JP3542024B2 - High strength low thermal expansion Fe-Ni alloy, shadow mask, lead frame - Google Patents

High strength low thermal expansion Fe-Ni alloy, shadow mask, lead frame Download PDF

Info

Publication number
JP3542024B2
JP3542024B2 JP2000076563A JP2000076563A JP3542024B2 JP 3542024 B2 JP3542024 B2 JP 3542024B2 JP 2000076563 A JP2000076563 A JP 2000076563A JP 2000076563 A JP2000076563 A JP 2000076563A JP 3542024 B2 JP3542024 B2 JP 3542024B2
Authority
JP
Japan
Prior art keywords
less
alloy
based alloy
thermal expansion
niobium nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000076563A
Other languages
Japanese (ja)
Other versions
JP2001262278A (en
Inventor
純一 西田
良二 井上
武久 瀬尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2000076563A priority Critical patent/JP3542024B2/en
Priority to EP01106170A priority patent/EP1134300A3/en
Priority to US09/810,176 priority patent/US6592810B2/en
Publication of JP2001262278A publication Critical patent/JP2001262278A/en
Application granted granted Critical
Publication of JP3542024B2 publication Critical patent/JP3542024B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、高強度でかつ平均熱膨張係数が小さいFe−Ni系合金に関するものであり、特にシャドウマスク及びリードフレーム、さらには精密機械の各部品等の素材に適用されるものに関する。
【0002】
【従来の技術】
Fe−36%Niに代表されるアンバー系のFe−Ni系合金や、Fe−31%Ni−5%Coに代表されるスーパーアンバー系のFe−Ni−Co系合金は、平均熱膨張係数が小さい低熱膨張合金として知られている。これらFe−Ni系合金やFe−Ni−Co系合金(以下、Fe−Ni系合金と総称する)は、テレビやコンピューターのディスプレイにおけるシャドウマスク、ブラウン管電子銃の電極、あるいは半導体パッケージ等の製造に用いられるリードフレームといった低熱膨張特性が必要とされる用途に使用されている。
【0003】
例えばシャドウマスク材料は、従来一般には軟鋼が用いられていた。軟鋼はプレス成形性およびエッチング性は良好であるが、熱膨張係数が約12×10−6/℃と大きく、電子ビームの照射により加熱されて熱膨張を生じ、色純度を劣化させてしまうという問題があった。近年、ディスプレイの高精細化、高輝度化が要求される中、従来の軟鋼に替えて、熱膨張係数の小さいFe−36%Niに代表されるアンバー系合金がシャドウマスク材料として実用化されている。しかしながら、Fe−36%Niアンバー系合金は、軟鋼と比べてエッチング性に劣り、また、コストが非常に高いという問題点を有している。
【0004】
また、最近のフラット画面化への急速な進展に伴い、従来のプレス成形方式のシャドウマスクに代わって、張力を付与した状態でマスクフレームに支持されるテンション方式が適用されつつある。この場合、特にフレーム枠体に支持していることから、シャドウマスク自体にはその形状保持のための強度が取り立てて必要でなく、コストを下げる目的でシャドウマスクの薄板化が進められている。しかし、その薄板状態としての取扱いに係わり、各工程で折れや変形に対処できるだけのハンドリング性(強度)が求められている。
【0005】
そして、リードフレーム材料は、リードフレームとして熱膨張係数が小さい半導体素子と接合されることから、これらの素子と熱膨張係数が近いFe−42%Niに代表されるFe−Ni系合金が使用されている。リードフレーム材料にはプレス打抜き加工、フォトエッチング加工によって微細なリード加工が施されるが、半導体装置の高集積化に伴う加工形状の微細化、高精度化が一層強く求められている中、これらFe−Ni系合金の打抜き性の向上や薄板化へのための高強度化が求められる。
【0006】
上記の用途に供されるFe−Ni(−Co)系合金においては、そのエッチング性やプレス成形性、そして強度や打抜き性の向上手段としてNb添加による手段が多数提案されている。例えば特開平4−120251号は、Nを0.01%以下に規制すると共に窒化物を形成しやすいNbを0.01〜1.0%添加することで固溶N量を低減し、更にはCrを適量添加することでレジスト膜の密着性およびプレス成形後の剛性を向上したシャドウマスク用素材を提案する。そして、特開平7−145451号は、1〜4%のNbを添加することで高強度化を図ったリードフレーム材を提案している。
【0007】
特にリードフレーム材料について言えば、特開平9−263891号は、C:0.003〜0.03%、Nb:0.005〜2.5%、N:0.001〜0.02%とし、最大径20μm以下のNb化合物(炭化物)を形成させることで打抜き性を向上した高強度低熱膨張Fe−Ni系合金を提案している。そして、特開平10−183304号は4A族あるいは5A族元素を含む粒状析出物(単体、炭化物、窒化物、金属間化合物)の大きさを5μm以下にまで調整し、その中でもC:0.001〜0.3%、Nb:0.01〜6%にて調整されるNbC(炭化ニオブ)の析出・調整を行なうことでプレス打抜き性や機械的強度を向上させる手法を提案する。
【0008】
また、特開平10−60528号は、シャドウマスクやリードフレームを対象とした高強度インバー合金板として、0.10%までのCと1.0%までのNbを添加すると共に、Nを0.005%以下に低減する手法を提案している。
【0009】
【発明が解決しようとする課題】
上述した手法は、シャドウマスクやリードフレーム等に求められる諸特性の向上に有効な手段である。しかし、その高強度化の手段としてNbを固溶状態で利用し、加工歪みを蓄積して加工硬化を図るものについては、多量のNb添加が必要となり、熱膨張特性の劣化が懸念される。また、含Nb析出物としての高強度化を図るものの場合、これらは主に炭化ニオブとしての分散強化を狙っており、これについてもその効果発揮に十分な析出量を確保するに多量のNbが必要となる。加えてその析出物のサイズも大きい。
【0010】
上述したような従来の合金の場合は、その造塊・凝固時に晶出する炭、窒化物が粗大になり易く、これはエッチング面に突出したり、またプレス打抜き時に金型の摩耗を増長するといった問題に繋がる。そこで本発明は、粗大になり易い炭、窒化物の析出を抑えた手法にて高強度低熱膨張Fe−Ni系合金を達成し、そして、それら合金よりなるシャドウマスクやリードフレームを提供することを目的とする。
【0011】
【課題を解決するための手段】
まず、本発明者らは、Fe−Ni系合金の高強度化の手法として、粗大となり易い析出炭化物に依らない手法を検討した。その結果、超微細な調整が可能なNb窒化物を組織中に多数析出させることで結晶粒の微細化が達成でき、諸特性の劣化をきたさずに高強度化を達成するに有効な手段であることをつきとめた。つまり、Fe−Ni系合金への溶解度積が小さいNb、Nを利用することで、少量のNb添加で、超微細な窒化ニオブを析出させる手法であり、粗大な炭、窒化物の析出を抑えかつ、分散強化を主作用とする従来の方法にも依らないことから、多量のNb添加をも必要としない方法である。
【0012】
すなわち、本発明は、質量%にて、Ni:30〜50%、Nb:0.005〜0.1%、C:0.01%未満、N:0.002〜0.02%、残部が実質的にFeからなり、0.000013≦[%Nb]・[%N]≦0.002であるFe−Ni系合金、あるいは、質量%にて、Ni:27〜47%、Co:22%以下、Nb:0.005〜0.1%、C:0.01%未満、N:0.002〜0.02%、残部が実質的にFeからなり、0.000013≦[%Nb]・[%N]≦0.002であるFe−Ni系合金であって、組織断面に観察される窒化ニオブの最大粒径が0.5μm未満であることを特徴とする高強度低熱膨張Fe−Ni系合金である。
【0014】
加えて、これら本発明の高強度低熱膨張Fe−Ni系合金について、平均結晶粒径がJIS G 0551による粒度番号にて10以上のものである。また、その含有されるMnを0.10%以下、あるいはBを0.004%以下としてもよい。
【0015】
そして、これら本発明の高強度低熱膨張Fe−Ni系合金よりなるシャドウマスクあるいはリードフレームであって、高精細・高精度で加工形状の微細化が達成されたものである。
【0016】
【発明の実施の形態】
本発明の最大の特徴は、粗大な炭、窒化物の析出を抑えかつ、分散強化を主作用とする従来の方法にも依らない手法にて、Fe−Ni系合金の高強度化を達成したところにある。
【0017】
本発明者らは、粗大なNb炭化物の析出によって懸念される上記の問題点を解決する手法を検討し、それが同じく分散強化を主作用に利用されていた従来からのNb窒化物の更なる調整にあることを見いだした。つまり、炭化ニオブよりFe−Ni系合金に対する溶解度が小さい窒化ニオブに着眼したのであって、窒化ニオブはその粒度を微細に調整することが可能なのである。
【0018】
以下、本発明のFe−Ni系合金を構成する具体的組成について、その数値限定理由を述べる。
Niは、Fe−Ni(−Co)系合金の低熱膨張特性に大きな影響を及ぼす元素である。含有量が30%より少なく、または50%を越えるものでは熱膨張係数を低めるインバー効果がなくなるため、Niの範囲は30〜50%とする。また、本発明のFe−Ni系合金はその更なる低熱膨張特性確保の点から、Niの一部をCoに置換あるいはCoを添加してもよい。具体的には、Ni:27〜47%、Co:22%以下を含有するFe−Ni系合金であり、好ましくは、Co:2〜6%を含有するFe−Ni系合金である。
【0019】
Nbは本発明の重要かつ必須の元素である。本発明においては、その極少量の添加で窒化物を超微細に分散析出させることが可能であり、結晶粒の微細化に効果がある。その結晶粒微細化に十分な添加量として0.005%を下限とする。一方、Nb量が0.1%を越えると粗大な窒化ニオブを晶出しやすく、1350℃を超える均熱処理でも固溶し難くなるため、上限を0.1%に限定する。好ましくは、0.01〜0.05%である。
【0020】
Cも本発明の達成の上でその調整が重要な元素である。多すぎると粗大なNb炭化物を晶出し、結晶粒微細化に有効な窒化ニオブが少なくなるため、0.01%未満とする。好ましくは、0.005%以下である。
【0021】
Nも本発明のNb、Cに合わせて本発明の重要な添加元素であり、超微細な窒化ニオブの析出の上で0.002%以上が必要である。ただし、多量に添加すると粗大な窒化ニオブを晶出し易く、均熱処理の際の固溶温度も高くなるため、上限を0.02%に限定する。好ましくは、0.003〜0.01%である。
【0022】
また、本発明の超微細な窒化ニオブを達成するに、例えば900〜1350℃の均熱処理により一旦、Nb窒化物を固溶させる工程が有効であって、そのため本発明では[%Nb]・[%N]溶解度積を0.000013〜0.002に規定している。好ましくは、0.000013〜0.001とする。
【0023】
窒化ニオブは、その溶解度積が小さいため、炭化ニオブに比べ極少量のNb添加でその窒化物が析出する。また、窒化ニオブの溶解度積を0.000013以上、0.002以下にすることにより、900℃から1350℃、更には1300℃までの範囲での固溶化処理で固溶が可能となり、その後に行われる析出処理、あるいは熱間加工後の制御冷却により、微細に析出させることができる。
【0024】
超微細な析出物は結晶粒界のピンニング粒子として有効に働くことから、結晶粒の超微細化につながり、素材の高強度化が達成できる。よって、本発明のFe−Ni系合金とすることで、その合金中に超微細な窒化ニオブを形成させ、粗大な炭化物を利用せずとも高強度化が達成できるのである。
【0025】
加えて、本発明者らは、その結晶粒の微細化による高強度化を達成するに有効な窒化ニオブのサイズについて検討した。本発明のFe−Ni系合金においては、その高強度化に効果を示す平均結晶粒径として、JIS G 0551による粒度番号が10以上であることが望ましい。この場合、Zenerの関係式(R=4/3・r/f2/3:マトリックス平均結晶粒径R、析出物の平均粒径r、析出物体積率f)から導かれる分散粒子径とマトリックスの平均結晶粒径の関係から検討すれば、組織断面に観察される窒化ニオブの最大粒径を0.5μm未満とすることが望ましい。よって、本発明のFe−Ni系合金は、その組織断面に観察される窒化ニオブの最大粒径を0.5μm未満とすることが好ましく、更には0.3μm以下である。
【0026】
なお、0.5μm未満の超微細な窒化ニオブは、本発明のFe−Ni系合金の組成条件に合わせ、例えばその製造工程における900〜1350℃の均熱固溶化処理と析出処理の条件を適宜調整することで、調整が可能である。また、組織断面に観察される窒化ニオブの粒径測定法としては、例えばスピード法にて腐食した組織面を観察する方法が適用できる。図1は、スピード法にて腐食したFe−Ni系合金の組織面を16000倍の走査電子顕微鏡にて観察したものであり、最大粒径が0.06μmの窒化ニオブを示している。
【0027】
炭化ニオブといった析出物による分散強化を利用した従来の技術の場合、先述したようにその十分な析出量を確保するためのNbはおおむね0.1%を大きく超える添加量が必要であり、その析出物の径は大きいものである。それに比して、超微細な窒化ニオブの形成による結晶粒微細化を目的とする本発明は、その必要とするNb添加量は少量であることから、粗大なNb窒化物の析出を抑制することができ、Nb自体の添加量も抑えることができる。
【0028】
その他、本発明のFe−Ni系合金において、Mnは熱間加工性を改善する元素であるが、その低減によって熱膨張係数を低くできる作用がある。この効果を得るに本発明のFe−Ni系合金のMn量は0.10%以下としてもよい。
【0029】
本発明において、多量のB含有はNとの結合により窒化ニオブの形成を阻害することから、好ましくは0.004%以下とする。但し、エッチング加工後の形状改善効果もあり、特にMnを低減するような場合に有効であることから、0.0001%以上を含有してもよい。
【0030】
【実施例】
(実施例1)
真空誘導溶解炉により、表1に示す各種成分に調整したFe−36%Niアンバー系合金の鋼塊を作製した。その後、1100℃に加熱して固溶化処理を行ない、続いて鍛造と熱間圧延を施して厚さ2.5mmの板材とした。この板材に800〜900℃での窒化ニオブの析出処理を行った後、冷間圧延と焼鈍を繰り返して厚さ0.1mmの冷間圧延材とした。
【0031】
これら仕上げた冷間圧延材を供試材とし、各供試材についての平均結晶粒径(JIS G 0551による結晶粒度番号)と、最大の窒化ニオブの粒径、0.2%耐力、熱膨張係数を測定した。なお、窒化ニオブの粒径測定は、供試材をスピード法で腐食した組織面について、その総測定観察視野面積500μmを走査電子顕微鏡にて観察することで行なった。また、0.2%耐力は20℃おいて、熱膨張係数は20〜100℃の範囲で測定した。
【0032】
【表1】

Figure 0003542024
【0033】
本発明を満たすNo.1〜5は、窒化ニオブの微細析出により微細な結晶粒が得られており、Nb無添加材(No.7)に比べて、熱膨張特性等のシャドウマスク材としての特性を損なうこと無く、耐力を約10%程度向上させることができた。一方、Nb量の多いNo.6は、0.2%耐力こそ向上しているも、造塊時の冷却速度が遅い部分でやや大きな窒化ニオブの晶出が見られるため、熱間加工性やエッチング性状が悪い。そして、No.8はC量が多いため、大きめの炭化ニオブを晶出していることから、エッチング性状が悪い。
【0034】
(実施例2)
真空誘導溶解炉により、表2に示す各種成分に調整したFe−42%Ni合金の鋼塊を作製した。その後、1100℃に加熱して固溶化処理を行ない、続いて鍛造と熱間圧延を施して厚さ2.5mmの板材とした。この板材に800〜900℃での窒化ニオブの析出処理を行った後、冷間圧延と焼鈍を繰り返して厚さ0.5mmの冷間圧延材とした。
【0035】
これら仕上げた冷間圧延材を供試材とし、各供試材についての平均結晶粒径(JIS G 0551による結晶粒度番号)と、最大の窒化ニオブの粒径、0.2%耐力、バリ体積を測定した。なお、バリ体積はプレス打抜き試験を行なった供試材につき、その圧延方向と平行な打抜き面の打抜き縁に立つバリの体積を、その縁長さ350μmの範囲で測定したものである。0.2%耐力および窒化ニオブの粒径の測定については実施例1に従うものである。
【0036】
【表2】
Figure 0003542024
【0037】
本発明を満たすNo.9〜12は、窒化ニオブの微細析出による結晶粒の微細化により0.2%耐力が向上した。そして、その微細な窒化ニオブの析出によって打抜き面の破断単位が小さくなり、Nb無添加材(No.14)よりバリが小さくなった。なお、No.13はNbの添加量が多く、粗大な窒化ニオブを晶出しているため、打抜き時の金型の摩耗を増長した。
【0038】
(実施例3)
真空誘導溶解炉により、表3に示す各種成分に調整したFe−31%Ni−5%Coスーパーインバー系合金の鋼塊を作製した。その後、1100℃に加熱して固溶化処理を行ない、続いて鍛造と熱間圧延を施して厚さ2.5mmの板材とした。この板材に800〜900℃で窒化ニオブの析出処理を行った後、冷間圧延と焼鈍を繰り返して厚さ0.1mmの冷間圧延材とした。
【0039】
これら仕上げた冷間圧延材を供試材とし、そして、各供試材についての平均結晶粒径(JIS G 0551による結晶粒度番号)と、最大の窒化ニオブの粒径、0.2%耐力、熱膨張特性を測定した。測定要領は実施例1に従う。
【0040】
【表3】
Figure 0003542024
【0041】
本発明を満たすNo.15〜18は、窒化ニオブの微細析出により微細な結晶粒が得られており、Nb無添加材(No.20)に比べて、熱膨張特性やその他の特性を損なうこと無く、耐力を約10%程度向上させることができた。一方、No.19はNb量が多いため、造塊時の冷却速度が遅い部分でやや大きな窒化ニオブの晶出が見られるため、熱間加工性やエッチング性状が悪い。No.21はC量が多いため、大きめの炭化ニオブを晶出していることから、エッチング性状が悪い。
【0042】
【発明の効果】
本発明であれば、高強度でかつ熱膨張係数が小さいFe−Ni系合金の提供が可能である。よって、シャドウマスク材の用途においては、ハンドリングが容易になるため、更なる薄板化が可能になり、マスク原価の低減が図れる。そして、リードフレーム材の用途においては、高強度化により打抜き加工性も向上し、加工形状の微細化、高精度化が図れる。
【図面の簡単な説明】
【図1】Fe−Ni系合金の組織面に観察される窒化ニオブを示す金属ミクロ組織写真である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an Fe—Ni alloy having high strength and a small average coefficient of thermal expansion, and more particularly to an alloy applied to a material such as a shadow mask and a lead frame, and furthermore, each part of a precision machine.
[0002]
[Prior art]
An amber-based Fe-Ni-based alloy represented by Fe-36% Ni and a super-amber-based Fe-Ni-Co-based alloy represented by Fe-31% Ni-5% Co have an average coefficient of thermal expansion. Known as small low thermal expansion alloys. These Fe-Ni-based alloys and Fe-Ni-Co-based alloys (hereinafter collectively referred to as Fe-Ni-based alloys) are used for manufacturing shadow masks, cathode ray tube electron gun electrodes, or semiconductor packages in televisions and computer displays. It is used for applications that require low thermal expansion characteristics, such as lead frames used.
[0003]
For example, as a shadow mask material, conventionally, mild steel has been generally used. Mild steel has good press formability and etching properties, but has a large coefficient of thermal expansion of about 12 × 10 −6 / ° C., and is heated by electron beam irradiation to cause thermal expansion and deteriorate color purity. There was a problem. In recent years, as displays have been required to have higher definition and higher brightness, an amber alloy represented by Fe-36% Ni having a small coefficient of thermal expansion has been put to practical use as a shadow mask material instead of conventional mild steel. I have. However, the Fe-36% Ni invar alloy has problems that the etching property is inferior to mild steel and that the cost is very high.
[0004]
Further, with the recent rapid progress toward flat screens, a tension method in which a tension is applied to a mask frame in a state where tension is applied is being applied instead of a shadow mask of a conventional press molding method. In this case, since the shadow mask itself is particularly supported by the frame, the shadow mask itself is not required to have sufficient strength to maintain its shape, and the thickness of the shadow mask is being reduced in order to reduce costs. However, with regard to handling in a thin plate state, handling properties (strength) capable of dealing with breakage and deformation in each step are required.
[0005]
Since the lead frame material is joined to a semiconductor element having a small coefficient of thermal expansion as a lead frame, an Fe-Ni-based alloy represented by Fe-42% Ni having a similar coefficient of thermal expansion to these elements is used. ing. Fine lead processing is applied to lead frame materials by press punching and photo-etching, but as semiconductor devices become more highly integrated, there is a strong demand for finer processing shapes and higher precision. It is required to improve the punching property of the Fe-Ni-based alloy and to increase the strength for thinning the sheet.
[0006]
As for the Fe-Ni (-Co) -based alloys used for the above applications, a number of means by adding Nb have been proposed as means for improving the etching property, press formability, strength and punching property. For example, Japanese Patent Application Laid-Open No. HEI 4-120251 regulates N to 0.01% or less and reduces the amount of solute N by adding 0.01 to 1.0% of Nb which easily forms nitride. We propose a material for shadow masks that improves the adhesion of the resist film and the rigidity after press molding by adding an appropriate amount of Cr. Japanese Unexamined Patent Publication No. Hei 7-145451 proposes a lead frame material in which the strength is increased by adding 1 to 4% of Nb.
[0007]
In particular, regarding the lead frame material, Japanese Patent Application Laid-Open No. 9-263891 discloses that C: 0.003 to 0.03%, Nb: 0.005 to 2.5%, and N: 0.001 to 0.02%. A high-strength low-thermal-expansion Fe-Ni-based alloy having improved punchability by forming an Nb compound (carbide) having a maximum diameter of 20 μm or less has been proposed. Japanese Patent Application Laid-Open No. 10-183304 adjusts the size of a granular precipitate (simple, carbide, nitride, intermetallic compound) containing a Group 4A or 5A element to 5 μm or less, and among them, C: 0.001 A method for improving the press punching property and mechanical strength by performing precipitation and adjustment of NbC (niobium carbide) adjusted to about 0.3% and Nb: 0.01 to 6% is proposed.
[0008]
Japanese Patent Application Laid-Open No. H10-60528 discloses a high-strength Invar alloy plate for a shadow mask or a lead frame, in which C of up to 0.10% and Nb of up to 1.0% are added and N is set to 0.1%. A method for reducing the energy consumption to 005% or less is proposed.
[0009]
[Problems to be solved by the invention]
The above method is an effective means for improving various characteristics required for a shadow mask, a lead frame, and the like. However, in the case of using Nb in a solid solution state as a means of increasing the strength and accumulating work strain to achieve work hardening, a large amount of Nb needs to be added, and there is a concern that thermal expansion characteristics may deteriorate. Further, in the case of increasing the strength as Nb-containing precipitates, these are mainly aimed at strengthening the dispersion as niobium carbide, and also in this case, a large amount of Nb is required to secure a sufficient amount of precipitation to exert its effect. Required. In addition, the size of the precipitate is large.
[0010]
In the case of conventional alloys as described above, the carbon and nitrides that crystallize during ingot-solidification tend to be coarse, which protrude from the etched surface and increase the wear of the mold during press punching. It leads to a problem. Therefore, the present invention achieves a high-strength, low-thermal-expansion Fe-Ni-based alloy by a method that suppresses the precipitation of charcoal and nitride, which are likely to become coarse, and to provide a shadow mask and a lead frame made of such an alloy. Aim.
[0011]
[Means for Solving the Problems]
First, the present inventors have studied a method that does not rely on precipitated carbides that tend to become coarse, as a method for increasing the strength of an Fe—Ni-based alloy. As a result, the crystal grains can be refined by precipitating a large number of Nb nitrides that can be finely adjusted in the structure, which is an effective means for achieving high strength without deteriorating various properties. I found something. In other words, by using Nb and N having a small solubility product in the Fe-Ni-based alloy, it is a method of precipitating ultra-fine niobium nitride by adding a small amount of Nb, and suppressing precipitation of coarse carbon and nitride. In addition, since the method does not depend on the conventional method in which dispersion strengthening is the main effect, the method does not require addition of a large amount of Nb.
[0012]
That is, in the present invention, in mass%, Ni: 30 to 50%, Nb: 0.005 to 0.1%, C: less than 0.01%, N: 0.002 to 0.02%, and the balance is consisting essentially of Fe, 0.000013 ≦ [% Nb] · [% N] ≦ 0.002 der Ru F e-Ni based alloy, or by mass%, Ni: 27~47%, Co : 22% or less, Nb: 0.005 to 0.1%, C: less than 0.01%, N: 0.002 to 0.02%, the balance substantially consisting of Fe, and 0.000013 ≦ [% nb] · [% N] a ≦ 0.002 der Ru F e-Ni based alloys, maximum particle size of the niobium nitride observed in the tissue section is equal to or less than 0.5μm high strength It is a low thermal expansion Fe-Ni alloy.
[0014]
In addition, these high-strength low-thermal-expansion Fe-Ni-based alloys of the present invention have an average crystal grain size of 10 or more as a grain size number according to JIS G 0551. The Mn content may be 0.10% or less, or B may be 0.004% or less.
[0015]
A shadow mask or a lead frame made of the high-strength low-thermal-expansion Fe-Ni-based alloy of the present invention achieves fine processing with high precision and high precision.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
The greatest feature of the present invention is that it has achieved a high strength Fe-Ni alloy by a method that suppresses the precipitation of coarse carbon and nitrides and does not rely on the conventional method of mainly using dispersion strengthening. There.
[0017]
The present inventors have studied a method for solving the above-mentioned problem that is feared by the precipitation of coarse Nb carbide, and this is a further improvement of the conventional Nb nitride, which also utilizes dispersion strengthening as a main function. I found something in the adjustment. In other words, the present inventors have focused on niobium nitride, which has a lower solubility in Fe-Ni-based alloys than niobium carbide, and it is possible to finely adjust the particle size of niobium nitride.
[0018]
Hereinafter, the reasons for limiting the numerical values of specific compositions constituting the Fe—Ni-based alloy of the present invention will be described.
Ni is an element that has a great effect on the low thermal expansion characteristics of the Fe—Ni (—Co) alloy. If the content is less than 30% or more than 50%, the invar effect of lowering the coefficient of thermal expansion is lost, so the range of Ni is 30 to 50%. Further, in the Fe-Ni-based alloy of the present invention, a part of Ni may be replaced with Co or Co may be added from the viewpoint of further securing low thermal expansion characteristics. Specifically, it is an Fe-Ni alloy containing 27 to 47% of Ni and 22% or less of Co, and preferably an Fe-Ni alloy containing 2 to 6% of Co.
[0019]
Nb is an important and essential element of the present invention. In the present invention, it is possible to ultrafinely disperse and precipitate nitrides by adding a very small amount thereof, which is effective for making crystal grains fine. The lower limit is 0.005% as a sufficient amount to add the crystal grains. On the other hand, if the Nb content exceeds 0.1%, coarse niobium nitride is likely to be crystallized, and it is difficult to form a solid solution even at a soaking temperature of more than 1350 ° C., so the upper limit is limited to 0.1%. Preferably, it is 0.01-0.05%.
[0020]
C is also an element whose adjustment is important for achieving the present invention. If it is too large, coarse Nb carbides are crystallized, and the amount of niobium nitride effective for refining crystal grains is reduced. Preferably, it is 0.005% or less.
[0021]
N is also an important additive element of the present invention in accordance with Nb and C of the present invention, and is required to be 0.002% or more in order to precipitate ultrafine niobium nitride. However, if a large amount is added, coarse niobium nitride is easily crystallized, and the solid solution temperature during soaking is increased, so the upper limit is limited to 0.02%. Preferably, it is 0.003 to 0.01%.
[0022]
Further, in order to achieve the ultrafine niobium nitride of the present invention, it is effective to temporarily dissolve the Nb nitride by, for example, soaking at 900 to 1350 ° C. Therefore, in the present invention, [% Nb] · [ % N] The solubility product is specified to be 0.000013 to 0.002. Preferably, it is 0.000013 to 0.001.
[0023]
Since niobium nitride has a small solubility product, the nitride is precipitated by adding a very small amount of Nb as compared with niobium carbide. Further, by setting the solubility product of niobium nitride to 0.000013 or more and 0.002 or less, it becomes possible to form a solid solution by a solution treatment in a range from 900 ° C. to 1350 ° C. and further to 1300 ° C. Precipitation treatment or controlled cooling after hot working enables fine precipitation.
[0024]
The ultra-fine precipitates effectively work as pinning particles at the crystal grain boundaries, leading to ultra-fine crystal grains and high strength of the material. Therefore, by using the Fe—Ni-based alloy of the present invention, ultrafine niobium nitride can be formed in the alloy, and high strength can be achieved without using coarse carbides.
[0025]
In addition, the present inventors have studied the size of niobium nitride which is effective for achieving high strength by making the crystal grains fine. In the Fe—Ni-based alloy of the present invention, it is desirable that the grain size number according to JIS G 0551 be 10 or more as the average crystal grain size that is effective for increasing the strength. In this case, the dispersed particle diameter and the matrix derived from the Zener's relational expression (R = 4/3 · r / f 2/3 : the average crystal grain diameter R of the matrix, the average grain diameter r of the precipitate, the volume ratio f of the precipitate) Considering the relationship of the average crystal grain size, it is desirable that the maximum grain size of niobium nitride observed in the structure section be less than 0.5 μm. Therefore, in the Fe—Ni-based alloy of the present invention, the maximum grain size of niobium nitride observed in the structure section is preferably less than 0.5 μm, and more preferably 0.3 μm or less.
[0026]
In addition, ultrafine niobium nitride of less than 0.5 μm is appropriately adjusted to the composition conditions of the Fe—Ni-based alloy of the present invention, for example, by appropriately controlling the conditions of the soaking and solution treatment at 900 to 1350 ° C. in the manufacturing process. By adjusting, adjustment is possible. In addition, as a method for measuring the particle size of niobium nitride observed in the cross section of the structure, for example, a method of observing a corroded structure surface by a speed method can be applied. FIG. 1 shows a structure of the Fe—Ni alloy corroded by the speed method observed by a scanning electron microscope at a magnification of 16000, and shows niobium nitride having a maximum particle size of 0.06 μm.
[0027]
In the case of the conventional technique using dispersion strengthening by a precipitate such as niobium carbide, as described above, the amount of Nb to secure a sufficient amount of precipitation needs to be much larger than approximately 0.1%. The diameter of the object is large. On the other hand, the present invention aimed at refining crystal grains by forming ultrafine niobium nitride requires a small amount of Nb to be added, so that the precipitation of coarse Nb nitride is suppressed. And the added amount of Nb itself can be suppressed.
[0028]
In addition, in the Fe-Ni-based alloy of the present invention, Mn is an element that improves hot workability, but has an effect of reducing the coefficient of thermal expansion by reducing Mn. To obtain this effect, the Mn content of the Fe-Ni alloy of the present invention may be 0.10% or less.
[0029]
In the present invention, since a large amount of B content inhibits the formation of niobium nitride by bonding with N, it is preferably set to 0.004% or less. However, it also has an effect of improving the shape after etching, and is particularly effective in reducing Mn. Therefore, it may contain 0.0001% or more.
[0030]
【Example】
(Example 1)
Using a vacuum induction melting furnace, steel ingots of Fe-36% Ni invar alloy adjusted to various components shown in Table 1 were produced. Thereafter, a solution treatment was performed by heating to 1100 ° C., followed by forging and hot rolling to obtain a 2.5 mm-thick plate. After performing a precipitation treatment of niobium nitride at 800 to 900 ° C. on this sheet material, cold rolling and annealing were repeated to obtain a cold rolled material having a thickness of 0.1 mm.
[0031]
These finished cold-rolled materials were used as test materials, and the average crystal grain size (crystal grain number according to JIS G 0551) of each test material, the maximum niobium nitride particle size, 0.2% proof stress, and thermal expansion The coefficient was measured. The measurement of the particle size of niobium nitride was carried out by observing the surface area of the test material corroded by the speed method with a scanning electron microscope over a total observation viewing area of 500 μm 2 . The 0.2% proof stress was measured at 20 ° C, and the coefficient of thermal expansion was measured in the range of 20 to 100 ° C.
[0032]
[Table 1]
Figure 0003542024
[0033]
No. satisfying the present invention. In Nos. 1 to 5, fine crystal grains were obtained by fine precipitation of niobium nitride. Compared with the Nb-free material (No. 7), the characteristics of the shadow mask material such as thermal expansion characteristics were not impaired. The proof stress could be improved by about 10%. On the other hand, No. 2 having a large Nb In No. 6, although the proof stress was improved by 0.2%, a relatively large crystallization of niobium nitride was observed in a portion where the cooling rate during ingot formation was low, so that hot workability and etching properties were poor. And No. 8 has a large amount of C, and therefore has a large etching amount of niobium carbide, and thus has poor etching properties.
[0034]
(Example 2)
Ingots of Fe-42% Ni alloy adjusted to various components shown in Table 2 were produced by a vacuum induction melting furnace. Thereafter, a solution treatment was performed by heating to 1100 ° C., followed by forging and hot rolling to obtain a 2.5 mm-thick plate. After performing a precipitation treatment of niobium nitride at 800 to 900 ° C. on this sheet material, cold rolling and annealing were repeated to obtain a cold rolled material having a thickness of 0.5 mm.
[0035]
These finished cold-rolled materials were used as test materials, and the average crystal grain size (crystal grain number according to JIS G 0551) for each test material, the maximum niobium nitride particle size, 0.2% proof stress, burr volume Was measured. The burrs volume was obtained by measuring the volume of burrs on the punched edge of the punched surface parallel to the rolling direction of the test material subjected to the press punching test in the range of the edge length of 350 μm. The measurement of the 0.2% proof stress and the particle size of niobium nitride is in accordance with Example 1.
[0036]
[Table 2]
Figure 0003542024
[0037]
No. satisfying the present invention. In Nos. 9 to 12, the 0.2% proof stress was improved by the refinement of crystal grains by fine precipitation of niobium nitride. Then, due to the precipitation of the fine niobium nitride, the fracture unit of the punched surface was reduced, and the burr was smaller than that of the Nb-free material (No. 14). In addition, No. In No. 13, the amount of Nb added was large, and coarse niobium nitride was crystallized, so that the wear of the die during punching was increased.
[0038]
(Example 3)
Using a vacuum induction melting furnace, steel ingots of Fe-31% Ni-5% Co super Invar alloy adjusted to various components shown in Table 3 were produced. Thereafter, a solution treatment was performed by heating to 1100 ° C., followed by forging and hot rolling to obtain a 2.5 mm-thick plate. After performing a precipitation treatment of niobium nitride at 800 to 900 ° C. on this sheet material, cold rolling and annealing were repeated to obtain a cold rolled material having a thickness of 0.1 mm.
[0039]
These finished cold-rolled materials were used as test materials, and the average crystal grain size (crystal grain number according to JIS G 0551) for each test material, the maximum niobium nitride particle size, 0.2% proof stress, The thermal expansion characteristics were measured. The measurement procedure follows Example 1.
[0040]
[Table 3]
Figure 0003542024
[0041]
No. satisfying the present invention. In Nos. 15 to 18, fine crystal grains were obtained by fine precipitation of niobium nitride, and the yield strength was about 10 without impairing the thermal expansion characteristics and other characteristics as compared with the Nb-free material (No. 20). % Could be improved. On the other hand, No. In No. 19, since the Nb content is large, a relatively large crystallization of niobium nitride is observed in a portion where the cooling rate at the time of ingot is low, so that hot workability and etching properties are poor. No. 21 has a large amount of C and, therefore, crystallizes a large amount of niobium carbide, and thus has poor etching properties.
[0042]
【The invention's effect】
According to the present invention, it is possible to provide an Fe—Ni-based alloy having high strength and a small coefficient of thermal expansion. Therefore, in the application of the shadow mask material, the handling becomes easy, so that the thickness can be further reduced, and the cost of the mask can be reduced. In the use of the lead frame material, the punching workability is also improved by increasing the strength, and the processing shape can be made finer and more precise.
[Brief description of the drawings]
FIG. 1 is a metal microstructure photograph showing niobium nitride observed on the structure surface of an Fe—Ni-based alloy.

Claims (7)

質量%にて、Ni:30〜50%、Nb:0.005〜0.1%、C:0.01%未満、N:0.002〜0.02%、残部が実質的にFeからなり、0.000013≦[%Nb]・[%N]≦0.002であるFe−Ni系合金であって、組織断面に観察される窒化ニオブの最大粒径が0.5μm未満であることを特徴とする高強度低熱膨張Fe−Ni系合金。 In mass%, Ni: 30 to 50%, Nb: 0.005 to 0.1%, C: less than 0.01%, N: 0.002 to 0.02%, and the balance substantially consists of Fe , a 0.000013 ≦ [% Nb] · [ % N] ≦ 0.002 der Ru F e-Ni based alloys, maximum particle size of the niobium nitride observed in the tissue section is less than 0.5μm A high-strength low-thermal-expansion Fe-Ni-based alloy characterized by the above-mentioned. 質量%にて、Ni:27〜47%、Co:22%以下、Nb:0.005〜0.1%、C:0.01%未満、N:0.002〜0.02%、残部が実質的にFeからなり、0.000013≦[%Nb]・[%N]≦0.002であるFe−Ni系合金であって、組織断面に観察される窒化ニオブの最大粒径が0.5μm未満であることを特徴とする高強度低熱膨張Fe−Ni系合金。 In mass%, Ni: 27 to 47%, Co: 22% or less, Nb: 0.005 to 0.1%, C: less than 0.01%, N: 0.002 to 0.02%, and the balance is substantially Fe, a 0.000013 ≦ [% Nb] · [ % N] ≦ 0.002 der Ru F e-Ni based alloy, a maximum particle size of the niobium nitride observed in the tissue section A high-strength low-thermal-expansion Fe-Ni-based alloy characterized by being less than 0.5 µm. 平均結晶粒径がJIS G 0551による粒度番号にて10以上であることを特徴とする請求項1または2に記載の高強度低熱膨張Fe−Ni系合金。The high-strength low-thermal-expansion Fe-Ni-based alloy according to claim 1 or 2 , wherein the average crystal grain size is 10 or more as a grain size number according to JIS G 0551. 質量%にて、Mn:0.10%以下であることを特徴とする請求項1ないしのいずれかに記載の高強度低熱膨張Fe−Ni系合金。The high-strength low-thermal-expansion Fe-Ni-based alloy according to any one of claims 1 to 3 , wherein Mn is 0.10% or less in mass%. 質量%にて、B:0.004%以下であることを特徴とする請求項1ないしのいずれかに記載の高強度低熱膨張Fe−Ni系合金。The high-strength low-thermal-expansion Fe-Ni-based alloy according to any one of claims 1 to 4 , wherein B: 0.004% or less by mass%. 請求項1ないしのいずれかに記載のFe−Ni系合金よりなることを特徴とするシャドウマスク。A shadow mask comprising the Fe-Ni alloy according to any one of claims 1 to 5 . 請求項1ないしのいずれかに記載のFe−Ni系合金よりなることを特徴とするリードフレーム。A lead frame comprising the Fe-Ni-based alloy according to any one of claims 1 to 5 .
JP2000076563A 2000-03-17 2000-03-17 High strength low thermal expansion Fe-Ni alloy, shadow mask, lead frame Expired - Fee Related JP3542024B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000076563A JP3542024B2 (en) 2000-03-17 2000-03-17 High strength low thermal expansion Fe-Ni alloy, shadow mask, lead frame
EP01106170A EP1134300A3 (en) 2000-03-17 2001-03-13 Fe-Ni alloy
US09/810,176 US6592810B2 (en) 2000-03-17 2001-03-19 Fe-ni alloy having high strength and low thermal expansion, a shadow mask made of the alloy, a braun tube with the shadow mask, a lead frame made of the alloy and a semiconductor element with lead frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000076563A JP3542024B2 (en) 2000-03-17 2000-03-17 High strength low thermal expansion Fe-Ni alloy, shadow mask, lead frame

Publications (2)

Publication Number Publication Date
JP2001262278A JP2001262278A (en) 2001-09-26
JP3542024B2 true JP3542024B2 (en) 2004-07-14

Family

ID=18594284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000076563A Expired - Fee Related JP3542024B2 (en) 2000-03-17 2000-03-17 High strength low thermal expansion Fe-Ni alloy, shadow mask, lead frame

Country Status (1)

Country Link
JP (1) JP3542024B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10258356B3 (en) * 2002-12-12 2004-05-27 Thyssenkrupp Vdm Gmbh Use of an iron-nickel-cobalt alloy for shadow masks and their frames in flat monitors and TV screens
DE102006005252B4 (en) * 2006-02-02 2010-10-28 Thyssenkrupp Vdm Gmbh Molded part made of an iron-nickel-cobalt alloy
WO2022244701A1 (en) 2021-05-17 2022-11-24 日鉄ケミカル&マテリアル株式会社 Ferrous alloy foil, manufacturing method therefor, and component using same

Also Published As

Publication number Publication date
JP2001262278A (en) 2001-09-26

Similar Documents

Publication Publication Date Title
US6592810B2 (en) Fe-ni alloy having high strength and low thermal expansion, a shadow mask made of the alloy, a braun tube with the shadow mask, a lead frame made of the alloy and a semiconductor element with lead frame
JP5082112B2 (en) Ni-base alloy material excellent in strength, workability and creep characteristics at room temperature, and its production method
EP0489932B1 (en) Iron-nickel alloy
JP3150831B2 (en) High Young's modulus low thermal expansion Fe-Ni alloy
JP3542024B2 (en) High strength low thermal expansion Fe-Ni alloy, shadow mask, lead frame
JP4172011B2 (en) Ni-based alloy with excellent oxidation resistance, high-temperature strength and hot workability
JP2870399B2 (en) Fe-Ni-based alloy sheet and Fe-Ni-Co-based alloy sheet for color picture tube with excellent processability
JP2004217947A (en) HIGH STRENGTH AND LOW THERMAL EXPANSION Fe-Ni BASED ALLOY, AND SHADOW MASK
JP3286119B2 (en) Aluminum alloy foil and method for producing the same
JP2001303200A (en) HIGH-STRENGTH LOW-THERMAL-EXPANSION Fe-Ni ALLOY, AND SHADOW MASK AND CATHODE-RAY TUBE USING THE MASK, AND LEAD FRAME AND SEMICONDUCTOR DEVICE USING THE FRAME
JP2002038237A (en) Fe-Ni BASED ALLOY SHEET
JP3353321B2 (en) Method for producing Fe-Ni alloy sheet for shadow mask excellent in press formability and Fe-Ni alloy sheet for shadow mask excellent in press formability
JPH11269609A (en) Fe-ni series alloy thin sheet for electronic parts
JP2614395B2 (en) Method for producing thin sheet of Fe-Ni-based electronic material having excellent shrink resistance
JP3322370B2 (en) High strength and high etching shadow mask material and method of manufacturing shadow mask
JP3101199B2 (en) High-strength low-thermal-expansion Fe-Ni-based alloy material excellent in punchability and method for producing the same
JP2781336B2 (en) Fe-Ni-based alloy for shadow mask excellent in blackening property and method for producing the same
JPH09268348A (en) Fe-ni alloy sheet for electronic parts and its production
JPH06184701A (en) Fe-ni alloy sheet for shadow mask
JP3073734B1 (en) Method of manufacturing Fe-Ni alloy material for shadow mask
JP3871150B2 (en) Method for producing Fe-Ni alloy thin plate for electronic member
JP3363689B2 (en) Shadow mask material excellent in press formability and method of manufacturing shadow mask
JP2000265250A (en) LOW THERMAL EXPANSION Fe-Ni ALLOY SHEET AND SHADOW MASK AND COLOR PICTURE TUBE USING THE SAME
JP3737055B2 (en) Manufacturing method of Al alloy plate for automobile body and Al alloy having excellent strength and ductility
JP3326897B2 (en) Fe-Ni alloy thin plate for shadow mask

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040325

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees