applying photoresist to both sides of a degreased lead frame material, baking and developing a pattern, and then using ferric chloride as the main component. Usually, the resist is etched using an etching solution, and then the resist is removed. The factors that determine the etching performance at this time are:
Among these factors, the etching speed of the material is the most important factor, and as the etching speed increases, the pin width and pin formed on the lead frame material increase. Since the interval can be easily controlled, it is no exaggeration to say that the evaluation of etching processability is largely determined by the etching rate.
【0003】0003
【発明が解決しようとする課題】従って、半導体機器の
集積度が上昇するに伴い、リードフレーム材には優れた
封着性や強度特性に加えて『より速いエッチング速度特
性(すなわち良好なエッチング加工性)』も求められる
ようになってきた訳であるが、未だエッチング加工性、
封着性、強度、更には成形加工性などの何れをも十分に
満足した材料が見出されていないのが現状であった。こ
のようなことから、本発明が目的としたのは、強度が高
く、しかも優れたエッチング加工性、封着性並びに成形
加工性をも併せ持つところの、集積度の高い半導体機器
への適用を意図した場合でも十分な性能が発揮されるリ
ードフレーム材の工業的量産手段を確立することであっ
た。[Problems to be Solved by the Invention] Therefore, as the degree of integration of semiconductor devices increases, lead frame materials must not only have excellent sealing properties and strength properties, but also ``faster etching speed characteristics (i.e., good etching processability). However, there is still a need for etching processability,
At present, no material has been found that fully satisfies all of the sealing properties, strength, and moldability. Therefore, the purpose of the present invention is to apply it to highly integrated semiconductor devices that have high strength and also have excellent etching processability, sealing performance, and moldability. The objective was to establish an industrial means for mass production of lead frame materials that would exhibit sufficient performance even when
【0004】0004
【課題を解決するための手段】本発明者らは、上記目的
を達成すべく、特にFe−Ni系合金リードフレーム材
が有する比較的高い強度特性や低い熱膨張係数などに着
目し、その強度を更に向上させ、かつそのエッチング加
工性や成形加工性をも顕著に改善すると共に安定して製
造できる製造方法の研究を重ねた結果、次のような新し
い知見を得ることができた。即ち、
(a)リードフレーム材として比較的好ましいとされて
きたFe−Ni系合金において、そのSiおよびPの含
有量を更にはN含有量をも特定の低い値に制限した場合
には、該合金のエッチング速度が顕著に改善されるよう
になる。
(b)しかも、上記合金にいくつかの選ばれた特定の元
素の1種又は2種以上を所定の割合で含有させた場合、
リードフレーム材としての諸特性に格別な悪影響を及ぼ
すことなく材料の強度を効果的に向上することができる
上、Ni含有量の注意深い調整の下での上記特定元素の
添加は、その熱膨張系数をモールドレジンのそれに近づ
けるのに極めて有効な手段となる。
(c)また、上記材料においても、その結晶粒径が強度
および成形加工性に少なからず影響を及ぼすが、該結晶
粒径を特定値以下におさえる手立てを講じることによっ
てリードフレームの多ピン化にとって好ましい『材料強
度の更なる向上』が期待できる上、成形加工性も改善さ
れる。
(d)上記合金系において、結晶粒径の微細化を混粒に
することなく、安定的に製造するには、最終焼鈍前の圧
延加工度とを特定の範囲に制御する必要がある。
(e)更に、異方性を大きくすることなく強度の向上を
図るには、最終冷間圧延の圧延加工度を特定の範囲に制
御する必要がある。
(f)従って、Fe−Niを基本成分とした合金におけ
るNi、SiおよびP等の含有量を総合的に調整すると
同時に、必要に応じてこれに特定合金元素の添加を行な
い、更に最終焼鈍前の圧延加工度、最終焼鈍時の結晶粒
径、最終圧延の加工度を適正範囲に制御すると強度、熱
膨張係数、封着性、成形加工性などの特性に優れ、しか
も非常に良好なエッチング加工性をも備えたリードフレ
ーム材を安定的に製造することが可能となる。[Means for Solving the Problems] In order to achieve the above object, the present inventors have focused particularly on the relatively high strength characteristics and low coefficient of thermal expansion of the Fe-Ni alloy lead frame material, and have developed As a result of repeated research on a manufacturing method that can further improve the processability, markedly improve the etching processability and molding processability, and enable stable production, we were able to obtain the following new knowledge. (a) In Fe-Ni alloys that have been considered relatively preferable as lead frame materials, if the Si and P contents and also the N content are limited to specific low values, The etching rate of the alloy becomes significantly improved. (b) Moreover, when the above alloy contains one or more selected specific elements in a predetermined ratio,
In addition to being able to effectively improve the strength of the material without any particular negative effect on its properties as a lead frame material, the addition of the above specific elements under careful control of the Ni content improves its thermal expansion coefficient. This is an extremely effective means of bringing the quality close to that of mold resin. (c) Also, in the above materials, the crystal grain size has a considerable influence on the strength and moldability, but by taking measures to keep the crystal grain size below a certain value, it is possible to increase the number of pins in the lead frame. Not only can a desirable "further improvement in material strength" be expected, but moldability is also improved. (d) In the above-mentioned alloy system, in order to stably manufacture the crystal grain size without making the grains mixed, it is necessary to control the degree of rolling before final annealing within a specific range. (e) Furthermore, in order to improve the strength without increasing the anisotropy, it is necessary to control the degree of rolling in the final cold rolling within a specific range. (f) Therefore, the content of Ni, Si, P, etc. in the alloy containing Fe-Ni as a basic component is adjusted comprehensively, and at the same time, specific alloying elements are added to this as necessary, and furthermore, before final annealing. If the degree of rolling, grain size during final annealing, and degree of final rolling are controlled within appropriate ranges, it will have excellent properties such as strength, coefficient of thermal expansion, sealing properties, and formability, as well as very good etching processability. It becomes possible to stably manufacture lead frame materials that also have high properties.
【0005】本発明は、上記知見事項などを基にして完
成されたもので、■重量割合にて、C0.015%〜0
.2%、Si0.001〜0.15%、Mn0.1〜1
.0%、P0.010%以下、S0.005%以下、O
0.010%以下、N0.005%以下、Ni33〜5
5%を含有し、あるいはさらにMg、Ca、Al、Cu
、Coの1種又は2種異上を合計で0.01〜5.0%
又はCr,Mo、W、V、Nb、Ta、Ti、Zr及び
Hfの1種又は2種以上を合計で0.01〜5.0%の
一方又は双方を含有し、Fe及びその他不可避的不純物
から成る合金を素材とし、40〜90%の圧延を施した
後に結晶粒径が30μm以下となる条件で最終焼鈍を実
施し、次いで40〜85%の加工度で最終冷間圧延を行
うこと続く最終冷間圧延の加工度を15〜85%に調整
した後に、300〜800℃のおよび封着性に優れた高
強度リードフレーム材の製造方法である。なお、かかる
本発明において、最終冷間圧後に歪取り焼鈍を行う、S
i含有量を0.001〜0.05%に及び/又はP含有
量を0.003%以下に調整する、なる条件を単独ある
いは組み合わせて採用すると、得られるリードフレーム
材のエッチング加工性改善効果は一段と顕著になり、多
リードフレーム材の製造にも一層十分対応できるように
なる。[0005] The present invention was completed based on the above-mentioned findings, etc.;
.. 2%, Si0.001-0.15%, Mn0.1-1
.. 0%, P 0.010% or less, S 0.005% or less, O
0.010% or less, N0.005% or less, Ni33-5
5%, or further contains Mg, Ca, Al, Cu
, 0.01 to 5.0% in total of one or two types of Co
Or contains one or both of Cr, Mo, W, V, Nb, Ta, Ti, Zr and Hf in a total amount of 0.01 to 5.0%, and contains Fe and other unavoidable impurities. After rolling 40-90%, final annealing is performed under conditions such that the grain size becomes 30 μm or less, followed by final cold rolling with a working degree of 40-85%. This is a method for manufacturing a high-strength lead frame material with excellent sealing properties at 300-800° C. after adjusting the degree of final cold rolling to 15-85%. In addition, in the present invention, strain relief annealing is performed after the final cold pressing, S
By adjusting the i content to 0.001 to 0.05% and/or the P content to 0.003% or less, either alone or in combination, the effect of improving the etching processability of the resulting lead frame material becomes even more prominent, and it becomes possible to more fully cope with the production of multi-lead frame materials.
【0006】[0006]
【作用】続いて、本発明において素材合金の成分組成、
最終焼鈍前における圧延の加工度、最終焼鈍時の結晶粒
径、並びに最終冷間圧延の加工度を前記の如くに数値限
定した理由を、その作用と共に説明する。
A)素材合金の成分組成
Ni:Niはリードフレーム材の熱膨張係数を決定する
のに重要な成分であり、封着時や封着後におけるパッケ
ージとの熱膨張差を小さくして優れた封着性、耐湿信頼
性を確保するためには、Ni含有量を33〜55%に調
整する必要がある。従って、Ni含有量は33〜55%
と決めた。
C:リードフレーム材中のC含有量が0.015%以下
ではCによる強度の向上は認められず、0.2%を超え
て添加すると材料が脆くなり、曲げ加工性が劣るように
なる。また、後述するCr、Co、Mo、W、V、Nb
、Ta、Ti、Zr及びHfなどを共に添加すると炭化
物を形成し、炭化物生成による分散強化と結晶粒微細化
による強度向上が得られる。曲げ加工性を損なわずに強
度を向上させるためのC含有量は0.015〜0.2%
とした。
Si:Siは脱散剤として必要な元素であるが、一方で
リードフレーム材のエッチング加工性に大きな影響を及
ぼす元素でもある。即ち、Si含有量が増加するとエッ
チング速度が遅くなってエッチング加工性が悪化する。
このため、良好なエッチング加工性を確保するためには
Si含有量を0.15%以下に調整する必要がある。特
に、多ピンタイプのリードフレーム材の場合には一段と
良好なエッチング加工性が要求されることから、Si含
有量は0.05%以下にまで低減するのが望ましい。た
だ、Si含有量を0.001%未満の領域まで低減する
と脱酸効果が認められなくなってしまう。従って、Si
含有量は0.001〜0.15%と定めたが、上述した
ようにできれば0.001〜0.05%に調整するのが
望ましい。
Mn:Mnはリードフレーム材の脱酸および熱間加工性
を確保するために添加される成分であるが、その含有量
が0.1%未満では所望の脱酸効果が得られないばかり
か、熱間加工性にも劣るようになる。一方、1.0%を
超えて含有させるとリードフレーム材の硬さが上昇し過
ぎて加工性の悪化を招き、更には熱膨張係数も大きくな
ってしまう。従って、Mn含有量は0.1〜1.0%と
定めた。
P:PもSiと同様、含有量が多くなるとリードフレー
ム材のエッチング加工性に害を与える元素である。そし
て、上記エッチング加工性への悪影響はP含有量が0.
01%を超えるとより顕在化することから、P含有量は
0.01%以下と定めた。しかし、P含有量を0.00
3%以下にまで低減すると、エッチング加工性改善効果
が一層顕著になって多ピンタイプのリードフレームへ適
用する場合でも十分満足できる結果が安定して確保でき
るようになることから、望ましくは0.003%以下に
調整するのがよい。
S:S含有量が0.005%を超えるとリードフレーム
材中に硫化物系介在物が多くなり、エッチング加工時の
欠陥となってピン折れ等を引き起こすようになる。従っ
て、S含有量は0.005%以下と限定した。
O:O含有量が0.010%を超えるとリードフレーム
材中に酸化物系介在物が多くなり、やはりエッチング加
工時の穿孔欠陥となることからO含有量を0.010%
以下と限定した。
N:N含有量が0.005%を超えてもリードフレーム
材のエッチング加工性が悪化することから、N含有量の
上限を0.005%と定めた。
Mg、Ca、Al、Cu、Co、Cr、Mo、W、V、
Nb、Ta、Ti、Zr及びHf:これらの元素は何れ
もリードフレーム材の強度や熱膨張係数を上昇させる作
用を有しているため、材料強度の向上、並びに熱膨張係
数を上げてレジンモールドのそれに近付けることで、封
着性をより改善する目的で必要に応じ1種又は2種以上
が含有せしめられる。特に、Cr、Co、Mo、W、V
、Nb、Ta、Ti、Zr及びHfは、炭化物を形成し
、固溶炭素を減少させるため、エッチング性の効果もあ
り、また、炭化物の分散によって結晶粒が微細化し、強
度上昇及び曲げ性改善の効果をももたらす。しかし、そ
れらの含有量が合計で0.01%未満であると前記作用
による所望の効果が得られず、一方合計の含有量が5.
0%を超えた場合には材料が硬くなり過ぎて成形加工性
の劣化を招くほか、適正な熱膨張係数の確保も困難とな
ることから、上記成分の含有量を合計量で0.01〜5
.0%と定めた。[Operation] Next, in the present invention, the composition of the material alloy,
The reason why the working degree of rolling before final annealing, the grain size at the time of final annealing, and the working degree of final cold rolling are numerically limited as described above will be explained together with their effects. A) Composition of material alloy Ni: Ni is an important component in determining the thermal expansion coefficient of the lead frame material, and it reduces the difference in thermal expansion with the package during and after sealing, resulting in excellent sealing. In order to ensure adhesion and moisture resistance reliability, it is necessary to adjust the Ni content to 33 to 55%. Therefore, the Ni content is 33-55%
I decided. C: If the C content in the lead frame material is 0.015% or less, no improvement in strength due to C is observed, and if it is added in excess of 0.2%, the material becomes brittle and the bending workability becomes poor. In addition, Cr, Co, Mo, W, V, Nb, which will be described later
When , Ta, Ti, Zr, Hf, etc. are added together, carbides are formed, and dispersion strengthening due to carbide formation and strength improvement due to crystal grain refinement can be obtained. The C content is 0.015-0.2% to improve strength without impairing bending workability.
And so. Si: Si is an element necessary as a dispersing agent, but it is also an element that greatly affects the etching processability of lead frame materials. That is, as the Si content increases, the etching rate slows down and etching processability deteriorates. Therefore, in order to ensure good etching processability, it is necessary to adjust the Si content to 0.15% or less. In particular, in the case of a multi-pin type lead frame material, even better etching processability is required, so it is desirable to reduce the Si content to 0.05% or less. However, if the Si content is reduced to less than 0.001%, the deoxidizing effect will no longer be observed. Therefore, Si
Although the content was determined to be 0.001 to 0.15%, it is desirable to adjust the content to 0.001 to 0.05% if possible as described above. Mn: Mn is a component added to ensure deoxidation and hot workability of lead frame materials, but if its content is less than 0.1%, not only will the desired deoxidizing effect not be obtained, but Hot workability also becomes poor. On the other hand, if the content exceeds 1.0%, the hardness of the lead frame material will increase too much, resulting in deterioration of workability and furthermore, the coefficient of thermal expansion will increase. Therefore, the Mn content was determined to be 0.1 to 1.0%. P: Like Si, P is an element that harms the etching processability of lead frame materials when its content increases. The above-mentioned adverse effect on etching processability occurs when the P content is 0.
Since P content becomes more obvious when it exceeds 0.01%, the P content was set at 0.01% or less. However, the P content is 0.00
When it is reduced to 3% or less, the effect of improving etching processability becomes even more remarkable, and even when applied to a multi-pin type lead frame, a sufficiently satisfactory result can be stably ensured, so it is preferably 0. It is preferable to adjust it to 0.003% or less. S: If the S content exceeds 0.005%, sulfide-based inclusions will increase in the lead frame material, causing defects during etching, such as pin breakage. Therefore, the S content was limited to 0.005% or less. O: If the O content exceeds 0.010%, oxide-based inclusions will increase in the lead frame material, which will also cause drilling defects during etching processing, so the O content should be reduced to 0.010%.
Limited to the following. N: Even if the N content exceeds 0.005%, the etching processability of the lead frame material deteriorates, so the upper limit of the N content was set at 0.005%. Mg, Ca, Al, Cu, Co, Cr, Mo, W, V,
Nb, Ta, Ti, Zr, and Hf: These elements all have the effect of increasing the strength and thermal expansion coefficient of the lead frame material, so they can improve the material strength and increase the thermal expansion coefficient to improve resin molding. If necessary, one or more types may be included for the purpose of further improving the sealing property by bringing the composition closer to that of . In particular, Cr, Co, Mo, W, V
, Nb, Ta, Ti, Zr, and Hf form carbides and reduce solid solution carbon, so they have an etching effect, and dispersion of carbides makes crystal grains finer, increasing strength and improving bendability. It also brings about the effect of However, if the total content of these is less than 0.01%, the desired effect of the above action cannot be obtained, and on the other hand, if the total content is less than 5.
If it exceeds 0%, the material will become too hard, leading to deterioration in moldability, and it will also be difficult to secure an appropriate coefficient of thermal expansion, so the total content of the above components should be 0.01 to 0. 5
.. It was set as 0%.
【0007】B)最終焼鈍前における圧延の加工度最終
焼鈍前の圧延加工度はリードフレーム材に所望強度を確
保する上で重要であるが、その加工度を特に40〜90
%に限定する理由は、圧延加工度が40%未満の場合に
は最終焼鈍時に安定して所望の微細な結晶粒が得られず
に混粒となってしまい、逆に90%を超える圧延加工度
になると最終焼鈍時に立方体組織が発達し過ぎて異常な
組織となり、この結果、異方性が発達し、最終冷間圧延
、歪取り焼鈍を行っても所望する強度が得られなくなる
ことにある。
C)最終焼鈍時の結晶粒径
最終焼鈍条件もリードフレーム材に所望強度を確保する
上で重要であり、またエッチング性やプレス加工性にも
大きく影響する因子となるが、特に得られる結晶粒径が
30μm以下となる条件で最終焼鈍を実施する理由は、
結晶粒径の微細化が高強度化に大きく寄与する上、エッ
チング性やプレス加工性にも好結果が得られて高精度の
フレームの実現に有効であるのに対して、結晶粒径が3
0μmを超えるとこれらの効果を確保することが出来な
くなるためである。なお、最終焼鈍時の結晶粒径の調整
は、周知のように焼鈍温度および時間を調節することに
よって容易に行うことができる。
D)最終冷間圧延の加工度
最終圧延での加工度もリードフレーム材の強度に大きな
影響を与えるが、該加工度を特に40〜85%と限定す
る理由は、該圧延加工度が40%未満の場合には強度改
善に顕著な効果が得られず、一方85%を越えると強度
の異方性が顕著となり、成形加工性も劣化するためであ
る。
E)時効熱処理
最終圧延後に適正な歪焼鈍を行うことによってKb値が
向上し、その異方性も飛躍的に改善されるとともに、曲
げ加工性および封着性が改善されるため、歪取り焼鈍を
行う。例えば、還元性雰囲気中での連続焼鈍炉において
、炉温500〜900℃、材料の炉内滞留時間:10秒
間〜120秒間で熱処理することによって上記効果が得
られる。B) Rolling degree before final annealing The degree of rolling before final annealing is important in ensuring the desired strength of the lead frame material, and the degree of rolling is particularly important when the degree of rolling is 40 to 90.
The reason why it is limited to % is that if the degree of rolling is less than 40%, the desired fine grains cannot be stably obtained during final annealing, resulting in mixed grains, whereas if the degree of rolling is less than 90%, If the temperature reaches a certain degree, the cubic structure will develop too much during the final annealing, resulting in an abnormal structure, and as a result, anisotropy will develop, making it impossible to obtain the desired strength even if final cold rolling and strain relief annealing are performed. . C) Crystal grain size during final annealing The final annealing conditions are also important in ensuring the desired strength of the lead frame material, and are also factors that greatly affect etching properties and press workability. The reason for carrying out final annealing under the conditions that the diameter is 30 μm or less is as follows.
Reducing the grain size greatly contributes to high strength, and also produces good results in etching and press workability, which is effective in realizing high-precision frames.
This is because if the thickness exceeds 0 μm, these effects cannot be ensured. Note that the grain size during final annealing can be easily adjusted by adjusting the annealing temperature and time, as is well known. D) Working degree of final cold rolling The working degree of the final cold rolling also has a large effect on the strength of the lead frame material, but the reason why the working degree is particularly limited to 40 to 85% is that the working degree of the final cold rolling is 40%. If it is less than 85%, no significant effect on strength improvement will be obtained, whereas if it exceeds 85%, anisotropy in strength will become noticeable and moldability will deteriorate. E) Aging heat treatment Proper strain annealing after final rolling improves the Kb value, dramatically improves its anisotropy, and improves bending workability and sealing properties. I do. For example, the above effects can be obtained by heat treatment in a continuous annealing furnace in a reducing atmosphere at a furnace temperature of 500 to 900° C. and a residence time of the material in the furnace of 10 seconds to 120 seconds.
【0008】[0008]
【実施例】次いで、本発明の効果を実施例により更に具
体的に説明する。まず、真空溶解・鋳造によって表1に
示される化学成分組成のFe−Ni系合金インゴットを
得た後、これらに熱間圧延、酸洗を施し、次に冷間圧延
と焼鈍を繰り返して板厚:0.125mmの冷延板を製
造し、最終冷間圧延後に還元性雰囲気中で700℃、3
秒間の歪取り熱処理を行った。なお、この時の『最終焼
鈍前の冷間圧延』の加工度、最終焼鈍時の結晶粒径、並
びに最終冷間圧延の加工度は表2に示したとおりであっ
た。[Example] Next, the effects of the present invention will be explained in more detail with reference to Examples. First, Fe-Ni alloy ingots having the chemical composition shown in Table 1 were obtained by vacuum melting and casting, then hot rolled and pickled, and then cold rolled and annealed repeatedly to achieve a thickness of : A cold rolled sheet of 0.125 mm was produced, and after the final cold rolling, it was heated at 700°C for 3 hours in a reducing atmosphere.
A strain relief heat treatment was performed for seconds. In addition, the working degree of "cold rolling before final annealing" at this time, the grain size at the time of final annealing, and the working degree of final cold rolling were as shown in Table 2.
【0009】[0009]
【表1】[Table 1]
【0010】0010
【表2】
続いて、このように製造されたFe−Ni系合金リード
フレーム材につき、”機械的特性”、”エッチング性”
、”曲げ加工性”および”封着性”を調査し、その結果
を表2に併せて示した。[Table 2] Next, the "mechanical properties" and "etchability" of the Fe-Ni alloy lead frame material manufactured in this way are described.
, "bending workability" and "sealability" were investigated, and the results are also shown in Table 2.
【0011】ここで機械的性質については、曲げモーメ
ントに対する材料の強度をKb値(ばね限界値)でもっ
て評価した。エッチング性については、製造された前記
各厚さ0.1mmの板材試料を脱脂してからレジスト膜
を塗布し、パターンを焼き付けて現像した後、塩化第2
鉄にて128ピンのリードフレームをすべて同一条件下
でエッチング加工したものにつき、アウターリードピン
幅とそのバラツキを測定した評価した。成形加工性は、
90度繰り返し曲げ試験を行って評価した。そして、封
着性の評価は、樹脂封着後に熱サイクルを付与してクラ
ックが生じるかどうかを調べることによって行った。表
2に示される結果からは次の事項が明らかである。即ち
、本発明例No.1〜4に係わる材料は、比較例No.
22〜35に比べ、機械的性質、エッチング性、曲げ加
工性および封着性に優れている。その中でも本発明例N
o.1に係わるものは、C、Si、Pの各含有量ともよ
り好ましい範囲にコントロールされているため、本発明
例No.2〜4に係わるものと比較してもエッチング性
が更に優れている。又、本発明例No.5〜21に係わ
るものは、Nb、Mo、Ti等を添加しているために強
度が一層向上している。一方、比較例No.22に係わ
るものは、最終焼鈍前圧延加工度が低すぎるためにその
後の焼鈍によって小さい結晶粒径を実現することができ
ず、Kb値が低くなっている。逆に比較例No.23に
係わるものは、最終焼鈍前圧延加工度が大きすぎるため
にその後の焼鈍により立方体組織が発達してしまい、K
b値が低くなっている。比較例No.24に係わるもの
は、最終圧延加工度が小さすぎるためにKb値が低くな
っている。比較例No.25に係わるものは、最終焼鈍
時の結晶粒径が大きかったためにKb値が低くなってい
る。比較例No.26に係わるものは、最終圧延加工度
が大きすぎるために曲げ加工性が劣っている。比較例.
27に係わるものは、Cの含有量が多いために曲げ加工
性及び封着性が劣るものとなっている。比較例No.2
8〜29に係るものは、Si及びPの含有量が多いため
にエッチング加工性、曲げ加工性及び封着性が劣るもの
となっている。比較例No.30〜33に係るものは、
W、Mo、Co等の添加量が多すぎるために曲げ加工性
や封着性が劣る結果となっている。なお、図1は、本発
明例No.1と比較例No.34および35に係わるも
のの『曲げモーメントとへたり量との関係』を示したグ
ラフである。ここで、比較例No.34に係わるものは
、板厚が0.125mm、比較例No.35に係わるも
のは、板厚が0.15mmであって、何れも従来の製造
方法により作製したものである。この図1からは、本発
明で規定されたとおりの条件で製造されたリードフレー
ム材は、その板厚を0.15mmから0.125mmに
薄く下としても同じ曲げモーメントに対するへたり量が
少なく、変形に対する材料強度が強いことを確認するこ
とができる。As for the mechanical properties, the strength of the material against bending moment was evaluated using the Kb value (spring limit value). Regarding etching properties, after degreasing each of the manufactured plate samples with a thickness of 0.1 mm, a resist film was applied, a pattern was baked and developed, and dichloride dichloride was applied.
A 128-pin lead frame made of iron was etched under the same conditions, and the outer lead pin width and its variation were measured and evaluated. The moldability is
Evaluation was performed by conducting a 90 degree repeated bending test. The sealability was evaluated by applying a thermal cycle after resin sealing and examining whether cracks were generated. The following points are clear from the results shown in Table 2. That is, invention example No. The materials related to Nos. 1 to 4 are Comparative Example No.
Compared to Nos. 22 to 35, it has excellent mechanical properties, etching properties, bending properties, and sealing properties. Among them, the present invention example N
o. Inventive Example No. 1, the C, Si, and P contents are all controlled within a more preferable range. The etching properties are even better than those related to Nos. 2 to 4. Moreover, the present invention example No. In the case of Nos. 5 to 21, the strength is further improved due to the addition of Nb, Mo, Ti, etc. On the other hand, comparative example No. In the case of No. 22, since the degree of rolling before final annealing was too low, it was not possible to achieve a small grain size through subsequent annealing, resulting in a low Kb value. On the contrary, comparative example No. Regarding No. 23, the degree of rolling before final annealing was too large, resulting in the development of a cubic structure during subsequent annealing, resulting in K
The b value is low. Comparative example no. In the case of No. 24, the Kb value is low because the final rolling degree is too small. Comparative example no. Regarding No. 25, the Kb value was low because the crystal grain size at the time of final annealing was large. Comparative example no. In the case of No. 26, the final rolling degree is too large and the bending workability is poor. Comparative example.
In the case of No. 27, the bending workability and sealing properties are poor due to the high content of C. Comparative example no. 2
In the case of Nos. 8 to 29, the etching workability, bending workability, and sealing performance are poor due to the large contents of Si and P. Comparative example no. Regarding items 30 to 33,
Since the amounts of W, Mo, Co, etc. added are too large, the bending workability and sealing properties are poor. In addition, FIG. 1 shows the example No. of the present invention. 1 and comparative example no. It is a graph showing the "relationship between the bending moment and the amount of settling" regarding No. 34 and No. 35. Here, comparative example No. Regarding No. 34, the plate thickness was 0.125 mm and Comparative Example No. No. 35 has a plate thickness of 0.15 mm, and was manufactured by a conventional manufacturing method. From FIG. 1, it can be seen that the lead frame material manufactured under the conditions specified in the present invention has a small amount of settling under the same bending moment even if the plate thickness is reduced from 0.15 mm to 0.125 mm. It can be confirmed that the material has strong strength against deformation.
【0012】0012
【発明の効果】この発明によれば、エッチング加工性、
封着性、成形性に優れ、かつ強度の高いリードフレーム
材を安定して製造することができ、半導体機器の更なる
高集積化を可能にするなど、産業上極めて有効な効果が
もたらされる。[Effect of the invention] According to this invention, etching processability,
It is possible to stably produce a lead frame material with excellent sealing properties, moldability, and high strength, and extremely effective industrial effects are brought about, such as enabling even higher integration of semiconductor devices.
【図1】本発明の実施例と比較例の曲げモーメントへた
り量との関係を示すグラフである。FIG. 1 is a graph showing the relationship between the amount of bending moment settling in an example of the present invention and a comparative example.
Claims (6)
%、Si0.001〜0.15%、Mn0.1〜1.0
%、P0.01%以下、S0.005%以下、O0.0
10%以下、N0.005%以下、Ni33〜55%を
含有し、残部がFe及びその他不可避的不純物から成る
合金を素材とし、40〜90%の圧延を施した後に、結
晶粒径が30μm以下となる条件で最終焼鈍を実施し、
次いで40〜85%の加工度で最終冷間圧延を行うこと
を特徴とするエッチング加工性及び封着性に優れた高強
度リードフレーム材の製造方法。Claim 1: C0.015 to 0.2 in weight proportion
%, Si0.001-0.15%, Mn0.1-1.0
%, P0.01% or less, S0.005% or less, O0.0
The material is an alloy containing 10% or less, 0.005% or less N, 33-55% Ni, and the balance consisting of Fe and other unavoidable impurities, and after being rolled 40-90%, the crystal grain size is 30 μm or less. Final annealing was carried out under the conditions of
A method for producing a high-strength lead frame material with excellent etching workability and sealing properties, which comprises then performing final cold rolling at a working degree of 40 to 85%.
%、Si0.001〜0.15%、Mn0.1〜1.0
%、P0.01%以下、S0.005%以下、O0.0
10%以下、N0.005%以下、Ni33〜55%を
含有するとともに、Mg、Ca、Al及びCuの1種以
上を合計で0.01〜5.0%をも含有し、残部がFe
及びその他の不可避的不純物から成る合金を素材とし、
40〜90%の圧延を施した後に、結晶粒が30μm以
下となる条件で最終焼鈍を実施し、次いで40〜85%
の加工度で最終冷間圧延を行うことを特徴とするエッチ
ング加工性及び封着性に優れた高強度リードフレーム材
の製造方法。Claim 2: C0.015 to 0.2 in weight proportion
%, Si0.001-0.15%, Mn0.1-1.0
%, P0.01% or less, S0.005% or less, O0.0
10% or less, N0.005% or less, Ni33-55%, and also contains one or more of Mg, Ca, Al, and Cu in a total of 0.01-5.0%, and the balance is Fe.
and other unavoidable impurities,
After rolling 40 to 90%, final annealing is carried out under conditions such that the grain size is 30 μm or less, and then 40 to 85%
1. A method for producing a high-strength lead frame material with excellent etching workability and sealing properties, characterized by performing final cold rolling at a working degree of .
%、Si0.001〜0.15%、Mn0.1〜1.0
%、P0.01%以下、S0.005%以下、O0.0
10%以下、N0.005%以下、Ni33〜55%を
含有するとともに、Cr、Co、Mo、W、V、Nb、
Ta、Ti、Zr及びHfの1種以上を合計で0.01
〜5.0%をも含有し、残部がFe及びその他の不可避
的不純物から成る合金を素材とし、40〜90%の圧延
を施した後に、結晶粒が30μm以下となる条件で最終
焼鈍を実施し、次いで40〜85%の加工度で最終冷間
圧延を行うことを特徴とするエッチング加工性及び封着
性に優れた高強度リードフレーム材の製造方法。Claim 3: C0.015 to 0.2 in weight proportion
%, Si0.001-0.15%, Mn0.1-1.0
%, P0.01% or less, S0.005% or less, O0.0
Contains 10% or less, N0.005% or less, and 33 to 55% Ni, as well as Cr, Co, Mo, W, V, Nb,
One or more of Ta, Ti, Zr and Hf in total 0.01
~5.0%, with the balance consisting of Fe and other unavoidable impurities. After rolling 40 to 90%, final annealing is performed under conditions such that the grain size is 30 μm or less. A method for producing a high-strength lead frame material having excellent etching processability and sealing properties, the method comprising: followed by final cold rolling at a workability of 40 to 85%.
%、Si0.001〜0.15%、Mn0.1〜1.0
%、P0.01%以下、S0.005%以下、O0.0
10%以下、N0.005%以下、Ni33〜55%を
含有するとともに、Mg、Ca、Al及びCuの1種以
上を合計で0.01〜5.0%をも含有し、さらにはC
r、Co、Mo、W、V、Nb、Ta、Ti、Zr及び
Hfの1種以上を合計で0.01〜5.0%をも含有し
、残部がFe及びその他の不可避的不純物から成る合金
を素材とし、40〜90%の圧延を施した後に、結晶粒
が30μm以下となる条件で最終焼鈍を実施し、次いで
40〜85%の加工度で最終冷間圧延を行うことを特徴
とするエッチング加工性及び封着性に優れた高強度リー
ドフレーム材の製造方法。Claim 4: C0.015 to 0.2 in weight proportion
%, Si0.001-0.15%, Mn0.1-1.0
%, P0.01% or less, S0.005% or less, O0.0
10% or less, N0.005% or less, Ni33-55%, and also contains a total of 0.01-5.0% of one or more of Mg, Ca, Al, and Cu, and furthermore, C
Contains a total of 0.01 to 5.0% of one or more of r, Co, Mo, W, V, Nb, Ta, Ti, Zr and Hf, with the remainder consisting of Fe and other inevitable impurities. The alloy is used as a material, and after being rolled 40 to 90%, final annealing is performed under conditions such that the grain size becomes 30 μm or less, and then final cold rolling is performed at a workability of 40 to 85%. A method for manufacturing a high-strength lead frame material with excellent etching processability and sealing properties.
求項1ないし4のいずれかに記載のエッチング加工性及
び封着性に優れた高強度リードフレーム材の製造方法。5. The method for producing a high-strength lead frame material with excellent etching processability and sealing properties according to claim 1, wherein strain relief annealing is performed after the final cold rolling.
及び/又はP含有量が0.003%以下の合金を使用す
る請求項1〜5のいずれかに記載のエッチング加工性及
び封着性に優れた高強度リードフレーム材の製造方法。[Claim 6] Si content is 0.001 to 0.05%
The method for producing a high-strength lead frame material having excellent etching processability and sealing properties according to any one of claims 1 to 5, wherein an alloy having a P content of 0.003% or less is used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP41524090A JPH04231418A (en) | 1990-12-27 | 1990-12-27 | Production of lead frame material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP41524090A JPH04231418A (en) | 1990-12-27 | 1990-12-27 | Production of lead frame material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04231418A true JPH04231418A (en) | 1992-08-20 |
Family
ID=18523621
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP41524090A Pending JPH04231418A (en) | 1990-12-27 | 1990-12-27 | Production of lead frame material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04231418A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11264055A (en) * | 1998-03-17 | 1999-09-28 | Sumitomo Metal Ind Ltd | Oxdide-dispersed low thermal expansion alloy |
KR100291463B1 (en) * | 1998-12-26 | 2001-06-01 | 홍영철 | Ultra High Strength Invar Alloy Wire and Manufacturing Method Thereof |
JP2003535217A (en) * | 2000-05-30 | 2003-11-25 | インフイ・ユジヌ・プレシジオン | Hardened Fe-Ni alloy for manufacturing integrated circuit grid and method for manufacturing the same |
WO2003106720A1 (en) * | 2002-06-18 | 2003-12-24 | Jfeスチール株式会社 | Low-thermal expansion alloy thin sheet and its manufacturing method |
-
1990
- 1990-12-27 JP JP41524090A patent/JPH04231418A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11264055A (en) * | 1998-03-17 | 1999-09-28 | Sumitomo Metal Ind Ltd | Oxdide-dispersed low thermal expansion alloy |
KR100291463B1 (en) * | 1998-12-26 | 2001-06-01 | 홍영철 | Ultra High Strength Invar Alloy Wire and Manufacturing Method Thereof |
JP2003535217A (en) * | 2000-05-30 | 2003-11-25 | インフイ・ユジヌ・プレシジオン | Hardened Fe-Ni alloy for manufacturing integrated circuit grid and method for manufacturing the same |
WO2003106720A1 (en) * | 2002-06-18 | 2003-12-24 | Jfeスチール株式会社 | Low-thermal expansion alloy thin sheet and its manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH04231418A (en) | Production of lead frame material | |
JP3133350B2 (en) | Lead frame material manufacturing method | |
JPH03197645A (en) | Lead frame material | |
JP3000154B2 (en) | Lead frame material manufacturing method | |
JPH0472037A (en) | High strength and low thermal expansion alloy and its manufacture | |
JPH04221039A (en) | Alloy material for lead frame and its production | |
JPH0681035A (en) | Production of lead frame material | |
JPH04224630A (en) | Manufacture of lead frame material | |
JPH04221020A (en) | Manufacture of lead frame | |
JPH04191316A (en) | Manufacture of lead frame material | |
JPH04221040A (en) | Alloy for lead frame and its production | |
JPH04231417A (en) | Production of lead frame material | |
JPH03197641A (en) | Lead frame material | |
JPH04231416A (en) | Production of lead frame material | |
JPH04221038A (en) | Alloy material for lead frame and its manufacture | |
JPH04221022A (en) | Manufacture of lead frame material | |
JPH04231420A (en) | Production of lead frame material | |
JPH04231421A (en) | Production of lead frame material | |
JPH04221021A (en) | Manufacture of lead frame | |
JPH04224631A (en) | Manufacture of lead frame material | |
JPH04224632A (en) | Manufacture of lead frame material | |
JPH04191317A (en) | Manufacture of lead frame material | |
JPH04221023A (en) | Manufacture of lead frame material | |
JPH04221024A (en) | Manufacture of lead frame material | |
JP2939118B2 (en) | Fe-Ni alloy for electronic and electromagnetic applications |