JPH03197641A - Lead frame material - Google Patents

Lead frame material

Info

Publication number
JPH03197641A
JPH03197641A JP1337768A JP33776889A JPH03197641A JP H03197641 A JPH03197641 A JP H03197641A JP 1337768 A JP1337768 A JP 1337768A JP 33776889 A JP33776889 A JP 33776889A JP H03197641 A JPH03197641 A JP H03197641A
Authority
JP
Japan
Prior art keywords
lead frame
content
frame material
etching
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1337768A
Other languages
Japanese (ja)
Inventor
Masatoshi Eto
雅俊 衛藤
Norio Yuki
典夫 結城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP1337768A priority Critical patent/JPH03197641A/en
Publication of JPH03197641A publication Critical patent/JPH03197641A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high strength lead frame material excellent in etching characteristic and sealing characteristic by specifying a composition consisting of C, Si, P, S, O, N, Co, Ni, elements for improving strength and thermal expansion coefficient, such as Cu, and Fe. CONSTITUTION:A lead frame material having high strength and hardness and excellent in etching characteristic, sealing characteristic, and formability can be obtained by providing a composition which consists of, by weight, <=0.015%, preferably <=0.005%, of C, 0.001-0.15%, preferably 0.001-0.05%, of Si, <=0.01%, preferably <=0.003%, of P, <=0.005% S, <=0.010% O, <=0.005% N, 5-30% Co, 15-55% Ni, further 0.01-5.0% of one or more elements among Cu, Mn, Cr, Mo, W, V, Nb, Ta, Ti, Zr, Hf, B, Be, Mg, and Ca, and the balance Fe with inevitable impurities and also providing a structure in which crystalline grain size at the time of the final annealing is regulated, preferably, to <=50mum.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、エツチング加工性、封着性並びに成形加工
性に優れ、かつ強度の高いリードフレーム材に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a lead frame material having excellent etching processability, sealing property and molding processability, and high strength.

く背景技術とその課題〉 一般に、半導体機器類においてはリード材の特性もその
性能やコストに大きな影響を及ぼすことが知られている
が、このような半導体機器のリード材としては、従来か
ら、熱膨張係数が低く、かつ半導体素子やセラミックス
と比較的良好な接着性、封着性を示すFe−Ni系合金
が好んで使用されてきた。
Background technology and its issues> It is generally known that the characteristics of lead materials in semiconductor devices have a large impact on their performance and cost. Conventionally, lead materials for such semiconductor devices include Fe--Ni alloys have been favorably used because they have a low coefficient of thermal expansion and exhibit relatively good adhesion and sealing properties with semiconductor elements and ceramics.

ところが、最近、−段と加速の度合を増してきたLSI
の高集積化傾向は使用するリードフレームの多ビン化を
更に推進する結果をもたらしているが、リードフレーム
の多ピン化には素材厚の薄い方が有利であるため、薄板
化に対応できるように従来にも増して強度及び硬度の高
いリードフレム材が要求されるようになった。
However, recently, the degree of acceleration of LSI has been increasing
The trend toward higher integration has resulted in the use of lead frames with a greater number of bins, but thinner materials are advantageous for increasing the number of pins in lead frames, so thinner materials are being used to accommodate thinner boards. Therefore, lead frame materials with higher strength and hardness are required than ever before.

また、リードフレームが多ビン化されると必然的にビン
間隔が狭くなり、ビン自体の幅も小さくなるが、それに
対処するには精度の一層高いエツチング加工が必要とな
る。そのため、多ビン用に供されるリードフレーム材で
は、高強度や高硬度の他に、形成されるピン幅やビン間
隔の制御性につながる“エツチング加工性”が優れてい
ることも重要な要求特性となっていた。
Further, when a lead frame is made to have a large number of bins, the intervals between the bins inevitably become narrower, and the width of the bins themselves also become smaller. To cope with this, etching processing with higher precision is required. Therefore, in addition to high strength and hardness, lead frame materials used for multiple bins must also have excellent etching workability, which allows control over the width of the formed pins and the spacing between the bins. It had become a characteristic.

ところで、Fe−Ni系合金製リードフレーム材のエツ
チング加工工程は、一般に、脱脂したリードフレーム材
の両面にフォトレジストを塗布しバタンを焼き付けて現
像した後、塩化第2鉄を主成分とするエツチング液でエ
ツチング加工し、その後前記レジストを除去する工程か
ら構成されているのが普通である。そして、この際のエ
ツチング性を決める要因としては“レジストの密着性”
や“エツチング速度”等が挙げられるが、これらの中で
も素材のエツチング速度が最も重要な因子となっており
、エツチング速度が速くなるにつれてリードフレーム材
に形成されるビン幅、ビン間隔の制御性が容易化するこ
とから、該エツチング速度によってエツチング加工性の
評価が概ね決定されてしまうと言っても過言ではなかっ
た。
By the way, the etching process for lead frame materials made of Fe-Ni alloys is generally carried out by applying photoresist to both sides of the degreased lead frame material, baking and developing the resist, and then etching the lead frame material mainly using ferric chloride. It usually consists of a step of etching with a liquid and then removing the resist. The factor that determines the etching performance at this time is "resist adhesion."
Among these factors, the etching speed of the material is the most important factor, and as the etching speed increases, the controllability of the bin width and bin spacing formed on the lead frame material increases. It is no exaggeration to say that the evaluation of etching processability is generally determined by the etching speed.

従って、半導体機器の集積度が上昇するに伴い、リード
フレーム材には強度特性に加えて“より速いエツチング
速度(即ち良好なエツチング加工性)”特性も求められ
てきた訳であるが、未だ十分に満足できるエツチング加
工性1強度及び硬度、更には封着性並びに成形加工性等
を兼備した材料が見出されていないのが現状であった。
Therefore, as the degree of integration of semiconductor devices increases, lead frame materials are required to have "faster etching speed (that is, better etching processability)" properties in addition to strength properties, but this is still insufficient. At present, no material has been found that has satisfactory etching processability, strength and hardness, as well as sealability and moldability.

このようなことから、本発明の目的は、強度及び硬度が
高く、しかも優れたエツチング加工性。
For these reasons, the object of the present invention is to provide a material that has high strength and hardness, as well as excellent etching processability.

封着性並びに成形加工性をも併せ持つところの、集積度
の高い半導体機器への適用を意図した場合でも十分な性
能を発揮し得るリードフレーム材を工業的に安定して提
供し得る手段を確立することに置かれた。
Established a means to industrially stably provide lead frame materials that have both sealing properties and moldability and can exhibit sufficient performance even when intended for application to highly integrated semiconductor devices. It was put to do.

く課題を解決するための手段〉 本発明者等は、上記目的を達成すべく、特にFeNi−
Co系合金リードフレーム材が有する比較的高い強度や
低い熱膨張係数等に着目して、これらの特性を更に向上
させると共に、そのエツチング加工性や成形加工性を顕
著に改善することの可能性を探りながら研究を重ねた結
果、次のような新しい知見を得ることができた。即ち、 (a)  Ni及びCoを主要成分としたFe合金にお
いて、そのC,Si及びPの含有量を、更にはN含有量
をも特定の低い値に制限した場合には、該合金のエツチ
ング速度が顕著に改善されるようになる。
Means for Solving the Problems> In order to achieve the above objects, the present inventors have specifically developed FeNi-
Focusing on the relatively high strength and low coefficient of thermal expansion of Co-based alloy lead frame materials, we have discovered the possibility of further improving these properties as well as significantly improving its etching processability and moldability. As a result of repeated research, we were able to obtain the following new knowledge. That is, (a) In a Fe alloy whose main components are Ni and Co, if the contents of C, Si and P, and even the N content are limited to specific low values, etching of the alloy Speed will be noticeably improved.

(b)シかも、上記合金に幾つかの選ばれた特定の元素
の1種又は2種以上を所定の割合で含有させた場合には
、リードフレーム材としての所要特性に格別な悪影響を
及ぼすことなく材料の強度を効果的に向上することがで
きる上、Nt及びCo含有量の注意深い調整の下での上
記特定元素の添加は、その熱膨張係数をモールドレジン
や半導体チップのそれに近付けるのに極めて有効な手段
となる。
(b) However, if the above-mentioned alloy contains one or more selected specific elements in a predetermined ratio, it will have a particularly negative effect on the properties required as a lead frame material. In addition, the addition of the above-mentioned specific elements under careful control of the Nt and Co contents can bring the thermal expansion coefficient closer to that of mold resin and semiconductor chips. This is an extremely effective method.

(C)  また、上記合金材料においてもその結晶粒径
が強度及び成形加工性に少なからぬ影響を及ぼすが、該
結晶粒径を特定値以下に抑える平文てを講じることによ
ってリードフレームの多ビン化にとって好ましい“材料
強度の更なる向上”が期待できる上、成形加工性も改善
される。
(C) In addition, the crystal grain size of the alloy materials mentioned above has a considerable influence on strength and formability, but by taking measures to suppress the crystal grain size to below a certain value, lead frames can be made with a large number of bins. ``Further improvement in material strength'' can be expected, which is preferable for many people, and molding processability is also improved.

(d)  従って、Fe−Ni−Coを基本成分とした
合金におけるNi、 Co、  C,Si及びP等の含
有量を総合的に調整すると同時に、これに特定合金元素
の添加を行うか、或いは更に結晶粒径調整をも実施する
と、強度、熱膨張係数、封着性、成形加工性等の特性に
優れ、しかも非常に良好なエツチング加工性をも備えた
リードフレーム材の実現が可能となる。
(d) Therefore, it is necessary to comprehensively adjust the content of Ni, Co, C, Si, P, etc. in the alloy whose basic component is Fe-Ni-Co, and at the same time add specific alloying elements to it, or Furthermore, by adjusting the crystal grain size, it is possible to create a lead frame material that has excellent properties such as strength, coefficient of thermal expansion, sealing properties, and moldability, and also has very good etching processability. .

本発明は、上記知見事項等を基にして完成されたもので
あり、 「リードフレーム材を、 C: 0.015%以下(以降、成分含有割合は重量%
とする)。
The present invention was completed based on the above-mentioned findings, etc., and it is based on the above-mentioned findings.
).

Si : 0.001〜0.15%、   P:0.0
1%以下。
Si: 0.001-0.15%, P: 0.0
Less than 1%.

S : 0.005%以下、   O: 0.010%
以下。
S: 0.005% or less, O: 0.010%
below.

N 70.005%以下、   Co:5〜30%。N: 70.005% or less, Co: 5-30%.

Ni : 15〜55% であって、更にCu、 Mn、 Cr、 Mo、 L 
V、 Nb+ Ta。
Ni: 15-55%, further containing Cu, Mn, Cr, Mo, L
V, Nb+Ta.

Ti、 Zr、 Hf、 B+ Be、 Mg及びCa
の1種以上をも合計で0.01〜5.0%含むと共に残
部がFe及び不可避的不純物から成る成分組成に構成す
ることにより、優れたエツチング加工性、封着性及び成
形加工性と、高い強度、硬度とを兼備せしめた点」に特
徴を有している。
Ti, Zr, Hf, B+ Be, Mg and Ca
By configuring the composition to include one or more of the following in a total of 0.01 to 5.0%, with the remainder consisting of Fe and unavoidable impurities, excellent etching processability, sealing property and molding processability can be achieved. It is characterized by having both high strength and hardness.

なお、上記本発明に係るリードフレーム材において、 a) C含有量を0.005%以下とする。In addition, in the lead frame material according to the present invention, a) C content is 0.005% or less.

b) Si含有量をo、ooi〜0.05%に調整する
b) Adjust the Si content to o,ooi~0.05%.

c) P含有量を0.003%以下とする。c) P content is 0.003% or less.

なる条件を単独で、或いは組み合わせて採用すれば、得
られるエツチング加工性改善効果は特に顕著となり、ま
た d)最終焼鈍時(最終焼鈍終了時)の結晶粒径を50p
以下に調整する。
If the following conditions are adopted alone or in combination, the effect of improving etching workability obtained will be particularly remarkable;
Adjust as below.

との平文てによって強度や成形性が一層向上して安定化
することから、必要に応じてこれらの1つ又は幾つかを
適用することにより多ピンリードフレームの製造にも十
分な対応が可能である。
Since the strength and formability are further improved and stabilized by the plain text, it is possible to sufficiently respond to the production of multi-pin lead frames by applying one or more of these as necessary. be.

次に、本発明において、リードフレーム材の成分組成を
前記の如くに限定した理由を各成分の作用と共に詳述す
る。
Next, in the present invention, the reason why the component composition of the lead frame material is limited as described above will be explained in detail together with the effects of each component.

く作用〉 Ni Niはリードフレーム材の熱膨張係数を決定するのに重
要な成分であり、封着時や封着後におけるパッケージと
の熱膨張差を小さくして優れた封着性、耐湿信頬性を確
保するためには、Ni含有量を15〜55%に調整する
必要がある。また、Niにはリードフレーム材の強度及
び硬度を向上させる作用もあるが、Ni含有量が15%
未満では所望強度、硬度の確保が困難となる。従って、
Ni含有量は15〜55%と定めた。
Ni Ni Ni is an important component in determining the thermal expansion coefficient of the lead frame material, and it reduces the difference in thermal expansion with the package during and after sealing, resulting in excellent sealing properties and moisture resistance. In order to ensure buccal properties, it is necessary to adjust the Ni content to 15-55%. In addition, Ni has the effect of improving the strength and hardness of lead frame materials, but the Ni content is 15%.
If it is less than that, it will be difficult to secure the desired strength and hardness. Therefore,
The Ni content was determined to be 15 to 55%.

O Coもリードフレーム材の熱膨張係数を決定するのに重
要な成分であると同時に、材料の強度及び硬度を向上さ
せるのに有効な成分でもある。しかし、Co含有量が5
%未満であると熱膨張係数が所望値を超えて大きくなる
ばかりでなく、リードフレーム材の所望強度、硬度の確
保も困難となる。
O 2 Co is also an important component in determining the coefficient of thermal expansion of the lead frame material, and is also an effective component in improving the strength and hardness of the material. However, the Co content is 5
If it is less than %, not only will the coefficient of thermal expansion become larger than the desired value, but it will also be difficult to ensure the desired strength and hardness of the lead frame material.

一方、30%を超えてCoを含有させても熱膨張係数が
所望値を超えて大きくなってしまう。従って、Co含有
量は5〜30%と定めた。
On the other hand, even if Co is contained in an amount exceeding 30%, the coefficient of thermal expansion becomes larger than the desired value. Therefore, the Co content was determined to be 5 to 30%.

リードフレーム材中のC含有量が0.015%を超える
と鉄炭化物の生成が起こり、これがリードフレーム材の
エツチング加工性を害する。従って、C含有量の上限を
0.015%と定めたが、固溶Cもエツチング加工性に
悪影響を与えることからC含有量は低いほど良く、出来
れば0.005%以下にまで抑制するのが望ましい。
When the C content in the lead frame material exceeds 0.015%, iron carbides are generated, which impairs the etching processability of the lead frame material. Therefore, the upper limit of the C content was set at 0.015%, but since solid solution C also has a negative effect on etching processability, the lower the C content, the better, and it is recommended to suppress it to 0.005% or less if possible. is desirable.

Stは脱酸材として必要な元素であるが、一方でリード
フレーム材のエツチング加工性に大きな影響を及ぼす元
素でもある。即ち、Si含有量が増加するとエツチング
速度が遅くなってエツチング加工性を悪化する。このた
め、良好な工・ンチング加工性を確保するにはSi含有
量を0.15%以下に調整する必要がある。特に、多ピ
ンタイプのり−ドフレーム材の場合には一段と良好なエ
ツチング加工性が要求されることから、Si含有量は好
ましくは0.05%以下にまで低減するのが良い。ただ
、Si含有量を0.001%未満の領域にまで低減する
と脱酸効果が認められなくなってしまう。従って、Si
含有量はo、oot〜0.15%と定めたが、上述した
ように出来れば0.001〜0.05%に調整するのが
好ましい。
St is an element necessary as a deoxidizing agent, but it is also an element that greatly affects the etching processability of lead frame materials. That is, as the Si content increases, the etching rate slows down and etching processability deteriorates. Therefore, in order to ensure good machining/nching workability, it is necessary to adjust the Si content to 0.15% or less. In particular, in the case of a multi-pin type glued frame material, even better etching processability is required, so the Si content is preferably reduced to 0.05% or less. However, if the Si content is reduced to less than 0.001%, the deoxidizing effect will no longer be observed. Therefore, Si
Although the content was determined to be o,oot~0.15%, it is preferable to adjust it to 0.001~0.05% if possible as described above.

Pも、Stと同様、過剰に含有させるとリードフレーム
材のエツチング加工性に害を与える元素である。そして
、上記エツチング加工性への悪影響はP含有量が0.0
1%を趙えるとより顕著化することから、P含有量は0
.01%以下と定めた。しかし、P含有量を0.003
%以下にまで低減するとエツチング加工性改善効果が一
層顕著となるため、望ましくは0.003%以下に調整
するのが良い。
Like St, P is also an element that harms the etching processability of the lead frame material if it is contained in excess. The above-mentioned negative effect on etching processability is caused by P content of 0.0.
Since it becomes more pronounced when 1% is added, the P content is 0.
.. It was set as 0.01% or less. However, the P content is 0.003
If the content is reduced to 0.003% or less, the effect of improving etching processability becomes even more remarkable, so it is preferable to adjust the content to 0.003% or less.

S含有量が0.005%を超えると リードフレーム材
中に硫化物系介在物が多くなり、エツチング加工時の欠
陥となってビン折れ等を引き起こすようになる。従って
、S含有量は0.005%以下と限定した。
If the S content exceeds 0.005%, sulfide-based inclusions will increase in the lead frame material, causing defects during etching and causing bottle breakage, etc. Therefore, the S content was limited to 0.005% or less.

0含有量がo、oio%を超えると リードフレーム材
中に酸化物系介在物が多くなり、やはりエツチング加工
時の穿孔欠陥となることから、0含有量を0.010%
と限定した。
If the 0 content exceeds o, oio%, there will be a lot of oxide inclusions in the lead frame material, which will also cause drilling defects during etching processing, so the 0 content will be reduced to 0.010%.
limited to.

N含有量が0.005%を超えても リードフレーム材
のエツチング加工性が悪化することから、N含有量の上
限を0.005%と定めた。
Since the etching processability of the lead frame material deteriorates even if the N content exceeds 0.005%, the upper limit of the N content was set at 0.005%.

Cu  Mn Cr  Mo  W  V  Nb T
a Ti  Zr  Of  B。
Cu Mn Cr Mo W V Nb T
a Ti Zr Of B.

これらの元素は何れもリードフレーム材の強度や熱膨張
係数を上昇させる作用を有しているため、材料強度の向
上、並びに熱膨張係数を上げてレジンモールドのそれに
近付けることで封着性をより改善する目的で1種又は2
種以上が含有せしめられる。しかし、それらの含有量が
合計で0.01%未満であると前記作用による所望の効
果が得られず、一方、合計の含有量が5.0%を超えた
場合には材料が硬くなり過ぎて成形加工性の悪化を招く
他、適正な熱膨張係数の確保も困難となることから、上
記成分の含有量を合計量で0.01〜5.0%と定めた
All of these elements have the effect of increasing the strength and thermal expansion coefficient of the lead frame material, so by improving the material strength and increasing the thermal expansion coefficient to approach that of a resin mold, the sealing performance can be improved. Type 1 or 2 for the purpose of improvement
More than one species can be contained. However, if the total content is less than 0.01%, the desired effect of the above action cannot be obtained, while if the total content exceeds 5.0%, the material becomes too hard. In addition to causing deterioration in molding processability, it also becomes difficult to secure an appropriate coefficient of thermal expansion, so the content of the above components was determined to be 0.01 to 5.0% in total.

なお、先にも説明したように、最終焼鈍を施した際の結
晶粒径を50−以下に制御することは強度と成形加工性
の効果的な改善につながることから、好ましくは最終焼
鈍時の結晶粒径を50J!11以下に調整する平文てを
講じるのが良い。ここで、結晶粒度の制御は、焼鈍前の
加工度、焼鈍温度。
As explained earlier, controlling the crystal grain size at the final annealing to 50- or less leads to effective improvement of strength and formability, so it is preferable to control the grain size at the final annealing to The crystal grain size is 50J! It is better to take measures to adjust the plain text to 11 or less. Here, the grain size is controlled by the working degree and annealing temperature before annealing.

焼鈍時間等の調整によって可能であることは言うまでも
ない。
It goes without saying that this is possible by adjusting the annealing time and the like.

続いて、本発明の効果を実施例により更に具体的に説明
する。
Next, the effects of the present invention will be explained in more detail with reference to Examples.

〈実施例〉 まず、真空溶解により調整した材料を鋳造し、熱間圧延
及び酸洗の後に冷間圧延と焼鈍を繰り返すと共に、最終
焼鈍後に加工度:40%の冷間圧延を施し、更に500
℃で1時間の歪取り焼鈍を施して第1表に示す如き成分
組成の冷延板(板厚=0.15龍)を製造した。
<Example> First, a material prepared by vacuum melting was cast, and after hot rolling and pickling, cold rolling and annealing were repeated, and after the final annealing, cold rolling was performed at a workability of 40%, and further 500%
Strain relief annealing was performed at ℃ for 1 hour to produce a cold-rolled plate (thickness = 0.15 mm) having the composition shown in Table 1.

次に、これらの冷延板を脱脂後、レジスト膜を塗布し所
定パターンを焼き付けて現像してから、塩化第2鉄溶液
を用いたエツチング加工により何れも同一条件の下で1
28ピンのリードフレームを作成した。
Next, after degreasing these cold-rolled sheets, a resist film is applied, a prescribed pattern is baked and developed, and then an etching process is performed using a ferric chloride solution under the same conditions.
A 28-pin lead frame was created.

そして、得られたリードフレームにつき、「エンチング
性」の評価として“エツチング加工後のアウターリード
ピン幅とそのバラツキ”を、「機械的特性コの評価とし
て“引張強さ”、“ビッカ−ス硬さ”及び“加工性(曲
げ性)”を、また「封着性」の評価として樹脂封着後に
熱サイクル(80’CX 60m1nX 1回)を付与
した際のクラック発生の有無をそれぞれ調査した。なお
、前記加工性(曲げ性)の評価は、90度繰り返し曲げ
試験(曲げ半径:0.15mm)に従って実施した。
For the obtained lead frame, we evaluated the ``outer lead pin width and its variation after etching'' as an evaluation of ``etchability,'' and the ``tensile strength'' and ``Vickers hardness'' as evaluations of mechanical properties. ” and “processability (bending property)” and for evaluation of “sealability”, the presence or absence of cracks was investigated when thermal cycles (80′CX 60m1nX once) were applied after resin sealing. The evaluation of the workability (bendability) was carried out according to a 90-degree repeated bending test (bending radius: 0.15 mm).

これらの調査結果を、最終焼鈍時の結晶粒径と共に第1
表に併記した。
These investigation results were combined with the grain size at the final annealing to
Also listed in the table.

第1表に示される結果からも明らかなように、本発明材
では何れも十分な強度と硬度を有し、かつ優れたエツチ
ング性、成形加工性並びに封着性を示すのに対して、成
分組成が本発明で規定する条件を満たしていない比較材
では上記リードフレム材に要求される特性の何れかが劣
っていることが分かる。
As is clear from the results shown in Table 1, the materials of the present invention all have sufficient strength and hardness, and exhibit excellent etching, molding, and sealing properties. It can be seen that the comparative materials whose compositions do not meet the conditions specified in the present invention are inferior in any of the characteristics required of the above lead frame materials.

即ち、本発明材1〜26は、比較材28〜30に比べて
ピン幅が狭く、エツチング速度が速いことが確認できる
。また、エツチングによって形成されたピン幅の標準偏
差(S、D、)も小さく、優れた寸法精度のリードフレ
ーム製品が得られることも分かる。
That is, it can be confirmed that inventive materials 1 to 26 have narrower pin widths and higher etching speeds than comparative materials 28 to 30. It can also be seen that the standard deviation (S, D,) of the pin width formed by etching is small, and a lead frame product with excellent dimensional accuracy can be obtained.

そして、本発明材の中でも、特に本発明材1〜18はC
,St、  Pの含有量が共により好ましい範囲にコン
トロールされているため、本発明材19〜25と比較し
て一段と優れたエツチング性を示していることも確認で
きる。
Among the present invention materials, particularly present invention materials 1 to 18 are C
, St, and P are all controlled within a more preferable range, and it can be confirmed that these materials exhibit even better etching properties than Invention Materials 19 to 25.

また、本発明材8と比較材34との比較からも、リード
フレーム材の結晶粒径が5Onを大きく上回るようにな
ると十分な強度(硬さ)を確保出来ないことが分かる。
Further, from a comparison between Inventive Material 8 and Comparative Material 34, it can be seen that sufficient strength (hardness) cannot be ensured if the crystal grain size of the lead frame material greatly exceeds 5 On.

一方、比較材28〜30は、各々Sit  P、  C
の含有量が高いためにエツチングによって形成されたピ
ン幅が広く、バラツキも大きい。
On the other hand, comparative materials 28 to 30 were Sit P and C, respectively.
Because of the high content of etching, the width of the pins formed by etching is wide and the variation is large.

比較材27は、強度改善並びに熱膨張係数上昇成分が添
加されていないために十分な強度が得られず、熱膨張係
数も小さ過ぎて封着性にも劣る。
Comparative material 27 does not have sufficient strength because no strength-improving or thermal expansion coefficient increasing component is added, and the thermal expansion coefficient is too small, resulting in poor sealability.

比較材31は、S含有量が高いために曲げ加工試験でビ
ン折れが発生した。
Comparative material 31 had a high S content, so the bottle broke in the bending test.

比較材32及び33は、強度改善成分の含有量が多過ぎ
るため曲げ加工性が悪く、エツチング加工性にも劣って
いる。
Comparative materials 32 and 33 have poor bending workability and poor etching workability because the content of strength improving components is too large.

比較材35は、逆に強度改善成分の含有量が少ないため
に十分な強度(硬さ)を示さない。
Comparative material 35, on the other hand, does not exhibit sufficient strength (hardness) because the content of the strength improving component is small.

く効果の総括〉 以上に説明した如く、この発明によれば、優れたエツチ
ング加工性、封着性及び成形加工性と、高い強度及び硬
度とを兼備したリードフレーム材の捷供が可能となり、
半導体機器の更なる高集積化を容易化できるなど、産業
土掻めて有用な効果がもたらされる。
Summary of Effects> As explained above, according to the present invention, it is possible to produce a lead frame material that has excellent etching processability, sealability and moldability, as well as high strength and hardness.
This will bring about useful effects on the industrial landscape, such as facilitating higher integration of semiconductor devices.

Claims (5)

【特許請求の範囲】[Claims] (1)重量割合にて C:0.015%以下、Si:0.001〜0.15%
、P:0.01%以下、S:0.005%以下、O:0
.010%以下、N:0.005%以下。 Co:5〜30%、Ni:15〜55% であって、更にCu、Mn、Cr、Mo、W、V、Nb
、Ta、Ti、Zr、Hf、B、Be、Mg及びCaの
1種以上をも合計で0.01〜5.0%含むと共に残部
がFe及び不可避的不純物から成ることを特徴とする、
エッチング加工性及び封着性に優れた高強度リードフレ
ーム材。
(1) C: 0.015% or less, Si: 0.001 to 0.15% by weight
, P: 0.01% or less, S: 0.005% or less, O: 0
.. 0.010% or less, N: 0.005% or less. Co: 5-30%, Ni: 15-55%, further containing Cu, Mn, Cr, Mo, W, V, Nb
, containing one or more of Ta, Ti, Zr, Hf, B, Be, Mg and Ca in a total of 0.01 to 5.0%, with the balance consisting of Fe and unavoidable impurities.
High-strength lead frame material with excellent etching processability and sealing properties.
(2)C含有量が0.005重量%以下である、請求項
1に記載のリードフレーム材。
(2) The lead frame material according to claim 1, wherein the C content is 0.005% by weight or less.
(3)Si含有量が0.001〜0.05重量%である
、請求項1又は2に記載のリードフレーム材。
(3) The lead frame material according to claim 1 or 2, having a Si content of 0.001 to 0.05% by weight.
(4)P含有量が0.003重量%以下である、請求項
1乃至3の何れかに記載のリードフレーム材。
(4) The lead frame material according to any one of claims 1 to 3, wherein the P content is 0.003% by weight or less.
(5)最終焼鈍時の結晶粒径が50μm以下である、請
求項1乃至4の何れかに記載のリードフレーム材。
(5) The lead frame material according to any one of claims 1 to 4, wherein the crystal grain size at the time of final annealing is 50 μm or less.
JP1337768A 1989-12-26 1989-12-26 Lead frame material Pending JPH03197641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1337768A JPH03197641A (en) 1989-12-26 1989-12-26 Lead frame material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1337768A JPH03197641A (en) 1989-12-26 1989-12-26 Lead frame material

Publications (1)

Publication Number Publication Date
JPH03197641A true JPH03197641A (en) 1991-08-29

Family

ID=18311780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1337768A Pending JPH03197641A (en) 1989-12-26 1989-12-26 Lead frame material

Country Status (1)

Country Link
JP (1) JPH03197641A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0499251A (en) * 1990-08-09 1992-03-31 Sumitomo Special Metals Co Ltd High strength sealing alloy and its production
EP0740341A1 (en) * 1995-04-27 1996-10-30 Imphy S.A. Connecting legs for electronic device
JP2017062247A (en) * 2012-05-30 2017-03-30 アイリス インターナショナル, インコーポレイテッド Flow cytometer
US10126227B2 (en) 2012-05-30 2018-11-13 Iris International, Inc. Flow cytometer

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0499251A (en) * 1990-08-09 1992-03-31 Sumitomo Special Metals Co Ltd High strength sealing alloy and its production
EP0740341A1 (en) * 1995-04-27 1996-10-30 Imphy S.A. Connecting legs for electronic device
FR2733630A1 (en) * 1995-04-27 1996-10-31 Imphy Sa CONNECTING LEGS FOR ELECTRONIC COMPONENT
EP0991122A2 (en) * 1995-04-27 2000-04-05 Imphy Ugine Precision Connecting legs for electronic device
EP0991122A3 (en) * 1995-04-27 2000-07-26 Imphy Ugine Precision Connecting legs for electronic device
JP2017062247A (en) * 2012-05-30 2017-03-30 アイリス インターナショナル, インコーポレイテッド Flow cytometer
CN107014741A (en) * 2012-05-30 2017-08-04 艾瑞斯国际有限公司 Flow cytometer
US10126227B2 (en) 2012-05-30 2018-11-13 Iris International, Inc. Flow cytometer
US10209174B2 (en) 2012-05-30 2019-02-19 Iris International, Inc. Flow cytometer
US10330582B2 (en) 2012-05-30 2019-06-25 Iris International, Inc. Flow cytometer
US11255772B2 (en) 2012-05-30 2022-02-22 Iris International, Inc. Flow cytometer
US11703443B2 (en) 2012-05-30 2023-07-18 Iris International, Inc. Flow cytometer

Similar Documents

Publication Publication Date Title
JPH03197641A (en) Lead frame material
JPH03197645A (en) Lead frame material
JP3133350B2 (en) Lead frame material manufacturing method
JP3000154B2 (en) Lead frame material manufacturing method
JPH04231418A (en) Production of lead frame material
JPH03197646A (en) Lead frame material
JPH0681035A (en) Production of lead frame material
JPH03197648A (en) Lead frame material
JPH04221020A (en) Manufacture of lead frame
JPH04224630A (en) Manufacture of lead frame material
JPH04221039A (en) Alloy material for lead frame and its production
JPH03197644A (en) Lead frame material
JPH04191316A (en) Manufacture of lead frame material
JP2917450B2 (en) Stainless steel with excellent corrosion resistance
JPH04191317A (en) Manufacture of lead frame material
JPH03197647A (en) Lead frame material
JPH04221021A (en) Manufacture of lead frame
JPH04221022A (en) Manufacture of lead frame material
JPH04231420A (en) Production of lead frame material
JPH04231421A (en) Production of lead frame material
JPH04224631A (en) Manufacture of lead frame material
JPH04224632A (en) Manufacture of lead frame material
JPH04221023A (en) Manufacture of lead frame material
JPH04180542A (en) High strength material reduced in thermal expansion
JPH04231416A (en) Production of lead frame material