JPH04224631A - Manufacture of lead frame material - Google Patents
Manufacture of lead frame materialInfo
- Publication number
- JPH04224631A JPH04224631A JP41294590A JP41294590A JPH04224631A JP H04224631 A JPH04224631 A JP H04224631A JP 41294590 A JP41294590 A JP 41294590A JP 41294590 A JP41294590 A JP 41294590A JP H04224631 A JPH04224631 A JP H04224631A
- Authority
- JP
- Japan
- Prior art keywords
- lead frame
- frame material
- less
- content
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 16
- 239000000463 material Substances 0.000 title claims description 74
- 238000005530 etching Methods 0.000 claims abstract description 48
- 238000000137 annealing Methods 0.000 claims abstract description 33
- 239000000956 alloy Substances 0.000 claims abstract description 23
- 238000005097 cold rolling Methods 0.000 claims abstract description 13
- 229910017709 Ni Co Inorganic materials 0.000 claims abstract description 10
- 229910003267 Ni-Co Inorganic materials 0.000 claims abstract description 10
- 229910003262 Ni‐Co Inorganic materials 0.000 claims abstract description 10
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 8
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 7
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 5
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 4
- 229910052742 iron Inorganic materials 0.000 claims abstract description 4
- 239000012535 impurity Substances 0.000 claims abstract description 3
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 3
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 3
- 238000007789 sealing Methods 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 10
- 238000012545 processing Methods 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 229910052735 hafnium Inorganic materials 0.000 claims description 3
- 229910052715 tantalum Inorganic materials 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims 1
- 229910000531 Co alloy Inorganic materials 0.000 claims 1
- 238000005096 rolling process Methods 0.000 abstract description 20
- 229910045601 alloy Inorganic materials 0.000 abstract description 17
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 4
- 230000001105 regulatory effect Effects 0.000 abstract description 4
- 229910052717 sulfur Inorganic materials 0.000 abstract description 2
- 230000000694 effects Effects 0.000 description 18
- 238000005452 bending Methods 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 14
- 239000011347 resin Substances 0.000 description 8
- 229920005989 resin Polymers 0.000 description 8
- 239000013078 crystal Substances 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 2
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910052790 beryllium Inorganic materials 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910020598 Co Fe Inorganic materials 0.000 description 1
- 229910002519 Co-Fe Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910003271 Ni-Fe Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000012733 comparative method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- -1 iron carbides Chemical class 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】この発明は、エッチング加工性、
封着性並びに成形加工性に優れ、かつ高強度を有したリ
−ドフレ−ム材の製造方法に関するものである。[Industrial Application Field] This invention provides etching processability,
The present invention relates to a method for manufacturing a lead frame material that has excellent sealing properties and moldability, and has high strength.
【0002】0002
【従来の技術】一般に、半導体機器類にあっては、使用
されるリ−ド材の特性もその性能やコストに大きな影響
を及ぼすことが知られているが、従来、このような半導
体機器のリ−ド材には、熱膨張係数が低く、かつ半導体
素子やセラミックスと比較的良好な接着性、封着性を示
すFe−Ni系合金が好んで使用されてきた。[Prior Art] Generally speaking, it is known that the characteristics of the lead material used in semiconductor devices have a large effect on their performance and cost. For lead materials, Fe--Ni alloys have been favorably used, which have a low coefficient of thermal expansion and exhibit relatively good adhesion and sealing properties with semiconductor elements and ceramics.
【0003】しかし、例えば、『LSIをプラスチック
パッケ−ジングするプロセス』におけるレジンモ−ルド
工程後の冷却過程やプリント基盤への実装時、更には使
用環境において温度サイクルを受けた時等ではレジンと
り−ド材との間に熱応力がかかることを避けることがで
きないが、この応力が過大となった場合には、使用する
リ−ド材が『従来から用いられてきた実績のあるFe−
Ni系合金(例えば、42%Ni−Fe合金)製のもの
』であったとしてもパッケ−ジにクラックが発生したり
、接着界面が剥離したりしてパッケ−ジの耐湿信頼性が
低下するという問題を避けることは難しかった。この問
題は、モ−ルドレジンとリ−ド材との熱膨張係数差に起
因したもので、熱膨張係数差のために上記微小クラック
や剥離界面が生じると、これを通して外部から湿気が浸
入し内部の半導体素子などを損傷する虞れがあった訳で
ある。However, for example, during the cooling process after the resin molding process in the ``process of plastic packaging LSI'', during mounting on a printed circuit board, and even when subjected to temperature cycles in the usage environment, the resin removal process is difficult. It is unavoidable that thermal stress will be applied between the lead material and the lead material, but if this stress becomes excessive, the lead material used may be
Even if the package is made of Ni-based alloy (e.g. 42% Ni-Fe alloy), cracks may occur in the package or the adhesive interface may peel off, reducing the moisture resistance reliability of the package. It was difficult to avoid this problem. This problem is caused by the difference in thermal expansion coefficient between the mold resin and the lead material. When the above-mentioned microcracks and peeling interface occur due to the difference in thermal expansion coefficient, moisture infiltrates from the outside through this and enters the inside. There was a risk of damaging semiconductor devices and other components.
【0004】従って、LSIの耐湿信頼性を向上させる
ためには、リ−ドフレ−ム材として熱膨張係数がモ−ル
ドレジンのそれにできるだけ近い化学組成のものを使用
する必要があった。そのため、最近、Niの他にCoを
も主成分とし、NiおよびCoの含有量を調節すること
により、熱膨係数をモ−ルドレジンの熱膨係数に極力近
づけたNi−Co−Fe合金製のリ−ドフレ−ム材も開
発され、その性能が着目されるようになっている。一方
、最近、上記タイプのLSIにおいても高集積化が進め
られており、この傾向は使用するリ−ドフレ−ムの多ピ
ン化を推進する結果をもたらしているが、リ−ドフレ−
ムの多ピン化に対処するためにより強度の高い素材を使
用することが要求される。Therefore, in order to improve the moisture resistance reliability of LSI, it is necessary to use a lead frame material having a chemical composition whose thermal expansion coefficient is as close as possible to that of mold resin. Therefore, recently, Ni-Co-Fe alloys have been developed that contain Co as a main component in addition to Ni, and have a thermal expansion coefficient as close as possible to that of mold resin by adjusting the contents of Ni and Co. Lead frame materials have also been developed, and their performance is attracting attention. On the other hand, recently, the above-mentioned types of LSIs are also becoming more highly integrated, and this trend has resulted in the promotion of increasing the number of pins in the lead frames used.
In order to cope with the increase in the number of pins in the system, it is required to use materials with higher strength.
【0005】なぜなら、リ−ドフレ−ムが多ピン化され
ると必然的にピン間隔が狭くなり、ピン自体の幅も小さ
くなるが、それを実現するには精度が一段と高いエッチ
ング加工あるいはプレス加工を要することとなる上、ピ
ン幅に比べて厚さが厚くなるという事態を生じて加工が
より一層難しくなるという懸念も生じる。そこで、これ
に対処すべく素材厚を薄くする必要がでてくるが、薄板
化するためには従来以上の強度(リ−ド変形に対する抵
抗力)を持ったリ−ドフレ−ム材が要求される訳である
。また、特に多ピン、超多ピン用のリ−ドフレ−ム材で
は、成形のための加工はエッチング加工が中心となるた
め、『エッチング加工性が優れていること』も重要な要
求特性となってきた。[0005] This is because when a lead frame has a large number of pins, the pin spacing inevitably becomes narrower, and the width of the pin itself becomes smaller. In addition, there is a concern that the thickness will be thicker than the pin width, making processing even more difficult. Therefore, in order to deal with this, it is necessary to reduce the thickness of the material, but in order to make the material thinner, a lead frame material with higher strength (resistance against lead deformation) than before is required. This is the reason. In addition, especially for lead frame materials for high-pin count and ultra-high-pin count, etching is the main processing for forming, so ``excellent etching processability'' is also an important required property. It's here.
【0006】ここで、Fe−Ni系合金製リ−ドフレ−
ム材のエッチング加工工程は、一般に、脱脂したリ−ド
フレ−ム材の両面にフォトレジストを塗布し、パタ−ン
を焼き付けて現像した後、塩化第2鉄を主成分とするエ
ッチング液でエッチング加工し、その後前記レジストを
除去する工程から構成されているのが普通である。そし
て、この際のエッチング性を決める要因としては『レジ
ストの密着性』や『エッチング速度』等が挙げられるが
、これらの中でも素材のエッチング速度が最も重要な要
因となっており、エッチング速度が速くなるにつれてリ
−ドフレ−ム材に形成されるピン幅、ピン間隔の制御性
が容易化することから、該エッチング速度によってエッ
チング加工性の評価が概ね決定されてしまうと言っても
過言ではなかった。[0006] Here, a lead frame made of Fe-Ni alloy
Generally, the etching process for lead frame materials involves coating both sides of a degreased lead frame material with photoresist, baking and developing the pattern, and then etching with an etching solution containing ferric chloride as the main component. It usually consists of steps of processing and then removing the resist. Factors that determine the etching performance at this time include "resist adhesion" and "etching speed," but among these, the etching speed of the material is the most important factor. It is not an exaggeration to say that the evaluation of etching processability is largely determined by the etching speed, as it becomes easier to control the pin width and pin spacing formed on the lead frame material as the lead frame material becomes larger. .
【0007】従って、半導体機器の集積度が上昇するに
伴い、リ−ドフレ−ム材には優れた封着性や強度特性に
加えて『より速いエッチング速度特性(即ち良好なエッ
チング加工性)』も求められるようになってきた訳であ
るが、未だエッチング加工性、封着性、強度、更には成
形加工性などの何れをも十分に満足した材料が見出され
ていないのが現状であった。Therefore, as the degree of integration of semiconductor devices increases, lead frame materials are required to have "faster etching speed characteristics (that is, better etching processability)" in addition to excellent sealing and strength characteristics. However, the current situation is that no material has yet been found that fully satisfies etching processability, sealing properties, strength, and even moldability. Ta.
【0008】[0008]
【発明が解決しようとする問題点】このようなことから
、本発明が目的としたのは、強度が高く、しかも、優れ
たエッチング加工性、封着性並びに成形加工性をも併せ
持つところの、集積度の高い半導体機器への適用を意図
した場合でも十分な性能が発揮できるリ−ドフレ−ム材
の工業的量産手段を確立することであった。Problems to be Solved by the Invention In view of the above, the object of the present invention is to provide a material that has high strength and also has excellent etching processability, sealing property, and moldability. The objective was to establish an industrial means for mass production of lead frame materials that can exhibit sufficient performance even when intended for application to highly integrated semiconductor devices.
【0009】[0009]
【問題点を解決するための手段】本発明者らは、上記目
的を達成すべく、特にFe−Ni−Co系合金リ−ドフ
レ−ム材が有する比較的高い強度特性や低い熱膨張係数
などに着目し、その強度を更に向上させ、かつそのエッ
チング加工性や成形加工性をも顕著に改善すると共に安
定して製造できる製造方法の研究を重ねた結果、次のよ
うな新しい知見を得ることができた。即ち、[Means for Solving the Problems] In order to achieve the above object, the present inventors have particularly focused on the relatively high strength characteristics and low thermal expansion coefficient of the Fe-Ni-Co alloy lead frame material. As a result of research into a manufacturing method that further improves its strength, significantly improves its etching processability and moldability, and enables stable production, we have obtained the following new knowledge. was completed. That is,
【0010
】
(a)リ−ドフレ−ム材として比較的好ましいとされて
きたFe−Ni−Co系合金において、そのSiおよび
Pの含有量を更にはC含有量をも特定の低い値に制限し
た場合には、該合金のエッチング速度が顕著に改善され
るようになる。0010
(a) In a Fe-Ni-Co alloy that has been considered relatively preferable as a lead frame material, when the Si and P contents and the C content are limited to specific low values. In this case, the etching rate of the alloy is significantly improved.
【0011】
(b)しかも、上記合金にいくつかの選ばれた特定の元
素の1種又は2種以上を所定の割合で含有させた場合に
は、リ−ドフレ−ム材としての諸特性に格別な悪影響を
及ぼすことなく材料の強度を効果的に向上することがで
きる上、Ni含有量の注意深い調整の下での上記特定元
素の添加は、その熱膨張係数をモ−ルドレジンのそれに
近づけるのに極めて有効な手段となる。(b) Moreover, when the above alloy contains one or more selected specific elements in a predetermined ratio, various properties as a lead frame material are improved. In addition to being able to effectively improve the strength of the material without any particular negative effects, the addition of the above-mentioned specific elements under careful control of the Ni content can bring its coefficient of thermal expansion closer to that of mold resin. This is an extremely effective means.
【0012】
(c)また、上記合金材料においても、その結晶粒径が
強度および成形加工性に少なからぬ影響を及ぼすが、該
結晶粒径を特定値以下に抑える手立てを講じることによ
ってリ−ドフレ−ムの多ピン化にとって好ましい『材料
強度の更なる向上』が期待できる上、成形加工性も改善
される。(c) Also, in the above-mentioned alloy materials, the crystal grain size has a considerable influence on the strength and formability, but by taking measures to suppress the crystal grain size below a specific value, lead distortion can be reduced. ``Further improvement in material strength,'' which is favorable for increasing the number of pins in the -m, can be expected, and molding processability is also improved.
【0013】
(d)上記合金系において、結晶粒径の微細化を混粒に
することなく、安定的に製造するには、最終焼鈍前の圧
延加工度を特定の範囲に制御する必要がある。(d) In the above-mentioned alloy system, in order to stably produce grain size refinement without mixing grains, it is necessary to control the degree of rolling before final annealing within a specific range. .
【0014】(e)更に、異方性を大きくすることなく
強度の向上を図るには、最終冷間圧延の圧延加工度を特
定の範囲に制御する必要がある。(e) Furthermore, in order to improve the strength without increasing the anisotropy, it is necessary to control the degree of rolling in the final cold rolling within a specific range.
【0015】
(f)従って、Fe−Ni−Coを基本成分とした合金
におけるNi,SiおよびP等の含有量を総合的に調整
すると同時に、必要に応じてこれに特定合金元素の添加
を行い、更に最終焼鈍前の圧延加工度、最終焼鈍時の結
晶粒径、最終圧延の加工度を適正範囲に制御すると強度
、熱膨張係数、封着性、成形加工性などの特性に優れ、
しかも非常に良好なエッチング加工性をも備えたリ−ド
フレ−ム材を安定的に製造することが可能となる。(f) Therefore, the content of Ni, Si, P, etc. in the alloy containing Fe-Ni-Co as a basic component is adjusted comprehensively, and at the same time, specific alloying elements are added to this as necessary. Furthermore, if the degree of rolling before final annealing, grain size during final annealing, and degree of final rolling are controlled within appropriate ranges, it will have excellent properties such as strength, coefficient of thermal expansion, sealability, and formability.
Moreover, it becomes possible to stably produce a lead frame material having very good etching processability.
【0016】本発明は、上記知見事項などを基として完
成されたもので、「重量割合にて(以下、%は重量%を
表す)
C 0.015%以下, Si 0.001−0.1
5%, Mn 0.1−1.0%, P 0.0
1%以下、
S 0.005%以下、O 0.010%以下、N
0.005%超え−0.2%, Co 5%超え
−30%,
Ni 15−55%を含むか、或はこれに更に、Mg,
Ca,Al,Be,Cu,Cr,Mo,W,V,Nb,
Ta,Ti,ZrおよびHfの1種または2種以上の元
素0.01−5.0%を含有し、残部がFeおよび不可
避的不純物から成る合金を素材とし、これに加工度40
−90%、好ましくは50−85%の圧延を施した後に
結晶粒径が30μm以下、好ましくは20μm以下とな
る条件で最終焼鈍を行い、続く最終冷間圧延の加工度を
40−85%、好ましくは50−80%に調節すること
を特徴とする、優れたエッチング加工性、封着性および
成形加工性と高い強度を兼備したリ−ドフレ−ム材を安
定して製造する方法」を提供するものである。The present invention was completed based on the above-mentioned knowledge, etc., and it is based on the above-mentioned findings.
5%, Mn 0.1-1.0%, P 0.0
1% or less, S 0.005% or less, O 0.010% or less, N
More than 0.005% -0.2%, Co more than 5% -30%, Ni 15-55%, or in addition, Mg,
Ca, Al, Be, Cu, Cr, Mo, W, V, Nb,
The material is an alloy containing 0.01-5.0% of one or more of Ta, Ti, Zr, and Hf, with the balance consisting of Fe and unavoidable impurities.
- After rolling by 90%, preferably 50-85%, final annealing is performed under conditions such that the grain size becomes 30 μm or less, preferably 20 μm or less, and the working degree of the subsequent final cold rolling is 40-85%. Provided is a method for stably producing a lead frame material having excellent etching processability, sealing property, moldability and high strength, characterized in that the lead frame material is preferably adjusted to 50-80%. It is something to do.
【0017】なお、この場合、
(a)最終冷間圧延後に歪取り焼鈍を行う、(b)C含
有量を0.005%以下に調節する、(c)Si含有量
を0.001−0.05%に調節する、(d)P含有量
を0.003%以下に規制する、なる条件を単独或いは
組み合わせて採用すると、得られるリ−ドフレ−ム材の
成形加工性やエッチング加工性改善効果は一段と顕著に
なり、多ピンリ−ドフレ−ム材の製造にも一層十分に対
応できるようになる。In this case, (a) strain relief annealing is performed after final cold rolling, (b) C content is adjusted to 0.005% or less, (c) Si content is 0.001-0. (d) regulating the P content to 0.003% or less, either alone or in combination, improves the molding processability and etching processability of the resulting lead frame material. The effect becomes even more remarkable, and it becomes possible to more fully cope with the production of multi-pin lead frame materials.
【0018】[0018]
【作用】続いて、本発明において素材合金の成分組成、
最終焼鈍前における圧延の加工度、最終焼鈍時の結晶粒
径、並びに最終冷間圧延の加工度を前記の如くに数値限
定した理由を、その作用と共に説明する。[Operation] Next, in the present invention, the composition of the material alloy,
The reason why the working degree of rolling before final annealing, the grain size at the time of final annealing, and the working degree of final cold rolling are numerically limited as described above will be explained together with their effects.
【0019】
A)素材合金の成分組成
Ni
Niはリ−ドフレ−ム材の熱膨張係数を決定するのに重
要な成分であり、封着時や封着後におけるパッケ−ジと
の熱膨張差を小さくして封着性、耐湿信頼性を確保する
ためには、Ni含有量を15−55%に調整する必要が
ある。
従って、Ni含有量は15−55%と決めた。A) Composition of raw material alloy Ni Ni is an important component in determining the thermal expansion coefficient of the lead frame material, and the difference in thermal expansion with the package during and after sealing. In order to ensure sealing properties and moisture resistance reliability by reducing the Ni content, it is necessary to adjust the Ni content to 15-55%. Therefore, the Ni content was determined to be 15-55%.
【0020】
Co
Coもリ−ドフレ−ム材中の熱膨張係数を決定するのに
重要な成分である。そして、封着時や、封着後における
パッケ−ジとの熱膨張差を小さくして優れた封着性、耐
湿信頼性を確保するためには、Co含有量を5%超え−
30%に調整する必要がある。従って、Co含有量は5
%超え−30%と決めた。Co Co is also an important component in determining the coefficient of thermal expansion in the lead frame material. In order to ensure excellent sealing performance and moisture resistance reliability by reducing the difference in thermal expansion with the package during and after sealing, the Co content must exceed 5%.
It is necessary to adjust it to 30%. Therefore, the Co content is 5
I decided to exceed -30%.
【0021】
C
リ−ドフレ−ム材中のC含有量が0.015%を超える
と鉄炭化物の生成が起こり、これがリ−ドフレ−ム材の
エッチング性を害する。従って、C含有量の上限を0.
015%と定めたが、固溶Cもエッチング加工性に悪影
響を与えることからC含有量は低いほど良く、できれば
0.005%以下にまで抑制するのが望ましい。C When the C content in the lead frame material exceeds 0.015%, iron carbides are generated, which impairs the etchability of the lead frame material. Therefore, the upper limit of the C content is set to 0.
However, since solid solution C also has an adverse effect on etching processability, the lower the C content, the better, and it is desirable to suppress it to 0.005% or less if possible.
【0022】
Si
Siは脱酸剤として必要な元素であるが、一方でリ−ド
フレ−ム材のエッチング加工性に大きな影響を及ぼす元
素でもある。即ち、Si含有量が増加するとエッチング
速度が遅くなってエッチング加工性が悪化する。このた
め、良好なエッチング加工性を確保するためにはSi含
有量を0.15%以下に調整する必要がある。特に、多
ピンタイプのリ−ドフレ−ム材の場合には一段と良好な
エッチング加工性が要求されることから、Si含有量は
0.05%以下にまで低減するのが望ましい。ただ、S
i含有量を0.001%未満の領域まで低減すると脱酸
効果が認められなくなってしまう。従って、Si含有量
は0.001−0.15%と定めたが、上述したように
できれば0.001−0.05%に調整するのが望まし
い。Si Si is an element necessary as a deoxidizing agent, but it is also an element that has a large effect on the etching processability of the lead frame material. That is, as the Si content increases, the etching rate slows down and etching processability deteriorates. Therefore, in order to ensure good etching processability, it is necessary to adjust the Si content to 0.15% or less. In particular, in the case of a multi-pin type lead frame material, even better etching processability is required, so it is desirable to reduce the Si content to 0.05% or less. However, S
If the i content is reduced to less than 0.001%, the deoxidizing effect will no longer be observed. Therefore, although the Si content was determined to be 0.001-0.15%, it is desirable to adjust it to 0.001-0.05% if possible as described above.
【0023】
MnMnは、リ−ドフレ−ム材の脱酸および熱間加工性
を確保するために添加され
る成分であるが、その含有量が0.1%未満では所望の
脱酸効果が得られないばかりか、熱間加工性にも劣るよ
うになる。一方、1.0%を超えて含有させるとリ−ド
フレ−ム材の硬さが上昇し過ぎて加工性の悪化を招き、
更には熱膨張係数も大きくなってしまう。従って、Mn
含有量は0.1−1.0%と定めた。MnMn is a component added to ensure deoxidation and hot workability of the lead frame material, but if its content is less than 0.1%, the desired deoxidation effect cannot be obtained. Not only will it not be possible to reduce the heat, but the hot workability will also be poor. On the other hand, if the content exceeds 1.0%, the hardness of the lead frame material will increase too much, leading to deterioration of workability.
Furthermore, the coefficient of thermal expansion also increases. Therefore, Mn
The content was determined to be 0.1-1.0%.
【0024】
P
PもSiと同様、含有量が多くなるとリ−ドフレ−ム材
のエッチング加工性に害を与える元素である。そして、
上記エッチング加工性への悪影響はP含有量が0.01
%を超えるとより顕在化することから、P含有量は0.
01%以下と定めた。しかし、P含有量を0.003%
以下にまで低減すると、エッチング加工性改善効果が一
層顕著となって多ピンタイプのリ−ドフレ−ムへ適用す
る場合でも十分満足できる結果が安定して確保できるよ
うになることから、望ましくは0.003%以下に調整
するのがよい。[0024] P Like Si, P is an element that harms the etching processability of the lead frame material when its content increases. and,
The above-mentioned negative effect on etching processability is due to P content of 0.01
If the P content exceeds 0.0%, the P content becomes more obvious.
It was set as 0.01% or less. However, the P content is 0.003%
If it is reduced to below, the effect of improving etching processability becomes even more remarkable, and even when applied to a multi-pin type lead frame, a sufficiently satisfactory result can be stably ensured. It is best to adjust it to .003% or less.
【0025】
S
S含有量が0.005%を超えるとリ−ドフレ−ム材中
に硫化物系介在物が多くなり、エッチング加工時の欠陥
となってピン折れ等を引き起こすようになる。従って、
S含有量は0.005%以下と限定した。[0025] If the SS content exceeds 0.005%, sulfide-based inclusions will increase in the lead frame material, causing defects during etching, such as pin breakage. Therefore,
The S content was limited to 0.005% or less.
【0026】
O
O含有量が0.010%を超えるとリ−ドフレ−ム材中
に酸化物系介在物が多くなり、やはりエッチング加工時
の穿孔欠陥となることから、O含有量を0.010%以
下と限定した。[0026] O If the O content exceeds 0.010%, oxide inclusions will increase in the lead frame material, which will also cause drilling defects during etching processing, so the O content should be reduced to 0.010%. It was limited to 0.010% or less.
【0027】
N
N含有量が0.005%以下では、N含有量による強度
の向上が認められず、0.2%を超えるとリ−ドフレ−
ム材のエッチング加工性および曲げ加工性が悪化するこ
とから、N含有量を0.005%超え−0.2%と定め
た。[0027] N When the N content is 0.005% or less, no improvement in strength is observed due to the N content, and when it exceeds 0.2%, lead flaking
Since the etching workability and bending workability of the material deteriorated, the N content was set at -0.2%, exceeding 0.005%.
【0028】Mg,Ca,Al,Be,Cu,Cr,M
o,W,V,Nb,Ta,Ti,ZrおよびHfこれら
の元素は何れもリ−ドフレ−ム材の熱膨張係数を上昇さ
せる作用を有しているため、材料強度の向上、並びに熱
膨張係数を上げてレジンモ−ルドのそれに近付けること
で、封着性をより改善する目的で必要に応じ1種又は2
種以上が含有せしめられる。しかし、それらの含有量が
合計で0.01%未満であると前記作用により所望の効
果が得られず、一方合計の含有量が5.0%を超えた場
合には材料が硬くなり過ぎて成形加工性の劣化を招くほ
か、適正な熱膨張係数の確保も困難となることから、上
記成分の含有量を合計量で0.01−5.0%と定めた
。Mg, Ca, Al, Be, Cu, Cr, M
o, W, V, Nb, Ta, Ti, Zr, and Hf These elements all have the effect of increasing the coefficient of thermal expansion of the lead frame material, so they improve the material strength and reduce thermal expansion. By increasing the coefficient to bring it closer to that of the resin mold, type 1 or 2 can be used as needed to further improve the sealing properties.
More than one species can be contained. However, if the total content is less than 0.01%, the desired effect cannot be obtained due to the above action, while if the total content exceeds 5.0%, the material becomes too hard. In addition to causing deterioration in moldability, it also becomes difficult to secure an appropriate coefficient of thermal expansion, so the content of the above components was determined to be 0.01-5.0% in total.
【0029】
B)最終焼鈍前における圧延の加工度最終焼鈍前の圧延
加工度はリ−ドフレ−ム材に所望強度を確保する上で重
要であるが、その加工度を特に40−90%に限定する
理由は、圧延加工度が40%未満の場合には最終焼鈍時
に安定して所望の微細な結晶粒が得られずに混粒となっ
てしまい、逆に90%を超える圧延加工度になると最終
焼鈍時に立方体組織が発達し過ぎて異常な組織となり、
この結果、異方性が発達し、最終冷間圧延、歪取り焼鈍
を行っても所望する強度が得られなくなることにある。B) Degree of rolling before final annealing The degree of rolling before final annealing is important in ensuring the desired strength of the lead frame material, but it is especially important to increase the degree of rolling to 40-90%. The reason for this limitation is that if the rolling degree is less than 40%, the desired fine crystal grains cannot be stably obtained during final annealing, resulting in mixed grains, and conversely, if the rolling degree is less than 90%, In this case, the cubic structure develops too much during final annealing, resulting in an abnormal structure.
As a result, anisotropy develops and the desired strength cannot be obtained even after final cold rolling and strain relief annealing.
【0030】
C)最終焼鈍時の結晶粒径
最終焼鈍条件もリ−ドフレ−ム材に所望強度を確保する
上で重要であり、またエッチング性やプレス加工性にも
大きく影響する因子となるが、特に得られる結晶粒径が
30μm以下となる条件で最終焼鈍を実施する理由は、
結晶粒径の微細化が高強度化に大きく寄与する上、エッ
チング性やプレス加工性にも好結果が得られて高精度の
フレ−ムの実現に有効であるのに対して、結晶粒径が3
0μmを超えるとこれらの効果を確保することができな
くなるためである。なお、最終焼鈍時の結晶粒径の調整
は、周知のように焼鈍温度および時間を調節することに
よって容易に行うことができる。C) Grain size during final annealing The final annealing conditions are also important in ensuring the desired strength of the lead frame material, and are also factors that greatly affect etching properties and press workability. In particular, the reason why the final annealing is carried out under conditions such that the obtained crystal grain size is 30 μm or less is as follows.
Reducing the crystal grain size greatly contributes to high strength, and also produces good results in etching and press workability, which is effective in realizing high-precision frames. is 3
This is because if the thickness exceeds 0 μm, these effects cannot be ensured. Note that the grain size during final annealing can be easily adjusted by adjusting the annealing temperature and time, as is well known.
【0031】
D)最終冷間圧延の加工度
最終圧延での加工度もリ−ドフレ−ム材の強度に大きな
影響を与えるが、該加工度を特に40−85%と限定す
る理由は、該圧延加工度が40%未満の場合には強度改
善に顕著な効果が得られず、一方85%を超えると強度
の異方性が顕著となるためである。D) Working degree of final cold rolling The working degree of the final cold rolling also has a great influence on the strength of the lead frame material, but the reason why the working degree is particularly limited to 40-85% is that This is because when the rolling degree is less than 40%, no remarkable effect on strength improvement can be obtained, whereas when it exceeds 85%, the anisotropy of strength becomes remarkable.
【0032】
E)歪取り焼鈍最終圧延後に適正な歪取り焼鈍を行うこ
とによってKb値が向上し、その異方性も飛躍的に改善
されるとともに、曲げ加工性および封着性が改善される
ため、歪取り焼鈍を行う。例えば、還元性雰囲気中での
連続焼鈍炉において、炉温;500℃−900℃、材料
の炉内滞留時間;10秒間−120秒間で熱処理するこ
とによって上記効果が得られる。E) Strain Relief Annealing By performing appropriate strain relief annealing after final rolling, the Kb value is improved, its anisotropy is also dramatically improved, and bending workability and sealing properties are improved. Therefore, strain relief annealing is performed. For example, the above effect can be obtained by heat treatment in a continuous annealing furnace in a reducing atmosphere at a furnace temperature of 500° C. to 900° C. and a residence time of the material in the furnace of 10 seconds to 120 seconds.
【0033】[0033]
【実施例】次いで、本発明の効果を実施例により更に具
体的に説明する。まず、真空溶解、鋳造によって表1に
示される化学成分組成のFe−Ni−Co系合金インゴ
ットを得た後、これらに熱間圧延、酸洗を施し、次に冷
間圧延と焼鈍を繰り返して板厚:0.125mmの冷延
板を製造し、最終冷間圧延後に還元性雰囲気中で700
℃、30秒間の歪取り熱処理を行った。[Example] Next, the effects of the present invention will be explained in more detail with reference to Examples. First, Fe-Ni-Co alloy ingots having the chemical composition shown in Table 1 were obtained by vacuum melting and casting, and then hot rolled and pickled, and then cold rolled and annealed repeatedly. A cold-rolled plate with a plate thickness of 0.125 mm was produced, and after the final cold rolling, it was rolled at 700 mm in a reducing atmosphere.
A strain relief heat treatment was performed at ℃ for 30 seconds.
【0034】[0034]
【表1】[Table 1]
【0035】なお、この時の『最終焼鈍前の冷間圧延』
の加工度、最終焼鈍時の結晶粒径、並びに最終冷間圧延
の加工度は表2に示したとおりであった。[0035] At this time, "cold rolling before final annealing"
The working degree, the grain size at the final annealing, and the working degree at the final cold rolling were as shown in Table 2.
【0036】[0036]
【表2】[Table 2]
【0037】続いて、このように製造されたFe−Ni
−Co系合金リ−ドフレ−ム材につき、”機械的特性”
、”エッチング性”、”曲げ加工性”および”封着性”
を調査し、その結果を表2に併せて示した。[0037] Next, the Fe-Ni produced in this way
- "Mechanical properties" of Co-based alloy lead frame material
, "etchability", "bending workability" and "sealability"
were investigated, and the results are also shown in Table 2.
【0038】ここで機械的性質については、曲げモ−メ
ントに対する材料の強度をKb値(ばね限界値)でもっ
て評価した。As for the mechanical properties, the strength of the material against bending moment was evaluated using the Kb value (spring limit value).
【0039】エッチング性については、製造された前記
各冷間圧延板を脱脂してからレジスト膜を塗布し、パタ
−ンを焼き付けて現像した後、塩化第2鉄にて128ピ
ンのリ−ドフレ−ムをすべて同一条件下でエッチング加
工したものにつきアウタ−リ−ドピン幅とそのばらつき
を測定して評価した。Regarding etching properties, each cold-rolled plate produced above was degreased, a resist film was applied, a pattern was baked and developed, and a 128-pin lead frame was etched with ferric chloride. The width of the outer lead pin and its variation were measured and evaluated for all the films etched under the same conditions.
【0040】なお、表2中、No.35のみ,板厚0.
15mm, 他はすべて、板厚0.125mmである。
また、Kb値の異方性については、試料の長手方向を圧
延平行方向、直角方向に取り、直角方向のKb値と平行
方向のKb値の比によって異方性を示す。すなわち、K
b値の異方性=(直角方向のKb値)/(平行方向のK
b値)である。この値が1に近いほど、異方性が少ない
。[0040] In Table 2, No. 35 only, plate thickness 0.
15 mm, and all other plate thicknesses are 0.125 mm. Regarding the anisotropy of the Kb value, the longitudinal direction of the sample is taken in the direction parallel to rolling and the direction perpendicular to rolling, and the anisotropy is expressed by the ratio of the Kb value in the perpendicular direction to the Kb value in the parallel direction. That is, K
Anisotropy of b value = (Kb value in perpendicular direction) / (K in parallel direction
b value). The closer this value is to 1, the less anisotropy there is.
【0041】曲げ加工性は、90度繰返し曲げ試験を行
って評価した。そして、封着性の評価は、樹脂封着後に
熱サイクルを付与してクラックが生じるかどうかを調べ
ることによって行った。Bending workability was evaluated by conducting a 90 degree repeated bending test. The sealability was evaluated by applying a thermal cycle after resin sealing and examining whether cracks were generated.
【0042】表2に示される結果からは次の事項が明ら
かである。即ち、本発明例No.1−4に係わる材料は
、比較例No.22−35に比べ、機械的性質、エッチ
ング性、曲げ加工性および封着性に優れている。その中
でも本発明例No.1に係わるものは、C,Si,Pの
各含有量ともより好ましい範囲にコントロ−ルされてい
るため、本発明例No.2−4に係わるものと比較して
もエッチング性が更に優れている。The following points are clear from the results shown in Table 2. That is, invention example No. The material related to Comparative Example No. 1-4 is Comparative Example No. Compared to No. 22-35, it has excellent mechanical properties, etching properties, bending properties, and sealing properties. Among them, the present invention example No. Inventive Example No. 1 has the C, Si, and P contents controlled within more preferable ranges. The etching properties are even better than those related to No. 2-4.
【0043】また、本発明例No.5−21に係わるも
のは、Nb,Mo,Ti等を添加しているために強度が
一層向上している。一方、比較例No.22に係わるも
のは、最終焼鈍前圧延加工度が低すぎるためにその後の
焼鈍によって小さい結晶粒径を実現することができず、
Kb値が低くなっている。逆に比較例No.23に係わ
るものは、最終焼鈍前圧延加工度が大きすぎるためにそ
の後の焼鈍により、立方体組織が発達してしまい、Kb
値が低くなっている。[0043] Also, inventive example No. In the case of No. 5-21, the strength is further improved because Nb, Mo, Ti, etc. are added. On the other hand, comparative example No. In the case of No. 22, because the degree of rolling before final annealing was too low, it was not possible to achieve a small grain size through subsequent annealing.
Kb value is low. On the contrary, comparative example No. In cases related to No. 23, the degree of rolling before final annealing was too large, resulting in the development of a cubic structure during subsequent annealing, resulting in Kb
The value is low.
【0044】比較例No.24に係わるものは、最終圧
延加工度が小さすぎるためにKb値が低くなっている。
比較例No.25に係わるものは、最終焼鈍時の結晶粒
径が大きかったためにKb値が低くなっている。比較例
No.26に係わるものは、最終圧延加工度が大きすぎ
るために曲げ加工性が劣っている。Comparative Example No. In the case of No. 24, the Kb value is low because the final rolling degree is too small. Comparative example no. Regarding No. 25, the Kb value was low because the crystal grain size at the time of final annealing was large. Comparative example no. In the case of No. 26, the final rolling degree is too large and the bending workability is poor.
【0045】比較例No.27に係わるものは、Nの含
有量が少ないために強度が低いものとなっている。比較
例No.28に係わるものは、Nの含有量が多いために
曲げ加工性およびエッチング性に劣るものとなっている
。比較例No.29に係わるものは、C,SiおよびP
の含有量が多いために、エッチング加工性、曲げ加工性
および封着性が劣るものとなっている。比較例No.3
0−33に係わるものは、W,Mo,Cr等の添加量が
多すぎるために曲げ加工性や封着性が劣る結果となって
いる。Comparative Example No. The material related to No. 27 has a low strength due to a low N content. Comparative example no. The material related to No. 28 had poor bending workability and etching property because of its large N content. Comparative example no. Those related to 29 are C, Si and P
Since the content of is large, etching workability, bending workability, and sealing performance are poor. Comparative example no. 3
In the case of No. 0-33, the amount of W, Mo, Cr, etc. added was too large, resulting in poor bending workability and sealing performance.
【0046】なお、図1は、本発明例No.1と比較例
No.34および35に係わるものの『曲げモ−メント
とへたり量との関係』を示したグラフである。ここで、
比較例No.34に係わるものは、板厚が0.125m
m、比較例No.35に係わるものは、板厚が0.15
mmであって、何れも従来の製造方法により製作したも
のである。Note that FIG. 1 shows the example No. 1 of the present invention. 1 and comparative example no. It is a graph showing the "relationship between the bending moment and the amount of settling" regarding No. 34 and No. 35. here,
Comparative example no. For those related to 34, the plate thickness is 0.125m.
m, Comparative Example No. For those related to 35, the plate thickness is 0.15
mm, and all were manufactured using conventional manufacturing methods.
【0047】この図1からは、本発明で規定された通り
の条件で製造されたリ−ドフレ−ム材は、その板厚を0
.15mmから0.125mmに薄くしたとしても同じ
曲げモ−メントに対するへたり量が少なく、変形に対す
る材料強度が強いことを確認することができる。From FIG. 1, it can be seen that the lead frame material manufactured under the conditions specified in the present invention has a plate thickness of 0.
.. Even if the thickness is reduced from 15 mm to 0.125 mm, the amount of settling for the same bending moment is small, and it can be confirmed that the material has strong strength against deformation.
【0048】[0048]
【発明の効果】以上に説明した如く、この発明によれば
、エッチング加工性、封着性、成形性に優れ、かつ強度
の高いリ−ドフレ−ム材を安定して製造することができ
、半導体機器の更なる高集積化を可能にするなど、産業
上極めて有効な効果がもたらされる。[Effects of the Invention] As explained above, according to the present invention, it is possible to stably produce a lead frame material that has excellent etching processability, sealing performance, and moldability, and has high strength. This will bring about extremely useful effects industrially, such as enabling even higher integration of semiconductor devices.
【0049】[0049]
【図1】[Figure 1]
【0050】『曲げモ−メントとへたり量との関係』を
本発明法に係わる材料と比較法に係わる材料とで対比し
たグラフである。[0050] This is a graph comparing the ``relationship between bending moment and amount of settling'' between materials related to the method of the present invention and materials related to the comparative method.
Claims (7)
0.001−0.15%、 Mn 0.1−1.
0%、 P 0.01%以下、
S 0.005%以下、 O 0.010
%以下、 N 0.005%超え−0.2
%、Co 5%超え−30%、 Ni 15−55
%、残部がFeおよび不可避的不純物から成るFe−N
i−Co系合金を素材として、これに加工度40−90
%で圧延を施した後に結晶粒径が30μm以下となる条
件で最終焼鈍を行い、続く最終冷間圧延の加工度を40
−85%に調整することを特徴とする、エッチング加工
性および封着性に優れた高強度リ−ドフレ−ム材の製造
方法。[Claim 1] C 0.015% or less, Si
0.001-0.15%, Mn 0.1-1.
0%, P 0.01% or less,
S 0.005% or less, O 0.010
% or less, N more than 0.005% -0.2
%, Co over 5% -30%, Ni 15-55
%, the balance consisting of Fe and unavoidable impurities
Using i-Co alloy as material, it has a processing degree of 40-90.
%, final annealing is performed under conditions such that the grain size is 30 μm or less, and the working degree of the subsequent final cold rolling is 40 μm.
- A method for manufacturing a high-strength lead frame material with excellent etching processability and sealing properties, characterized by adjusting the lead frame material to 85%.
,Ca,Al、BeおよびCuから成る群から選ばれた
1種または2種以上の元素0.01−5.0重量%をさ
らに含有することを特徴とする、請求項1記載のエッチ
ング加工性および封着性に優れた高強度リ−ドフレ−ム
材の製造方法。[Claim 2] The Fe-Ni-Co alloy material contains Mg
2. Etching processability according to claim 1, further comprising 0.01-5.0% by weight of one or more elements selected from the group consisting of and a method for manufacturing a high-strength lead frame material with excellent sealing properties.
,Co,W,V,Nb,Ta,Ti,ZrおよびHfか
ら成る群から選ばれた1種または2種以上の元素0.0
1−5.0重量%をさらに含有することを特徴とする、
請求項1または2に記載のエッチング加工性および封着
性に優れた高強度リ−ドフレ−ム材の製造方法。[Claim 3] The Fe-Ni-Co alloy material is Cr
, Co, W, V, Nb, Ta, Ti, Zr and Hf.
further containing 1-5.0% by weight,
A method for producing a high-strength lead frame material having excellent etching processability and sealing properties according to claim 1 or 2.
とを特徴とする、請求項1乃至3の何れかに記載のエッ
チング加工性および封着性に優れた高強度リ−ドフレ−
ム材の製造方法。4. The high-strength lead frame with excellent etching workability and sealing properties according to any one of claims 1 to 3, characterized in that strain relief annealing is performed after final cold rolling.
A method of manufacturing mu materials.
.005重量%以下含有することを特徴とする、請求項
1乃至4の何れかに記載のエッチング加工性および封着
性に優れた高強度リ−ドフレ−ム材の製造方法。[Claim 5] The Fe-Ni-Co alloy material has a carbon content of 0.
.. 5. The method for producing a high-strength lead frame material having excellent etching processability and sealing properties according to any one of claims 1 to 4, characterized in that the content is 0.05% by weight or less.
0.001−0.05重量%含有することを特徴とする
、請求項1乃至5の何れかに記載のエッチング加工性お
よび封着性に優れた高強度リ−ドフレ−ム材の製造方法
。6. Etching processability and sealing according to claim 1, wherein the Fe-Ni-Co alloy material contains 0.001-0.05% by weight of Si. A method for manufacturing a high-strength lead frame material with excellent properties.
.003重量%以下含有することを特徴とする、請求項
1乃至6の何れかに記載のエッチング加工性および封着
性に優れた高強度リ−ドフレ−ム材の製造方法。[Claim 7] The Fe-Ni-Co alloy material has P of 0.
.. 7. The method for producing a high-strength lead frame material having excellent etching processability and sealing properties according to any one of claims 1 to 6, characterized in that the content is 0.03% by weight or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP41294590A JPH04224631A (en) | 1990-12-25 | 1990-12-25 | Manufacture of lead frame material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP41294590A JPH04224631A (en) | 1990-12-25 | 1990-12-25 | Manufacture of lead frame material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04224631A true JPH04224631A (en) | 1992-08-13 |
Family
ID=18521685
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP41294590A Pending JPH04224631A (en) | 1990-12-25 | 1990-12-25 | Manufacture of lead frame material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04224631A (en) |
-
1990
- 1990-12-25 JP JP41294590A patent/JPH04224631A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3133350B2 (en) | Lead frame material manufacturing method | |
JPH03197645A (en) | Lead frame material | |
JPH04224630A (en) | Manufacture of lead frame material | |
JP3000154B2 (en) | Lead frame material manufacturing method | |
JPH04231418A (en) | Production of lead frame material | |
JPH0472037A (en) | High strength and low thermal expansion alloy and its manufacture | |
JPH04221020A (en) | Manufacture of lead frame | |
JPH04224631A (en) | Manufacture of lead frame material | |
JPH04221039A (en) | Alloy material for lead frame and its production | |
JPH0681035A (en) | Production of lead frame material | |
JPH04224632A (en) | Manufacture of lead frame material | |
JPH03197641A (en) | Lead frame material | |
JPH04191316A (en) | Manufacture of lead frame material | |
JPH04231420A (en) | Production of lead frame material | |
JPH04231416A (en) | Production of lead frame material | |
JPH04231421A (en) | Production of lead frame material | |
JPH04221022A (en) | Manufacture of lead frame material | |
JPH04221021A (en) | Manufacture of lead frame | |
JPH04221024A (en) | Manufacture of lead frame material | |
JPH03197646A (en) | Lead frame material | |
JPH04231417A (en) | Production of lead frame material | |
JPH04221023A (en) | Manufacture of lead frame material | |
JPH04191317A (en) | Manufacture of lead frame material | |
JPH04221040A (en) | Alloy for lead frame and its production | |
JPH03197648A (en) | Lead frame material |