JP2614395B2 - Method for producing thin sheet of Fe-Ni-based electronic material having excellent shrink resistance - Google Patents

Method for producing thin sheet of Fe-Ni-based electronic material having excellent shrink resistance

Info

Publication number
JP2614395B2
JP2614395B2 JP5061968A JP6196893A JP2614395B2 JP 2614395 B2 JP2614395 B2 JP 2614395B2 JP 5061968 A JP5061968 A JP 5061968A JP 6196893 A JP6196893 A JP 6196893A JP 2614395 B2 JP2614395 B2 JP 2614395B2
Authority
JP
Japan
Prior art keywords
less
electronic material
thin plate
tension
based electronic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5061968A
Other languages
Japanese (ja)
Other versions
JPH06271936A (en
Inventor
昆 王
俊彦 谷内
最仁 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP5061968A priority Critical patent/JP2614395B2/en
Publication of JPH06271936A publication Critical patent/JPH06271936A/en
Application granted granted Critical
Publication of JP2614395B2 publication Critical patent/JP2614395B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、電子材料とくに半導
体装置用リードフレーム材として用いて有用な、耐縮み
特性や形状特性、硬さ特性等に優れるFe−Ni系電子材料
薄板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a thin Fe-Ni-based electronic material sheet having excellent shrinkage resistance, shape characteristics, hardness characteristics and the like, which is useful as an electronic material, especially as a lead frame material for semiconductor devices. .

【0002】[0002]

【従来の技術】近年、電子工業の発展に伴い、IC、L
SI等の半導体集積回路の需要が著しく増大しており、
そのために、このICやLSI等の要素部品である高品
質リードフレームの安定供給が望まれている。例えば、
多ピン、ファインピッチ化に対応するものとして、アウ
ターリードを4方向から出す形式のフラットプラスチッ
クパッケージ(FPP)のとくにQFPタイプのリード
フレームでは、形状や寸法精度が一段と厳しくなってい
るのが実情である。
2. Description of the Related Art In recent years, with the development of the electronics industry, IC, L
Demand for semiconductor integrated circuits such as SI has increased significantly,
Therefore, stable supply of a high-quality lead frame, which is an element such as an IC or an LSI, is desired. For example,
In response to multi-pin, fine pitch, flat plastic package (FPP) with outer leads coming out from four directions, especially QFP type lead frames, the shape and dimensional accuracy are becoming more severe. is there.

【0003】このような状況下にあるリードフレームの
一般的な製造方法としては、加工と熱処理を繰り返す方
法があるが、この方法の場合、熱処理時に寸法変化(縮
み)が起こるという問題点があった。一方、こうした実
情の下で、リードフレームの如き電子材料薄板に対し
て、微細加工を施す技術も開発されているが、限界があ
った。このことから最近では、材料特性に対する要求や
薄板化、低熱収縮特性をさらに改良するための研究開発
が盛んである。
Under such circumstances, a general method of manufacturing a lead frame includes a method of repeating processing and heat treatment. However, in this method, there is a problem that dimensional change (shrinkage) occurs during heat treatment. Was. On the other hand, under such circumstances, a technique for performing fine processing on a thin electronic material sheet such as a lead frame has been developed, but there is a limit. Accordingly, research and development for further improving the requirements for material properties, thinning, and low heat shrinkage properties have recently been active.

【0004】[0004]

【発明が解決しようとする課題】上述した実情に鑑み、
発明者らも、主として材料特性の改善という側面から、
リードフレーム材料によく適合するFe−Ni系電子材料の
開発を試みた。そうした研究の中で、製造上の問題とし
て指摘されていた、上述した熱処理時の“縮み”の問題
については、歪取り焼鈍温度を上げたり、または時間を
かけたりして、薄板の残留歪みを減少させれば防止でき
ることが判ってきた。しかしながら、この場合、素材硬
度の減少を避けることが出来ないという新たな問題が生
じた。また、素材のC含有量を増加することによっても
上述の問題を改善することはできるが、この場合には延
性が低下するという問題があった。
In view of the above situation,
The inventors have also found that mainly from the aspect of improving material properties,
We attempted to develop Fe-Ni-based electronic materials that are well suited for lead frame materials. In such research, regarding the problem of "shrinkage" at the time of heat treatment, which was pointed out as a manufacturing problem, the residual strain of the thin plate was reduced by raising the strain relief annealing temperature or taking time. It has been found that reduction can be prevented. However, in this case, there is a new problem that a decrease in the hardness of the material cannot be avoided. Further, the above problem can be solved by increasing the C content of the material, but in this case, there is a problem that ductility is reduced.

【0005】そこで本発明の目的は、電子材料特にリー
ドフレーム用薄板素材の基本的な特性を維持しながら、
とりわけ、耐縮み特性や形状, 硬さの特性に優れるFe−
Ni系電子材料薄板の新規な製造技術を確立することにあ
る。
[0005] It is an object of the present invention to maintain the basic characteristics of electronic materials, particularly thin plate materials for lead frames,
In particular, Fe- is excellent in shrinkage resistance, shape, and hardness.
It is to establish a new manufacturing technology for Ni-based electronic material thin plates.

【0006】[0006]

【課題を解決するための手段】上記目的は、以下に述べ
る要旨構成の如きFe−Ni系電子材料薄板の製造方法の採
用によって実現できる。すなわち、本発明は、基本的に
は、C:0.001 〜0.03wt%、N:0.01wt%以下、Si:0.
01〜2.0 wt%、Mn:0.01〜3.0 wt%、Ni:30〜50wt%、
Cr:0.01〜1.0wt%以下、S:0.01wt%以下を含み、残
部がFeおよび不可避的不純物である電子材料薄板 (第1
発明)、または上記成分組成のものにさらにB:0.0005
〜0.02wt%を添加してなる電子材料薄板(第3発明)
を、720 〜950 ℃で再結晶焼鈍し、20wt%以上の圧下率
の冷間圧延により0.3mm 以下の板厚とし、その後 0.3〜
8.0kgf/mm2 の張力下で 650〜800 ℃で10秒以上の条件
で行うテンションアニールを施すことを特徴とする耐縮
み特性に優れるFe−Ni系電子材料薄板の製造方法であ
る。
The above object can be attained by adopting a method of manufacturing a thin sheet of an Fe-Ni-based electronic material as described below. That is, according to the present invention, C: 0.001 to 0.03 wt%, N: 0.01 wt% or less, Si: 0.
01-2.0 wt%, Mn: 0.01-3.0 wt%, Ni: 30-50 wt%,
Electronic material thin plate containing Cr: 0.01 to 1.0 wt% or less, S: 0.01 wt% or less, and the balance being Fe and unavoidable impurities (No. 1
Invention), or B: 0.0005
Electronic material thin plate containing ~ 0.02wt% (third invention)
Is recrystallized and annealed at 720 to 950 ° C, and cold rolled to a rolling reduction of 20 wt% or more to a thickness of 0.3 mm or less.
This is a method for producing a thin Fe—Ni-based electronic material sheet having excellent shrink resistance, which is characterized by performing tension annealing performed at 650 to 800 ° C. for 10 seconds or more under a tension of 8.0 kgf / mm 2 .

【0007】また、本発明は、上記の成分組成の合金に
対して、さらにNb≦2.0 wt%、Zr≦0.4 wt%、Co≦4.0
wt%、Cu≦4.0 wt%、Ti≦1.0 wt%、Al≦1.0 wt%、Be
≦0.5 wt%、V ≦4.0 wt%、Ta≦2.0 wt%およびHf≦2.
0 wt%のうちから選ばれるいずれか1種または2種以上
の元素を総量で≦4.0 wt%含有させてなる電子材料薄板
を、上述したとおりの処理を施しても、本発明において
課題とする熱収縮 (縮み) を抑えるのには効果的である
(第2, 4発明)。
Further, the present invention relates to an alloy having the above component composition, wherein Nb ≦ 2.0 wt%, Zr ≦ 0.4 wt%, and Co ≦ 4.0 wt%.
wt%, Cu ≦ 4.0 wt%, Ti ≦ 1.0 wt%, Al ≦ 1.0 wt%, Be
≦ 0.5 wt%, V ≦ 4.0 wt%, Ta ≦ 2.0 wt% and Hf ≦ 2.
An electronic material thin plate containing at least one element selected from 0 wt% or two or more elements in a total amount of ≦ 4.0 wt% is subject to the present invention even if the above-described treatment is performed. It is effective in suppressing heat shrinkage (shrinkage) (second and fourth inventions).

【0008】[0008]

【作用】以下、本発明にかかる電子材料の成分組成限定
の理由と製造条件を特定した理由について説明する。 (1) 各成分の組成を限定した理由は以下のとおりであ
る。 C:0.001 〜0.03wt%;Cは、転位の固定によって素材
の熱収縮を抑え、かつ固溶及び加工硬化による材質強化
に寄与する元素である。とくに、20μm /100mm 以下の
熱収縮量、190Hv 以上の硬さを確保するには、0.001 wt
%を越える添加を必要とする。一方、多すぎるとFe−Ni
系合金本来の低熱膨脹特性を損ない、且つ延性の低下を
招いてリードフレームに要求されるコイニング加工性を
著しく劣化させるので、上限は0.03wt%未満に止める。
The reasons for limiting the component composition of the electronic material according to the present invention and the reasons for specifying the manufacturing conditions will be described below. (1) The reasons for limiting the composition of each component are as follows. C: 0.001 to 0.03 wt%; C is an element that suppresses thermal shrinkage of the material by fixing dislocations and contributes to strengthening the material by solid solution and work hardening. In particular, to ensure a heat shrinkage of 20 µm / 100 mm or less and a hardness of 190 Hv or more, 0.001 wt
%. On the other hand, too much Fe-Ni
The upper limit is limited to less than 0.03% by weight, since the low thermal expansion characteristic of the base alloy is impaired, and the ductility is lowered to significantly deteriorate the coining workability required for the lead frame.

【0009】N:0.01wt%以下;Nは、Cと同様の作用
効果を有するが、B添加を基本とした合金(第3, 4発
明例)においては、Bと容易に結合しBNを形成するため
有効B量が低下する。また、このBNは、合金中に多く含
有すると悪影響を及ぼす。さらに、このNは多すぎると
窒化物を多く析出して、靱性及び打ち抜き性を悪くす
る。従って、このような作用効果を考慮してこのNは、
0.01wt%を上限として含有する。
N: 0.01 wt% or less; N has the same function and effect as C, but in an alloy based on B addition (third and fourth invention examples), it easily bonds with B to form BN. Therefore, the effective B amount decreases. Also, if this BN is contained in a large amount in the alloy, it has an adverse effect. Further, if this N is too large, a large amount of nitride precipitates, and the toughness and the punching property deteriorate. Therefore, considering such effects, this N is
It contains 0.01wt% as the upper limit.

【0010】Si:0.01〜2.0 wt%;Siは、合金精錬に際
しての脱酸剤として添加される元素であり、0.01wt%以
上は必要である。しかし、2.0 wt%を超えて含有すると
熱間加工性が劣化するので、0.01〜2.0 wt%に限定す
る。
Si: 0.01 to 2.0 wt%; Si is an element added as a deoxidizing agent at the time of alloy refining, and 0.01 wt% or more is necessary. However, if the content exceeds 2.0 wt%, the hot workability deteriorates, so the content is limited to 0.01 to 2.0 wt%.

【0011】Mn:0.01〜3.0 wt%;Mnは、精錬に際して
の脱酸剤として用いられる他、固溶強化成分として0.01
wt%以上の添加は必要である。一方、3.0 wt%を超えて
含有しても脱酸効果としては飽和すると共に、原価的に
不利となる。一方、このMnを高めると、製造時の熱間加
工性が本質的に低くなるという製造上の問題点も抱えて
いるので、0.01〜3.0 wt%に限定する。
Mn: 0.01 to 3.0 wt%; Mn is used as a deoxidizing agent in refining and 0.01% as a solid solution strengthening component.
It is necessary to add more than wt%. On the other hand, if the content exceeds 3.0 wt%, the deoxidizing effect is saturated and the cost is disadvantageous. On the other hand, if this Mn is increased, there is also a manufacturing problem that the hot workability at the time of manufacturing is essentially lowered. Therefore, the content is limited to 0.01 to 3.0 wt%.

【0012】Ni:30〜50wt%; Niは、30wt%未満だと焼鈍状態でもマルテンサイトが形
成され、磁性特性、熱膨脹、強度、その他の物理的特性
が損なわれるので好ましくないので、30wt%以上の添加
が必要である。しかし、このNiは50wt%を越えて含有さ
せると、靱性の劣化、飽和磁束密度の低下、電気抵抗の
減少、熱膨脹の増大を招き、さらにはヒステリシス損失
の角形特性を悪くするので好ましくない。原価的にも不
利になるから、上限添加量は50wt%とする。
[0012] Ni: 30 ~50wt%; Ni is martensite is formed in annealed condition and less than 30 wt%, magnetic properties, thermal expansion, strength, since undesirable since other physical properties are impaired, 30 wt % Or more is required. However, if this Ni content exceeds 50 wt%, the toughness is deteriorated, the saturation magnetic flux density is reduced, the electric resistance is reduced, the thermal expansion is increased, and the square characteristic of hysteresis loss is unfavorably deteriorated. Since it is disadvantageous in terms of cost, the upper limit is set to 50 wt%.

【0013】Cr:0.01〜1.0 wt%;Crは、0.2 wt%耐力
を低下してプレス成形性を向上させるのに有効である
他、熱収縮を抑える効果もあるため、0.01wtwt%以上を
含有させる。しかし、その量が1wt%を越えると熱膨張
係数が大きくなりすぎるので、0.01〜1.0 wt%に限定す
る。
Cr: 0.01 to 1.0 wt%; Cr is effective to reduce the 0.2 wt% proof stress to improve press formability, and also has the effect of suppressing heat shrinkage. Let it. However, if the amount exceeds 1 wt%, the coefficient of thermal expansion becomes too large, so the amount is limited to 0.01 to 1.0 wt%.

【0014】B:0.0005〜0.02wt%; Bは、熱間加工性を向上させるのに有効な元素であるか
ら、この目的のためには0.0005wtwt%の添加が必要であ
る。一方、0.02wt%を超えると多量のほう化合物を析出
し、熱間加工性と材料の靱性とが劣化するので、0.0005
0.02wt%に限定する。
B: 0.0005 to 0.02 wt%; B is an element effective for improving hot workability, and therefore, it is necessary to add 0.0005 wt% for this purpose. On the other hand, if it exceeds 0.02 wt%, a large amount of boron compound will precipitate, and the hot workability and the toughness of the material will deteriorate.
Limited to ~ 0.02 wt%.

【0015】S:0.01wt%以下;Sは0.01wt%を超える
と熱間加工性を損なわれるので上限を0.01wt%とした。
S: 0.01 wt% or less; If S exceeds 0.01 wt%, hot workability is impaired, so the upper limit was made 0.01 wt%.

【0016】上述した基本的な成分組成に加え、本発明
ではさらにNb≦2.0 wt%、Zr≦0.4wt%、Co≦4.0 wt
%、Cu≦4.0 wt%、Ti≦1.0 wt%、Al≦1.0 wt%、Be≦
0.5 wt%のうちから選ばれるいずれか少なくとも1種ま
たは2種以上の元素を、総量で4.0 wt%以下を添加す
る。
In addition to the basic component composition described above, the present invention further comprises Nb ≦ 2.0 wt%, Zr ≦ 0.4 wt%, Co ≦ 4.0 wt%
%, Cu ≦ 4.0 wt%, Ti ≦ 1.0 wt%, Al ≦ 1.0 wt%, Be ≦
At least one or two or more elements selected from 0.5 wt% are added in a total amount of 4.0 wt% or less.

【0017】これらの元素は、各々の固溶強化作用と時
効効果とによって強度を一層向上させると共に、転位の
固定による素材に熱収縮を抑えるという共通した作用効
果を有する。一方、これらの元素の量が多すぎるとコス
トの上昇をきたすばかりでなく、靱性や溶接性を低下さ
せる。
These elements have a common effect of improving the strength further by the solid solution strengthening action and the aging effect, and suppressing the heat shrinkage of the material by fixing the dislocations. On the other hand, if the amounts of these elements are too large, not only will the cost rise, but also the toughness and weldability will decrease.

【0018】(2) 次に、本発明方法に従う製造条件につ
き、以下に説明する。 a.再結晶焼鈍 (720 〜950 ℃) ;本発明においては、上
記成分組成にかかる電子材料薄板を、720 〜950 ℃で再
結晶焼鈍することによって、素材を再結晶させ、結晶粒
度No. 9以上の微細粒を得る。この結晶粒度の微細化に
よって、素材の靱性、強度が向上する。この処理におい
て、温度が720 ℃未満では再結晶しない。一方、950 ℃
を超えると均一な微細粒得ることが困難になるので、72
0 〜950 ℃に限定する。
(2) Next, the manufacturing conditions according to the method of the present invention will be described below. a. Recrystallization annealing (720 to 950 ° C.); In the present invention, the thin material of the electronic material according to the above-mentioned composition is recrystallized and annealed at 720 to 950 ° C. to recrystallize the material, thereby obtaining a crystal grain size of 9 The above fine particles are obtained. The refinement of the crystal grain size improves the toughness and strength of the material. In this process, recrystallization does not take place at temperatures below 720 ° C. On the other hand, 950 ℃
If it exceeds 70, it will be difficult to obtain uniform fine particles.
Limit to 0-950 ° C.

【0019】b.冷間加工(圧下率:20%以上);冷間加
工の圧下率が20%以上の冷間加工を施すことによって、
歪取り焼鈍後でも硬さが低下しないという結果が得られ
る。
B. Cold working (reduction rate: 20% or more); By performing cold working with a reduction rate of 20% or more in cold working,
The result is that the hardness does not decrease even after the strain relief annealing.

【0020】c.歪取り焼鈍(テンションアニール) これは、650 〜800 ℃で10秒間以上且つ0.3 〜8.0kgf/m
m2の張力下で行う熱処理である。本発明において、上記
の材料を650 〜800 ℃で10秒間以上且つ0.3 〜8.0kgf/m
m2の張力下での歪取り焼鈍を施すと、冷間圧延時に発生
した残留歪を減少させることができると共に、一方では
板形状の矯正もできる。従って、素材の熱収縮の主な起
因である、圧延方向の残留圧縮応力の減少を通じて素材
の“縮み”を効果的に抑えることができる。また、冷間
加工による硬度の低減を招くこともなく、ばね限界値(K
b)と共に靱性の効果的な向上をもたらすことができる。
ところで、こうした作用効果は650 ℃未満の焼鈍温度で
は十分な回復が得られないので、縮みの抑制には効果が
ない。一方800 ℃を超える焼鈍温度だと、素材の硬度は
大幅に低下する。また、張力が0.3kgf/mm2未満では、板
形状の矯正ができないと共に圧延方向の残留圧縮応力を
十分に緩和することができない。一方、この張力が8.0k
gf/mm2を超えると、大きな塑性変形を起こし、安定操業
を困難とする。なお、加熱時間は、10秒未満では素材が
十分に回復しないので、“縮み”の抑制に効果が出な
い。
C. Strain relief annealing (tension annealing) This is performed at 650 to 800 ° C. for 10 seconds or more and 0.3 to 8.0 kgf / m
This is a heat treatment performed under a tension of m 2 . In the present invention, the above material is heated at 650-800 ° C. for 10 seconds or more and 0.3-8.0 kgf / m
When the strain relief annealing is performed under the tension of m 2 , the residual strain generated during the cold rolling can be reduced, and at the same time, the shape of the sheet can be corrected. Therefore, "shrinkage" of the material can be effectively suppressed through reduction of the residual compressive stress in the rolling direction, which is the main cause of the heat shrinkage of the material. In addition, the spring limit value (K
Effective improvement of toughness can be obtained together with b).
By the way, since such effects cannot be sufficiently recovered at an annealing temperature of less than 650 ° C., there is no effect in suppressing shrinkage. On the other hand, if the annealing temperature exceeds 800 ° C., the hardness of the material is significantly reduced. If the tension is less than 0.3 kgf / mm 2 , the plate shape cannot be corrected and the residual compressive stress in the rolling direction cannot be sufficiently reduced. On the other hand, this tension is 8.0k
If it exceeds gf / mm 2 , large plastic deformation occurs, making stable operation difficult. If the heating time is less than 10 seconds, the material does not recover sufficiently, so that there is no effect in suppressing "shrinkage".

【0021】[0021]

【実施例】表1に示す成分組成の素材を大気誘導炉で溶
解してインゴットを作成した。次いで、このインゴット
を1000〜1280℃で熱間鍛造加工し、720 〜950 ℃に加熱
後、空冷する再結晶焼鈍処理を行い、引き続き圧下率90
%以下の冷間圧延を1〜複数回 繰り返し行った。この
ときの製造条件を表2に示す。こうして0.15mm厚の薄板
を得た。この板の形状と650 ℃10分間加熱前後素材長さ
の変化を測定した。それらの結果も表2にまとめて示
す。なお、表1には、本発明材料に適合する化学成分の
実施例と、比較材の科学成分とを示した。また、表2
は、表1に掲げる本発明材の実施例形状、熱収縮を示し
たものである。この表2からも判るように本発明適合例
については熱収縮が十分に抑制されていることが窺え
る。
EXAMPLES Ingots were prepared by melting materials having the component compositions shown in Table 1 in an air induction furnace. Next, the ingot is hot forged at 1000 to 1280 ° C., heated to 720 to 950 ° C., and then air-cooled for recrystallization annealing.
% Cold rolling was repeated 1 to several times. Table 2 shows the manufacturing conditions at this time. Thus, a thin plate having a thickness of 0.15 mm was obtained. The shape of this plate and the change in the material length before and after heating at 650 ° C. for 10 minutes were measured. Table 2 also shows the results. Table 1 shows examples of chemical components compatible with the material of the present invention and scientific components of comparative materials. Table 2
Table 1 shows the examples of the material of the present invention listed in Table 1 and the heat shrinkage. As can be seen from Table 2, it can be seen that the heat shrinkage was sufficiently suppressed in the example of the present invention.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【発明の効果】以上説明したように、720 〜950 ℃で再
結晶焼鈍した後、20wt%以上で圧下率の冷間圧延により
0.3mm 以下の板厚とし、650 〜800 ℃で10秒以上且つ
0.3〜8.0kgf/mm2の張力で歪取り焼鈍を行うことによっ
て、硬さが向上し良好なパンチング特性を示す電子材料
用薄板を得ることができる。とくに、板形状とコイニン
グ加工性を保つ上で必要な低熱収縮材料の実現が可能と
なった。それ故に、本発明方法によれば、常に寸法精度
の高いリードフレーム用材料として好適な電子材料用薄
板の製造が可能である。
As described above, after recrystallization annealing at 720 to 950 ° C., cold rolling is performed at a rolling reduction of 20% by weight or more.
0.3 mm or less, at 650-800 ° C for 10 seconds or more
By performing the strain relief annealing with a tension of 0.3 to 8.0 kgf / mm 2, a thin plate for electronic materials having improved hardness and excellent punching characteristics can be obtained. In particular, it has become possible to realize a low heat shrinkage material necessary for maintaining the plate shape and coining workability. Therefore, according to the method of the present invention, it is possible to manufacture a thin plate for an electronic material that is always suitable as a lead frame material with high dimensional accuracy.

フロントページの続き (72)発明者 藤原 最仁 神奈川県川崎市川崎区小島町4番2号 日本冶金工業株式会社 研究開発本部技 術研究所内 (56)参考文献 特開 昭60−251227(JP,A) 特開 昭62−290828(JP,A)Continuation of the front page (72) Inventor Saito Fujiwara 4-2 Kojima-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa Pref. Nippon Yakin Kogyo Co., Ltd. Research and Development Division Technology Research Laboratory (56) References A) JP-A-62-290828 (JP, A)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】C:0.001 〜0.03wt%、 N:0.01wt%以
下、Si:0.01 〜2.0 wt%、 Mn:0.01〜3.0 wt%、N
i:30〜50wt%、 Cr:0.01〜1.0 wt%、S:0.0
1wt%以下を含有し、残部Feおよび不可避的不純物の組
成からなる薄板を、720 〜950 ℃の温度にて再結晶焼鈍
を施し、20wt%以上の圧下率での冷間圧延を行って0.3m
m 以下の板厚とし、その後、0.3 〜8.0kgf/mm2の張力下
において、650 〜800 ℃−10秒以上の条件の歪取り焼鈍
を行うことを特徴とする, 耐縮み特性等に優れるFe−Ni
系電子材料薄板の製造方法。
C: 0.001 to 0.03 wt%, N: 0.01 wt% or less, Si: 0.01 to 2.0 wt%, Mn: 0.01 to 3.0 wt%, N
i: 30-50 wt%, Cr: 0.01-1.0 wt%, S: 0.0
A thin plate containing 1 wt% or less and composed of the balance of Fe and unavoidable impurities is subjected to recrystallization annealing at a temperature of 720 to 950 ° C, and cold-rolled at a rolling reduction of 20 wt% or more to 0.3 m
the following thickness m, then the tension of a 0.3 ~8.0kgf / mm 2, and performs a stress relief annealing of 650 to 800 ° C. -10 seconds or more conditions, excellent耐縮viewed properties such as Fe −Ni
Method of manufacturing electronic material thin plate.
【請求項2】C:0.001 〜0.03wt%、 N:0.01wt%以
下、Si:0.01 〜2.0 wt%、 Mn:0.01〜3.0 wt%、N
i:30〜50wt%、 Cr:0.01〜1.0 wt%、S:0.0
1wt%以下を含有し、さらにNb≦2.0 wt%、 Zr≦0.4 w
t%、 Co≦4.0 wt%、Cu≦4.0 wt%、 Ti≦1.0 wt
%、 Al≦1.0 wt%、Be≦0.5 wt%、 V ≦4.0 wt%、
Ta≦2.0 wt%およびHf≦2.0 wt%のうちから選ばれるい
ずれか1種または2種以上の元素を、総量で4.0 wt%以
下含有し、残部Feおよび不可避的不純物である薄板を、
720 〜950 ℃の温度にて再結晶焼鈍を施し、20wt%以上
の圧下率での冷間圧延を行って0.3mm 以下の板厚とし、
その後、0.3 〜8.0kgf/mm2の張力下において、650 〜80
0 ℃−10秒以上の条件の歪取り焼鈍を行うことを特徴と
する, 耐縮み特性等に優れるFe−Ni系電子材料薄板の製
造方法。
2. C: 0.001 to 0.03 wt%, N: 0.01 wt% or less, Si: 0.01 to 2.0 wt%, Mn: 0.01 to 3.0 wt%, N
i: 30-50 wt%, Cr: 0.01-1.0 wt%, S: 0.0
1 wt% or less, Nb ≦ 2.0 wt%, Zr ≦ 0.4 w
t%, Co ≦ 4.0 wt%, Cu ≦ 4.0 wt%, Ti ≦ 1.0 wt
%, Al ≦ 1.0 wt%, Be ≦ 0.5 wt%, V ≦ 4.0 wt%,
A sheet containing at least 4.0 wt% of one or more elements selected from Ta ≦ 2.0 wt% and Hf ≦ 2.0 wt%, and a balance of Fe and unavoidable impurities,
Perform recrystallization annealing at a temperature of 720 to 950 ° C, cold-roll at a rolling reduction of 20 wt% or more to a sheet thickness of 0.3 mm or less,
Thereafter, the tension of a 0.3 ~8.0kgf / mm 2, 650 ~80
A method for producing a Fe—Ni-based electronic material thin plate having excellent shrinkage resistance characteristics, wherein the strain relief annealing is performed at 0 ° C. for 10 seconds or more.
【請求項3】C:0.001 〜0.03wt%、 N:0.01wt%以
下、Si:0.01 〜2.0 wt%、 Mn:0.01〜3.0 wt%、N
i:30〜50wt%、 Cr:0.01〜1.0 wt%、B:0.0
005〜0.02wt%、 S:0.01wt%以下を含有し、残部Fe
および不可避的不純物の組成からなる薄板を、720 〜95
0 ℃の温度にて再結晶焼鈍を施し、20wt%以上の圧下率
での冷間圧延を行って0.3mm 以下の板厚とし、その後、
0.3 〜8.0kgf/mm2の張力下において、650 〜800 ℃−10
秒以上の条件の歪取り焼鈍を行うことを特徴とする, 耐
縮み特性等に優れるFe−Ni系電子材料薄板の製造方法。
3. C: 0.001 to 0.03 wt%, N: 0.01 wt% or less, Si: 0.01 to 2.0 wt%, Mn: 0.01 to 3.0 wt%, N
i: 30 to 50 wt%, Cr: 0.01 to 1.0 wt%, B: 0.0
005-0.02wt%, S: 0.01wt% or less, balance Fe
And a thin plate composed of unavoidable impurities
Recrystallization annealing at a temperature of 0 ° C, cold rolling at a rolling reduction of 20 wt% or more to a thickness of 0.3 mm or less,
In the tension of a 0.3 ~8.0kgf / mm 2, 650 ~800 ℃ -10
A method for producing a thin Fe-Ni-based electronic material sheet having excellent shrinkage resistance characteristics, wherein the strain relief annealing is performed for a period of at least one second.
【請求項4】C:0.001 〜0.03wt%、 N:0.01wt%以
下、Si:0.01 〜2.0 wt%、 Mn:0.01〜3.0 wt%、N
i:30〜50wt%、 Cr:0.01〜1.0 wt%、B:0.0
005〜0.02wt%、 S:0.01wt%以下を含有し、さらにN
b≦2.0 wt%、 Zr≦0.4 wt%、 Co≦4.0 wt%、Cu≦
4.0 wt%、 Ti≦1.0 wt%、 Al≦1.0 wt%Be≦0.5 wt
%、 V ≦4.0 wt%、Ta≦2.0 wt%およびHf≦2.0 wt%
のうちから選ばれるいずれか1種または2種以上の元素
を、総量で4.0 wt%以下含有し、残部Feおよび不可避的
不純物である薄板を、720 〜950 ℃の温度にて再結晶焼
鈍を施し、20wt%以上の圧下率での冷間圧延を行って0.
3mm 以下の板厚とし、その後、0.3 〜8.0kgf/mm2の張力
下において、650 〜800 ℃−10秒以上の条件の歪取り焼
鈍を行うことを特徴とする, 耐縮み特性等に優れるFe−
Ni系電子材料薄板の製造方法。
4. C: 0.001 to 0.03 wt%, N: 0.01 wt% or less, Si: 0.01 to 2.0 wt%, Mn: 0.01 to 3.0 wt%, N
i: 30 to 50 wt%, Cr: 0.01 to 1.0 wt%, B: 0.0
005-0.02wt%, S: 0.01wt% or less
b ≦ 2.0 wt%, Zr ≦ 0.4 wt%, Co ≦ 4.0 wt%, Cu ≦
4.0 wt%, Ti ≦ 1.0 wt%, Al ≦ 1.0 wt% Be ≦ 0.5 wt
%, V ≤ 4.0 wt%, Ta ≤ 2.0 wt% and Hf ≤ 2.0 wt%
A sheet containing at least one element selected from the group consisting of at least one element selected from the group consisting of 4.0 wt% or less, and the balance of Fe and unavoidable impurities, is subjected to recrystallization annealing at a temperature of 720 to 950 ° C. Cold rolling at a rolling reduction of 20 wt% or more
The following thickness 3 mm, then the tension of a 0.3 ~8.0kgf / mm 2, and performs a stress relief annealing conditions above 650 to 800 ° C. -10 seconds, excellent耐縮viewed properties such as Fe −
Manufacturing method of Ni-based electronic material thin plate.
JP5061968A 1993-03-22 1993-03-22 Method for producing thin sheet of Fe-Ni-based electronic material having excellent shrink resistance Expired - Fee Related JP2614395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5061968A JP2614395B2 (en) 1993-03-22 1993-03-22 Method for producing thin sheet of Fe-Ni-based electronic material having excellent shrink resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5061968A JP2614395B2 (en) 1993-03-22 1993-03-22 Method for producing thin sheet of Fe-Ni-based electronic material having excellent shrink resistance

Publications (2)

Publication Number Publication Date
JPH06271936A JPH06271936A (en) 1994-09-27
JP2614395B2 true JP2614395B2 (en) 1997-05-28

Family

ID=13186492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5061968A Expired - Fee Related JP2614395B2 (en) 1993-03-22 1993-03-22 Method for producing thin sheet of Fe-Ni-based electronic material having excellent shrink resistance

Country Status (1)

Country Link
JP (1) JP2614395B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2877678B1 (en) * 2004-11-05 2006-12-08 Imphy Alloys Sa FER-NICKEL ALLOY BAND FOR THE MANUFACTURE OF GRIDS INTEGRATED CIRCUIT SUPPORT
EP1975269A1 (en) * 2007-03-30 2008-10-01 Imphy Alloys Austenitic iron-nickel-chromium-copper alloy

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60251227A (en) * 1984-05-29 1985-12-11 Nippon Steel Corp Production of low-expansion fe-ni steel sheet
JPS62290828A (en) * 1986-06-09 1987-12-17 Toshiba Corp Production of shadow mask

Also Published As

Publication number Publication date
JPH06271936A (en) 1994-09-27

Similar Documents

Publication Publication Date Title
GB2181742A (en) Copper alloy lead material for use in semiconductor device
KR102423266B1 (en) Copper titanium alloy sheet for vapor chamber and vapor chamber
JP3150831B2 (en) High Young's modulus low thermal expansion Fe-Ni alloy
JP2006200042A (en) Electronic component composed of copper alloy sheet having excellent bending workability
JPH0625395B2 (en) High-strength leadframe material and manufacturing method thereof
JP2614395B2 (en) Method for producing thin sheet of Fe-Ni-based electronic material having excellent shrink resistance
US5246511A (en) High-strength lead frame material and method of producing same
JP3510445B2 (en) Fe-Ni alloy thin plate for electronic parts with excellent softening and annealing properties
JP2501157B2 (en) High strength and low thermal expansion Fe-Ni alloy with excellent hot workability
JPS6376839A (en) Copper alloy for electronic equipment and its production
JPH04202642A (en) Fe-ni alloy having high strength and low thermal expansion and excellent in plating suitability, solderability, and repeated bendability and its production
JP3542024B2 (en) High strength low thermal expansion Fe-Ni alloy, shadow mask, lead frame
JPH07216510A (en) High strength lead frame material and its production
JP2797835B2 (en) High-strength Fe-Ni-Co alloy thin plate excellent in corrosion resistance and repeated bending characteristics, and method for producing the same
JPH09268348A (en) Fe-ni alloy sheet for electronic parts and its production
JPS61166947A (en) Shadow mask
JP3299487B2 (en) Method for producing Fe-Ni alloy thin plate
JP3506289B2 (en) Fe-Ni-based alloy sheet for electronic parts and method for producing the same
JP2939118B2 (en) Fe-Ni alloy for electronic and electromagnetic applications
JP2000265250A (en) LOW THERMAL EXPANSION Fe-Ni ALLOY SHEET AND SHADOW MASK AND COLOR PICTURE TUBE USING THE SAME
JP3363689B2 (en) Shadow mask material excellent in press formability and method of manufacturing shadow mask
JP3383549B2 (en) Method for producing Fe-Ni alloy thin plate
JPS6270542A (en) Cu-alloy lead material for semiconductor device
JP2550784B2 (en) High strength and low thermal expansion Fe-Ni-Co alloy excellent in plating property, soldering property and cyclic bending property, and method for producing the same
JP3619403B2 (en) Hot working method of S-added Fe-Ni alloy

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080227

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 16

LAPS Cancellation because of no payment of annual fees