JP2797835B2 - High-strength Fe-Ni-Co alloy thin plate excellent in corrosion resistance and repeated bending characteristics, and method for producing the same - Google Patents

High-strength Fe-Ni-Co alloy thin plate excellent in corrosion resistance and repeated bending characteristics, and method for producing the same

Info

Publication number
JP2797835B2
JP2797835B2 JP4137589A JP13758992A JP2797835B2 JP 2797835 B2 JP2797835 B2 JP 2797835B2 JP 4137589 A JP4137589 A JP 4137589A JP 13758992 A JP13758992 A JP 13758992A JP 2797835 B2 JP2797835 B2 JP 2797835B2
Authority
JP
Japan
Prior art keywords
cold rolling
present
less
strength
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4137589A
Other languages
Japanese (ja)
Other versions
JPH05306436A (en
Inventor
正 井上
清 鶴
智良 大北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP4137589A priority Critical patent/JP2797835B2/en
Publication of JPH05306436A publication Critical patent/JPH05306436A/en
Application granted granted Critical
Publication of JP2797835B2 publication Critical patent/JP2797835B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は耐食性、繰返し曲げ特性
に優れた高強度Fe−Ni−Co合金薄板およびその製造方法
に係り、高強度で耐食性および繰返し曲げ特性に優れた
ICリードフレーム用材料およびその好ましい製造方法
を提供しようとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength Fe-Ni-Co alloy thin plate having excellent corrosion resistance and repeated bending characteristics and a method for producing the same, and relates to a material for an IC lead frame having high strength and excellent corrosion resistance and repeated bending characteristics. And a preferred production method thereof.

【0002】[0002]

【従来の技術】近年における半導体の高集積化およびパ
ッケードの薄肉化に伴い、リードフレームは多ピン化、
薄肉化の傾向を呈しており、このためリードフレーム用
材料に関しても更なる高強度化が求められている。
2. Description of the Related Art In recent years, as the integration of semiconductors and the thickness of package have become thinner, lead frames have increased in number of pins.
It has a tendency to be thinner, and therefore, there is a demand for a higher strength of the lead frame material.

【0003】然して上記のような多ピン用Fe系高強度リ
ードフレーム材料としては、近時において特開平3-1663
40号公報が提案されている。即ちこの開示技術では、Fe
−Ni−Co系合金でのNi、Co量を制御し、かつ特定の加工
率による加工誘起マルテンサイト変態とその後の焼鈍で
逆変態オーステナイト相を析出させ、特定の比率で2相
組織とすることにより、リードフレームの各種特性、特
にハンダ性、メッキ性、低熱膨脹特性を損わずに高強度
化(HV で260以上、引張強さが80kgf/mm2 以上)
を達成するものである。
[0003] However, as the Fe-based high-strength lead frame material for multi-pin as described above, Japanese Patent Application Laid-Open No.
No. 40 has been proposed. That is, in the disclosed technology,
-To control the amount of Ni and Co in a Ni-Co alloy and to precipitate a reverse-transformed austenite phase by a work-induced martensitic transformation at a specific working ratio and subsequent annealing to form a two-phase structure at a specific ratio. the various characteristics of the lead frame, in particular solderability, plating resistance, high strength and low thermal expansion properties, without compromising (H V in 260 or more, a tensile strength of 80 kgf / mm 2 or higher)
Is to achieve.

【0004】[0004]

【発明が解決しようとする課題】上記のような従来の技
術では、HV =270〜380、引張強さ85〜117
kgf/mm2 、平均熱膨脹係数αRT-300=5.2〜8.5×10
-6/℃の特性を有し、かつ優れた銀メッキ性、ハンダ
性、隙間腐食性を合わせ有するが、下記に示すような問
題を依然として有していた。 (1)素材の耐食性に問題がある。 (2)繰返し曲げ特性(曲げ加工性)が劣る。 (3)HV 275以上の高強度材ではαRT-300は6.8×
10-6/℃以上の高い熱膨張係数となり、IC製造工程
でSiチップがリードフレームに実装される際の熱歪によ
りSiチップが破損する危険性が高い。
In the prior art as described above, H V = 270-380 and tensile strength 85-117.
kgf / mm 2 , average coefficient of thermal expansion α RT-300 = 5.2 to 8.5 × 10
-6 / ° C. and excellent silver plating properties, solderability and crevice corrosion, but still had the following problems. (1) There is a problem in the corrosion resistance of the material. (2) Poor repetitive bending characteristics (bending workability). (3) in the H V 275 or more high strength material alpha RT-300 is 6.8 ×
It has a high thermal expansion coefficient of 10 -6 / ° C or more, and there is a high risk that the Si chip will be damaged by thermal strain when the Si chip is mounted on a lead frame in an IC manufacturing process.

【0005】前記耐食性は本材料が、マルテンサイト+
オーステナイトの2相組織を呈し、かつ、オーステナイ
ト相は逆変態により形成された転位密度の低いオーステ
ナイト相が主であるため、転位密度が高いマルテンサイ
トおよび残留オーステナイトとの間で腐食が進行し易い
こととなり、著しく劣っていた。そして製品特性上、コ
イル製造後、スリット加工・リードフレームへの微細加
工等が施されるまでに、素材表面に点錆が発生し、著し
く重大な問題を起こしている。通常の42アロイ(Fe−
42wt%Ni)ではこのような問題は皆無であり、本素材
のようにNiが32.5%以下の低Ni合金であること、およ
び同一材料内で、転位密度の異なる金属相が共存するこ
とが、耐食性を劣化させた主因であると推察される。
[0005] The corrosion resistance is such that the material is martensite +
Since it has a two-phase structure of austenite, and the austenite phase is mainly an austenite phase having a low dislocation density formed by reverse transformation, corrosion easily progresses between martensite having a high dislocation density and residual austenite. And was significantly inferior. In terms of product characteristics, spot rust occurs on the material surface after the coil is manufactured and before slit processing or fine processing of the lead frame is performed, which causes a serious problem. Normal 42 alloy (Fe-
In the case of 42wt% Ni), there is no such a problem. It is a low-Ni alloy with 32.5% or less Ni as in this material, and metal phases with different dislocation densities coexist in the same material. Is presumed to be the main cause of deterioration in corrosion resistance.

【0006】繰返し曲げ特性も、前記した本材料の特
徴、すなわち、転位密度が高く、高い強度のマルテンサ
イトに対し、転位密度が低く、低い強度である逆変態オ
ーステナイトが多量に存在することによって劣化する。
[0006] The repetitive bending characteristics are also deteriorated by the above-mentioned characteristic of the present material, that is, the presence of a large amount of reverse transformed austenite having a low dislocation density and a low strength in contrast to martensite having a high dislocation density and a high strength. I do.

【0007】また、熱膨張特性も、更なる高強度化を意
図した場合、この技術で特徴とするような冷延時の加工
誘起変態によるマルテンサイト量の増加とともに損われ
るものである。更に、本技術で特徴としている熱膨張お
よび高強度のバランス化だけでは最近の高い強度、低い
熱膨張特性のニーズに即応できない。すなわち、平均熱
膨張α30-400 C が4−8×10-6/℃で強度は引張強
さ120kgf/mm2 以上を満たす、成分、組織範囲はこの
技術において求め得ない。
[0007] In addition, if the thermal expansion characteristic is intended to further increase the strength, the amount of martensite increases due to the work-induced transformation at the time of cold rolling, which is a feature of this technology, and is impaired. Furthermore, the balance between the thermal expansion and the high strength, which is a feature of the present technology, cannot respond immediately to the recent needs for high strength and low thermal expansion characteristics. That is, the average thermal expansion α 30-400 . When C is 4-8 × 10 −6 / ° C. and the strength satisfies the tensile strength of 120 kgf / mm 2 or more, the components and the structure range cannot be determined by this technique.

【0008】なお、最近のリードフレームに対する更な
る低コスト化の要望により、Agの薄メッキ化の傾向が強
まり、本技術でみられるAgメッキ厚(3μm)よりも薄
メッキ化が進んでおり、このような要望に対しては、本
技術で特徴とする合金においてもAgメッキ性の問題が生
じているのが現状である。さらに本合金のハンダ性も耐
候性の面では前記の特開平3-166340において、高い性能
が達成されているが、ぬれ性の面では未だ改善された技
術は見られていない。
[0008] In recent years, there has been a demand for further cost reduction of lead frames, and the tendency of thinning of Ag has been intensified, and the thinning of the Ag plating thickness (3 μm) seen in the present technology has been advanced. At present, there is a problem of Ag plating property in the alloys characterized by the present technology in response to such a demand. Furthermore, the present alloy has achieved high performance in terms of solderability and weather resistance in the above-mentioned Japanese Patent Application Laid-Open No. 3-166340, but has not yet seen any improved technique in terms of wettability.

【0009】[0009]

【課題を解決するための手段】本発明は上記したような
従来技術における課題を解消することについて検討を重
ね、この種Fe−Ni−Co系合金における組成を特定化する
と共に組織を特定することにより、その目的を有効に達
成し、又その好ましい製造方法を確立することに成功し
たものであって、以下の如くである。
SUMMARY OF THE INVENTION The present invention has been studied to solve the above-mentioned problems in the prior art, and specifies the composition and the structure of this type of Fe-Ni-Co alloy. As a result, the object has been effectively achieved, and a preferable production method has been successfully established, as follows.

【0010】 wt%で、Ni:27〜30%,Co:5〜
18%,Mn:0.10〜3.0%,Si:0.10%以下であっ
て、Ni,CoおよびMnの含有量はCo:10%未満では、6
3.5%≦2Ni+Co+Mn≦65.0%であり、Co:10%以
上では、69.5%≦2Ni+Co+Mn≦72.5%の関係を満
足し、C:0.020〜0.070%,N:0.010%以
下,H:1.0ppm 以下,S:0.0030%以下,P:0.
003%以下,O:0.0040%以下,Cr:0.05%以
下,Mo:0.01〜1.0%を含有し、残部Feおよび不可避
的不純物から成り、更に組織中のオーステナイト量が3
0〜90%、結晶粒度がNo. 8以上の整粒であることを
特徴とした耐食性、繰返し曲げ特性に優れた高強度Fe−
Ni−Co合金薄板。
In wt%, Ni: 27-30%, Co: 5-5
18%, Mn: 0.10 to 3.0%, Si: 0.10% or less, and the content of Ni, Co and Mn is less than 10% for Co: 6%.
3.5% ≦ 2Ni + Co + Mn ≦ 65.0%, Co: 10% or more satisfies the relationship of 69.5% ≦ 2Ni + Co + Mn ≦ 72.5%, C: 0.020-0.070%, N : 0.010% or less, H: 1.0 ppm or less, S: 0.0030% or less, P: 0.
003% or less, O: 0.0040% or less, Cr: 0.05% or less, Mo: 0.01 to 1.0%, the balance consisting of Fe and unavoidable impurities. 3
0-90%, high-strength Fe- with excellent corrosion resistance and repeated bending characteristics characterized in that the grain size is No. 8 or more.
Ni-Co alloy thin plate.

【0011】 前記の成分に加え、B,Nb,Ti,Z
r,Ta,VおよびWの1種または2種以上を合計で0.0
1〜0.50%含有し、かつ請求項1の組織を有すること
を特徴とした耐食性、繰返し曲げ特性に優れた高強度Fe
−Ni−Co合金薄板。
[0011] In addition to the above components, B, Nb, Ti, Z
One or more of r, Ta, V and W are 0.0 in total.
A high-strength Fe containing 1 to 0.50% and having the structure according to claim 1, having excellent corrosion resistance and repetitive bending characteristics.
-Ni-Co alloy sheet.

【0012】 30〜400℃の平均熱膨脹係数が
(4〜8)×10-6/℃、硬さがビッカース硬度
(HV ) で280以上、引張強さが85kgf/mm2 以上で
あることを特徴とする前記またはに記載の耐食性、
繰返し曲げ特性に優れた高強度Fe−Ni−Co合金薄板。
[0012] The average thermal expansion coefficient of 30 to 400 ° C. is (4~8) × 10 -6 / ℃ , Vickers hardness (H V) at least 280 hardness, the tensile strength is 85 kgf / mm 2 or more The corrosion resistance according to or above, which is characterized by:
High-strength Fe-Ni-Co alloy sheet with excellent repeated bending characteristics.

【0013】 前記の組成を有する合金の冷延素材
を1次冷延−1次焼鈍−2次冷延−2次焼鈍−3次冷延
−低温熱処理の工程で薄板を製造するに際し、1次冷延
率(CR1)を、60〜80%,1次焼鈍温度(T1)を、
700〜740℃,2次冷延率(CR2)を、75〜85
%,2次焼鈍温度(T2)を、700〜740℃,3次冷
延率(CR3)を、20〜70%,低温熱処理温度(T3)
を、400〜540℃,低温熱処理時間(t)を、0.5
〜60min.とすることを特徴とする耐食性, 繰返し曲げ
特性に優れた高強度Fe−Ni−Co合金薄板の製造方法。
[0013] In the production of a thin sheet of the cold rolled material of the alloy having the above composition in the steps of primary cold rolling, primary annealing, secondary cold rolling, secondary annealing, tertiary cold rolling and low temperature heat treatment, The cold rolling rate (CR 1 ) is 60 to 80%, the primary annealing temperature (T 1 ) is
700-740 ° C., secondary cold rolling reduction (CR 2 ) is 75-85.
%, The secondary annealing temperature (T 2 ) is 700 to 740 ° C., the third cold rolling reduction (CR 3 ) is 20 to 70%, and the low temperature heat treatment temperature (T 3 ).
At 400 to 540 ° C. and a low temperature heat treatment time (t) of 0.5
A method for producing a high-strength Fe-Ni-Co alloy sheet having excellent corrosion resistance and repeated bending characteristics, characterized in that the thickness is 60 to 60 min.

【0014】 前記の組成を有する合金の冷延素材
を1次冷延−1次焼鈍−2次冷延−2次焼鈍−3次冷延
−低温熱処理の工程で薄板を製造するに際し、1次冷延
率(CR1)を、60〜80%,1次焼鈍温度(T1)を、
700〜740℃,2次冷延率(CR2)を、75〜85
%,2次焼鈍温度(T2)を、700〜740℃,3次冷
延率(CR3)を、20〜70%,低温熱処理温度(T3)
を、400〜540℃,低温熱処理時間(t)を、0.5
〜60min.とすることを特徴とする耐食性、繰返し曲げ
特性に優れた高強度Fe−Ni−Co合金薄板の製造方法。
In the production of a thin sheet of the alloy cold-rolled material having the above-described composition in the steps of primary cold rolling, primary annealing, secondary cold rolling, secondary annealing, tertiary cold rolling and low temperature heat treatment, The cold rolling rate (CR 1 ) is 60 to 80%, the primary annealing temperature (T 1 ) is
700-740 ° C., secondary cold rolling reduction (CR 2 ) is 75-85.
%, The secondary annealing temperature (T 2 ) is 700 to 740 ° C., the third cold rolling reduction (CR 3 ) is 20 to 70%, and the low temperature heat treatment temperature (T 3 ).
At 400 to 540 ° C. and a low temperature heat treatment time (t) of 0.5
A method for producing a high-strength Fe-Ni-Co alloy thin plate having excellent corrosion resistance and repeated bending characteristics, characterized in that the thickness is 60 min.

【0015】[0015]

【作用】上記したような本発明について、その合金の化
学成分限定理由をwt%(以下単に%という)により説明
すると、本発明で意図する低熱膨脹特性、高強度で優れ
た繰返し曲げ特性および耐食性を得るには組織中のオー
ステナイト量、特に残留オーステナイト量を適正に制御
することが必要であって、このためにはCo,Ni,Mn,S
i,C,N量の適正化が必要であって以下の如くであ
る。
In the present invention as described above, the reasons for limiting the chemical components of the alloy will be described in terms of wt% (hereinafter simply referred to as%). The low thermal expansion characteristics, high strength and excellent repeated bending characteristics and corrosion resistance intended in the present invention are as follows. It is necessary to properly control the amount of austenite in the structure, especially the amount of retained austenite, to obtain Co, Ni, Mn, S
It is necessary to optimize the amounts of i, C and N, as follows.

【0016】Siは、0.10%超では、マルテンサイト開
始温度が高く、オーステナイトが不安定となり、溶体化
処理時の冷却過程でマルテンサイト変態を起こし、以下
に述べるようなCo、Ni、Mn量の適正化が図られても、本
発明で意図する残留オーステナイト量が得られず、メッ
キ性も本発明のレベルが得られないため、0.10%を上
限とした。ハンダ性向上のためのより好ましいSi量は0.
05%以下である。
If Si exceeds 0.10%, the martensite initiation temperature is high, austenite becomes unstable, and martensite transformation occurs during the cooling process during the solution treatment, and Co, Ni, Mn as described below. Even if the amount was adjusted appropriately, the amount of retained austenite intended in the present invention could not be obtained, and the plating ability of the present invention could not be attained, so the upper limit was 0.10%. A more preferable Si amount for improving solderability is 0.
Not more than 05%.

【0017】Coは、5%未満または18%超では、熱膨
張係数が大きくなり、シリコンチップとの熱膨張整合性
を劣化させる。このためCo含有量は5〜18%の範囲に
定めた。
If Co is less than 5% or more than 18%, the coefficient of thermal expansion becomes large, and the thermal expansion matching with the silicon chip is deteriorated. For this reason, the Co content is set in the range of 5 to 18%.

【0018】Niは、27%未満または、30%超では、
熱膨張係数が大きくなり、シリコンチップとの熱膨張整
合性を劣化させる。このためNi含有量は27〜30%の
範囲とした。
If Ni is less than 27% or more than 30%,
The coefficient of thermal expansion is increased, and deteriorates the thermal expansion matching with the silicon chip. For this reason, the Ni content is in the range of 27 to 30%.

【0019】Mnは、3.0%超では、オーステナイトが安
定となり、加工誘起変態が生じ難くなる。また、0.1%
未満では、マルテンサイト開始温度が高く、オーステナ
イトが不安定となり、冷間加工時に加工誘起のマルテン
サイト変態が生じやすく、結果的に十分な残留オーステ
ナイト量が得られない。これらのことより、Mn量の上限
を3.0%、下限を0.1%とそれぞれ定めた。
If Mn is more than 3.0%, austenite becomes stable, and work-induced transformation hardly occurs. In addition, 0.1%
If it is less than 1, the martensite start temperature is high, austenite becomes unstable, and work-induced martensite transformation is likely to occur during cold working, and as a result, a sufficient amount of retained austenite cannot be obtained. From these facts, the upper limit of the Mn content was set to 3.0%, and the lower limit was set to 0.1%.

【0020】なお、本発明で意図する特性を得るには、
上記の単独の添加量の規定のみでなく、Ni,Co,Mnの総
量をCo量に応じて、制御しなければならない。すなわ
ち、Coが10%未満では、(2Ni+Co+Mn)が63.5%
より少ない場合に、またCoが10%以上では(2Ni+Co
+Mn)が69.5%より少ないと、マルテンサイト開始温
度が高く、オーステナイトが不安定となり、加工誘起の
マルテンサイト変態が生じやすく、結果的に十分な残留
オーステナイト量が得られない。また、Coが10%未満
で、(2Ni+Co+Mn)が65.0%を超えるか、Coが10
%以上で、(2Ni+Co+Mn)が72.5%を超えると、オ
ーステナイトが安定となり、加工誘起のマルテンサイト
変態が生じにくくなる。このため、Coが10%未満では
63.5%≦2Ni+Co+Mn≦65.0%、Coが10%以上で
は69.5%≦2Ni+Co+Mn≦72.5%となるよう、Ni,
Co,Mnを限定した。
In order to obtain the characteristics intended in the present invention,
The total amount of Ni, Co, and Mn must be controlled according to the amount of Co, as well as the above-described single amount. That is, if Co is less than 10%, (2Ni + Co + Mn) is 63.5%
In the case of less than 10% or more than 10% of Co (2Ni + Co
If (+ Mn) is less than 69.5%, the martensite onset temperature is high, austenite becomes unstable, and work-induced martensite transformation is likely to occur, with the result that a sufficient amount of retained austenite cannot be obtained. Further, when Co is less than 10% and (2Ni + Co + Mn) exceeds 65.0%, or when Co is 10% or less.
% Or more and (2Ni + Co + Mn) exceeds 72.5%, the austenite becomes stable, and it becomes difficult for the work-induced martensitic transformation to occur. For this reason, Ni, Ni is set so that 63.5% ≦ 2Ni + Co + Mn ≦ 65.0% when Co is less than 10%, and 69.5% ≦ 2Ni + Co + Mn ≦ 72.5% when Co is 10% or more.
Co and Mn are limited.

【0021】また、C、N、は本発明においては、加工
誘起のマルテンサイト変態を適正に制御し、かつ最終の
時効処理時で一層の高強度化を達成させるために必須な
元素である。即ち、まずCは、0.020%未満ではオー
ステナイトが不安定となり、加工誘起のマルテンサイト
変態が生じやすく、結果的に十分な残留オーステナイト
が得られないし、また、時効硬化による強度上昇も期待
できない。更に0.070%を超えると、逆にオーステナ
イトが安定となり、加工誘起のマルテンサイト変態が生
じ難くなると共にメッキ性が劣化する。このため、Cは
0.020%を下限とし、0.070%を上限として夫々定
めた。
In the present invention, C and N are indispensable elements for properly controlling the martensitic transformation induced by processing and achieving higher strength in the final aging treatment. That is, first, if C is less than 0.020%, austenite becomes unstable and martensitic transformation induced by processing is apt to occur. As a result, sufficient retained austenite cannot be obtained, and an increase in strength due to age hardening cannot be expected. . On the other hand, if the content exceeds 0.070%, austenite becomes stable, and it becomes difficult for martensitic transformation induced by processing to occur, and the plating properties deteriorate. Therefore, C is
The lower limit is 0.020% and the upper limit is 0.070%.

【0022】Nは、0.010%超では、オーステナイト
が安定となり、加工誘起のマルテンサイト変態が生じに
くくなり、更にメッキ性が劣化する。このため、Nは0.
010%を上限とする。なお、0.01%以下の範囲での
Nの添加は、時効硬化により強度を上昇させる効果があ
る。なお、Nが0.010%以下の範囲であれば、本発明
で意図する低熱膨張特性、高強度で優れた繰返し曲げ特
性、耐食性およびメッキ性を何れも得ることができる。
If N is more than 0.010%, austenite becomes stable, it becomes difficult to cause work-induced martensitic transformation, and the plating property further deteriorates. Therefore, N is 0.
010% is the upper limit. The addition of N in a range of 0.01% or less has the effect of increasing the strength by age hardening. When N is in the range of 0.010% or less, all of the low thermal expansion characteristics, high strength and excellent repeated bending characteristics, corrosion resistance and plating properties intended in the present invention can be obtained.

【0023】更に本発明においては、上記した、成分規
定に加えて、繰返し曲げ特性の向上のためには、S量、
O量の低減が必要である。また、本合金で本発明で意図
するメッキ性の更なる向上のためには、H,S,P,O
およびCrの低減が必須である。
Further, in the present invention, in addition to the above-mentioned component definition, in order to improve the repetitive bending characteristics, the S content,
It is necessary to reduce the amount of O. Further, in order to further improve the plating property intended in the present invention with this alloy, H, S, P, O
And the reduction of Cr are essential.

【0024】すなわち、S、Oは非金属介在物の形成を
通じて、本合金では繰返し曲げ特性やメッキ性に悪影響
を及ぼす元素である。Sが0.0030%を超えると、繰
返し曲げ特性が劣化し、メッキ性も本発明で意図するレ
ベルが得られないため、0.0030%を上限とした。な
おハンダ性のためのより好ましいS量は0.0010%以
下である。
That is, S and O are elements which adversely affect the repetitive bending characteristics and the plating properties of the present alloy through the formation of nonmetallic inclusions. If S exceeds 0.0030%, the repeated bending property deteriorates, and the plating property cannot be at the level intended in the present invention. Therefore, the upper limit is 0.0030%. The more preferable S content for solderability is 0.0010% or less.

【0025】Oは、0.0040%を超えると、本合金で
は繰返し曲げ特性が劣化し、またメッキ性も本願で意図
するレベルが得られないため、0.0040%を上限とし
た。ハンダ性のためのより好ましいO量は0.0020%
以下である。
If O exceeds 0.0040%, the alloy is deteriorated in repeated bending characteristics and the plating property cannot attain the level intended in the present application. Therefore, the upper limit is 0.0040%. More preferable O content for solderability is 0.0020%
It is as follows.

【0026】S、Oの存在による繰返し曲げ特性の劣化
する機構は、本合金の場合、曲げ破断した界面に、多数
のSあるいはOが検出される非金属介在物が見られてい
たことから、これらの介在物を起点とした割れの促進が
考えられる。
The mechanism of the deterioration of the repeated bending characteristics due to the presence of S and O is that in the case of the present alloy, a large number of nonmetallic inclusions in which S or O is detected were found at the interface where the bending was broken. It is conceivable to promote cracks starting from these inclusions.

【0027】さらに、本発明合金において、メッキ性を
本発明で意図するレベルにするためには、上記したO、
Sの低減に加えて、H、P、およびCrの低減が必須であ
る。即ち、先ずPは、本合金鋼帯の熱処理時に表面に偏
析し、メッキ性を劣化させる。このPが0.003%を超
えると本発明で意図するメッキ性が得られなくなるの
で、0.003%を上限とした。ハンダ性のためのより好
ましいP量は0.001%以下である。
Further, in the alloy of the present invention, the above-mentioned O,
In addition to the reduction of S, the reduction of H, P, and Cr is essential. That is, first, P segregates on the surface during heat treatment of the present alloy steel strip, and deteriorates the plating property. If this P exceeds 0.003%, the plating property intended in the present invention cannot be obtained, so the upper limit is 0.003%. A more preferred P content for solderability is 0.001% or less.

【0028】Crは、本合金の鋼帯の熱処理時に表面に強
固な酸化膜を形成し、メッキ性を劣化させる。Crが0.0
5%を超えると、本発明で意図するメッキ性が得られな
くなるので、0.05%を上限とした。ハンダ性のための
より好ましいCr量は0.02%以下である。
Cr forms a strong oxide film on the surface during heat treatment of the steel strip of the present alloy, and deteriorates the plating property. Cr is 0.0
If it exceeds 5%, the plating properties intended in the present invention cannot be obtained, so the upper limit was made 0.05%. A more preferable Cr content for solderability is 0.02% or less.

【0029】Hは、本発明合金のメッキ性に対して大き
な影響を及ぼす元素である。即ちHは、本合金の溶製時
において不可避的に混入し、その量は従来技術で、1.0
ppmを超え、場合によっては4〜5ppm 程度も残存して
いたもので、このガスがIC製造過程でのAgスポットメ
ッキ後のダイボンデングの加熱時に、放出され、メッキ
層と下地合金(リードフレーム材料)の界面に移動し、
“フクレ”と呼ばれるメッキ不良となってしまう。この
現象はAgのメッキ層が比較的厚い従来の3μm程度の場
合には、メッキ層の強度の点から、問題とはなっていな
かったが、最近のAg薄メッキ化の傾向により、2μm以
下といったメッキ厚も一般的となりつつあり、このよう
なAgメッキ厚では、Agメッキ層の強度が、Hのガス圧力
よりも小さくなってしまい、上記した“フクレ”の問題
が顕在化してきた。また前記従来レベルのHを含有した
この種合金にハンダ付けする場合でもハンダのぬれ性が
劣っているという問題点があった。
H is an element that has a large effect on the plating properties of the alloy of the present invention. That is, H is inevitably mixed during the melting of the present alloy, and the amount is 1.0 in the prior art.
ppm, and in some cases about 4 to 5 ppm remained. This gas was released when the die bonding was heated after Ag spot plating in the IC manufacturing process, and the plating layer and the base alloy (lead frame material) To the interface of
Plating failure called "swelling" results. This phenomenon was not a problem from the viewpoint of the strength of the plating layer when the thickness of the Ag plating layer was relatively thick, which was about 3 μm in the related art. The plating thickness is also becoming general. With such an Ag plating thickness, the strength of the Ag plating layer becomes smaller than the gas pressure of H, and the above-mentioned problem of “swelling” has become apparent. Further, even when soldering to this kind of alloy containing the conventional level of H, there is a problem that the wettability of the solder is inferior.

【0030】上記したようなHの極く微量存在によるメ
ッキ性への悪影響は従来の42アロイやコバールといっ
たオーステナイト単相のものに比較して本発明合金のよ
うにマルテンサイト(α′)を含むものにおいては特に
明確化する。
The adverse effect on the plating property due to the presence of a very small amount of H as described above includes martensite (α ') as in the alloy of the present invention as compared with the conventional austenitic single phase such as 42 alloy and Kovar. In particular, clarify.

【0031】上記したHが1.0ppm を超えると、斯かる
合金において本発明の意図するようなメッキ性が得られ
なくなるためこれを上限とした。なお本発明で規定する
このようなレベルのH量を得るには溶製時の真空脱ガス
方法最適化が必要である。即ち見掛けの水素分圧を低下
させるため本発明合金では脱ガス時の圧力を0.1Torr以
下の高真空度を達成することや、底吹き希釈Arガス量を
増加させるなどの方法を採ることが好ましい。
If the above-mentioned H exceeds 1.0 ppm, the plating property as intended by the present invention cannot be obtained in such an alloy, so that the upper limit is set. In order to obtain such a level of H as defined in the present invention, it is necessary to optimize the vacuum degassing method during melting. That is, in order to reduce the apparent hydrogen partial pressure, in the alloy of the present invention, a method such as achieving a high vacuum degree of 0.1 Torr or less at the time of degassing or increasing the amount of the bottom blow diluted Ar gas may be employed. preferable.

【0032】本発明で意図する低熱膨張特性、高強度で
優れた繰返し曲げ特性およびメッキ性を確保しつつ、耐
食性を向上させるためには、Moの適量添加が必須であ
る。Mo量が0.01%未満であると耐食性の向上が図れ
ず、一方1.0%を超えると、本発明で意図する熱膨張特
性およびメッキ性が損なわれる。以上よりMoの添加量
は、0.01〜1.0%と定めた。
In order to improve the corrosion resistance while securing the low thermal expansion characteristics, high strength and excellent repeated bending characteristics and plating properties intended in the present invention, it is essential to add an appropriate amount of Mo. If the Mo content is less than 0.01%, the corrosion resistance cannot be improved, while if it exceeds 1.0%, the thermal expansion characteristics and plating properties intended in the present invention are impaired. From the above, the addition amount of Mo is determined to be 0.01 to 1.0%.

【0033】本発明合金においては、組織制御のため、
C量が従来合金に比べて高いため、このCが結晶粒界や
相境界に存在すると耐食性は劣化しやすい。Moは耐食性
が極部的に劣化する結晶粒界や、オーステナイトとマル
テンサイトの相境界に粒界偏析や濃化を通じて、耐食性
を改善していると考えられる。
In the alloy of the present invention, for controlling the structure,
Since the C content is higher than that of the conventional alloy, the corrosion resistance is liable to be deteriorated if this C exists at the crystal grain boundary or the phase boundary. It is considered that Mo improves corrosion resistance through grain boundaries where corrosion resistance is extremely deteriorated and grain boundary segregation and concentration at the phase boundary between austenite and martensite.

【0034】本発明においては上記したMoに加えて、
B,Nb,Ti,Zr,Ta,VおよびWの1種または2種以上
を合計で0.01〜0.50%含有することにより、本合金
の耐食性を本発明で意図する他の特性を劣化させること
なく、更に向上せしめる。この場合の添加量が0.01%
未満だと耐食性の更なる向上がみられず、一方0.5%を
超えると、本発明で意図する熱膨張特性およびメッキ性
が得られなくなる。これらのことから、耐食性をより高
める添加量として、0.01〜0.50%を定めた。
In the present invention, in addition to Mo described above,
By containing one or more of B, Nb, Ti, Zr, Ta, V, and W in a total amount of 0.01 to 0.50%, the corrosion resistance of the alloy is improved by other properties intended in the present invention. It can be further improved without deterioration. In this case, the added amount is 0.01%
If it is less than 0.5%, no further improvement in corrosion resistance is observed, while if it exceeds 0.5%, the thermal expansion characteristics and plating properties intended in the present invention cannot be obtained. From these facts, 0.01 to 0.50% was determined as an addition amount for further improving the corrosion resistance.

【0035】また、最終の組織は、オーステナイト相
(残留オーステナイト相および逆変態オーステナイト相
を意味する。以下同じ)、加工誘起マルテンサイト相で
あるが、このオーステナイトが30%未満であると、本
発明で意図する熱膨張特性が得られない。また、このオ
ーステナイト相が90%を超え、または逆変態オーステ
ナイトが20%を超えると本発明で意図する合金の強度
が得られないため、オーステナイト相は30%以上、9
0%以下とし、かつ逆変態オーステナイトは20%以下
とした。
The final structures are an austenite phase (meaning a retained austenite phase and a reverse transformed austenite phase; the same applies hereinafter) and a work-induced martensite phase. Does not provide the intended thermal expansion characteristics. If the austenite phase exceeds 90% or the reverse transformation austenite exceeds 20%, the strength of the alloy intended in the present invention cannot be obtained.
0% or less, and the reverse transformation austenite was 20% or less.

【0036】なお、本発明でいう残留オーステナイトと
は、次のとおりである。本発明においては、焼鈍後のオ
ーステナイト相は冷間圧延により、その一部が加工誘起
変態して、マルテンサイトとなり、他の部分が未変態の
ままオーステナイトとして残留する。このオーステナイ
トのことを残留オーステナイトという。また、逆変態オ
ーステナイトとは、前記の加工誘起変態したマルテンサ
イトが、最終の熱処理時に、オーステナイトに逆変態し
たものを意味する。然して、本発明におけるオーステナ
イト量とは、前記の残留オーステナイトと逆変態オース
テナイトの総和のことである。
The retained austenite in the present invention is as follows. In the present invention, a part of the austenite phase after annealing is cold-rolled, part of which undergoes work-induced transformation to become martensite, and the other part remains untransformed as austenite. This austenite is called retained austenite. In addition, the term “reverse transformed austenite” means that the above-mentioned work-induced transformed martensite is reverse transformed into austenite during the final heat treatment. However, the amount of austenite in the present invention is the sum of the above-mentioned retained austenite and reverse transformed austenite.

【0037】なお、本発明でのオーステナイト相の量
(%)は、以下に示すようなX線回折強度から求めた。
残留オーステナイト相の量(%)は、低温熱処理前の値
であり、逆変態オーステナイト量(%)は低温熱処理後
のオーステナイト量と残留オーステナイト量の差であ
る。
The amount (%) of the austenite phase in the present invention was determined from the following X-ray diffraction intensity.
The amount (%) of the retained austenite phase is a value before the low-temperature heat treatment, and the inverse transformed austenite amount (%) is the difference between the amount of the austenite after the low-temperature heat treatment and the amount of the retained austenite.

【0038】[0038]

【数1】 (Equation 1)

【0039】さて、本合金の繰返し曲げ特性を更に向上
するためには、上記した成分規定に加えて、最終の組織
結晶粒径の制御が重要である。本発明者らは成分および
最終の組織のオーステナイト相の量が本発明規定内の合
金で、結晶粒度と繰返し曲げ特性の関係を調べた。その
結果、結晶粒度がNo.8以上の整粒で繰返し曲げ特性が4
回以上と優れたレベルを示すことを見い出した。このこ
とから、本発明においては、優れた繰返し曲げ特性が得
られる結晶粒度の範囲としてNo.8以上を定めた。なお、
整粒組織とは結晶粒度No.7以下の粗粒を含まない組織を
意味する。
In order to further improve the repetitive bending characteristics of the present alloy, it is important to control the final grain size of the structure in addition to the above-mentioned components. The present inventors have investigated the relationship between the grain size and the repeated bending characteristics of the alloys having the components and the amount of the austenite phase in the final structure within the range specified in the present invention. As a result, the repetitive bending characteristics were 4 with the grain size of No. 8 or more.
It has been found to show an excellent level of times or more. From this, in the present invention, No. 8 or more was determined as the range of the crystal grain size at which excellent repetitive bending characteristics were obtained. In addition,
The sized structure means a structure that does not contain coarse particles having a crystal grain size of No. 7 or less.

【0040】次に、本発明の合金の製造方法において、
上記した組織(オーステナイト量,結晶粒度)を得るた
めには、冷延素材を溶体化処理することなく、冷延と焼
鈍を2回繰返し、次に冷延を行ない、低温熱処理を施す
という工程を採り、かつ、各工程での条件の最適化が必
要である。なお、本発明における冷延素材は、熱延鋼帯
または溶鋼から直接に冷延素材を鋳造するストリップキ
ャスティング、またはストリップキャスト法により製造
された鋼帯を熱間にて軽圧下することにより得た鋼帯を
意味する。
Next, in the method for producing an alloy of the present invention,
In order to obtain the above structure (austenite amount, crystal grain size), a process of repeating cold rolling and annealing twice, then performing cold rolling and performing low temperature heat treatment without subjecting the cold rolled material to solution treatment. It is necessary to take and optimize the conditions in each step. In addition, the cold-rolled material in the present invention was obtained by strip casting, in which a cold-rolled material was cast directly from a hot-rolled steel strip or molten steel, or a steel strip produced by a strip casting method, which was hot-pressed and lightly reduced. Means steel strip.

【0041】つまり、1次冷延率(CR1)、2次冷延率
(CR2)、1次冷延後および2次冷延率の焼鈍温度(T
1)、3次冷延率(CR3)、低温熱処理温度(T3)および
熱処理時間(t)を各々以下の数2のようにすることに
より本発明の目的とする組織を的確に得ることができ
る。
That is, the primary cold rolling rate (CR 1 ), the secondary cold rolling rate (CR 2 ), the annealing temperature after the primary cold rolling and the secondary cold rolling rate (T
1 ) By properly setting the tertiary cold rolling rate (CR 3 ), the low temperature heat treatment temperature (T 3 ), and the heat treatment time (t) as shown in the following equation (2), the target structure of the present invention can be accurately obtained. Can be.

【0042】[0042]

【数2】 CR1 :60〜80% T1 :700〜740℃ CR2 :75〜85% T2 :700〜740℃ CR3 :20〜70% T3 :400〜540℃ t:0.5〜60minCR 1 : 60 to 80% T 1 : 700 to 740 ° C. CR 2 : 75 to 85% T 2 : 700 to 740 ° C. CR 3 : 20 to 70% T 3 : 400 to 540 ° C. t: 0. 5-60min

【0043】すなわち、CR1 が60%未満かつ/また
はCR2 が75%未満であると、最終の組織が結晶粒度
No.8未満の粗粒組織となり、本発明で意図する繰返し曲
げ特性が得られない。一方CR1 が80%超かつ/また
はCR2 が85%超となると最終の組織が結晶粒度No.7
以下の粗粒を含む混粒組織となり、本発明で意図する繰
返し曲げ特性が得られない。これらのことからCR1
よびCR2 はそれぞれ、CR1 :60〜80%、C
2 :75〜85%と定めた。
That is, if CR 1 is less than 60% and / or CR 2 is less than 75%, the final structure is
A coarse grain structure of less than No. 8 was obtained, and the repeated bending characteristics intended in the present invention could not be obtained. On the other hand, when CR 1 exceeds 80% and / or CR 2 exceeds 85%, the final structure has a grain size of No. 7
A mixed grain structure containing the following coarse grains is obtained, and the repeated bending characteristics intended in the present invention cannot be obtained. Each CR 1 and CR 2 from these things, CR 1: 60~80%, C
R 2 : 75 to 85%.

【0044】1次冷延および2次冷延後の焼鈍温度は7
00〜740℃とすることが必要である。即ち、この焼
鈍温度が700℃未満であると、焼鈍後で完全な再結晶
組織が得られず、焼鈍温度以外の製造条件が本発明の規
定値内であっても、最終の組織が結晶粒度No.7以下の粗
粒を含む混粒組織となり、本発明で意図するような繰返
し曲げ特性が得られない。また、焼鈍温度が740℃を
超えると、焼鈍後の結晶粒度がNo.7以下の粗粒組織とな
り、焼鈍温度以外の製造条件が本発明の規定範囲内であ
っても最終の組織が結晶粒度No.7以下の粗粒でかつ混粒
組織となり、本発明で意図する如き、繰返し曲げ特性が
得られない。
The annealing temperature after the first cold rolling and the second cold rolling is 7
It is necessary to set it to 00 to 740 ° C. That is, if the annealing temperature is lower than 700 ° C., a complete recrystallized structure cannot be obtained after annealing, and even if the manufacturing conditions other than the annealing temperature are within the specified values of the present invention, the final structure has a grain size. A mixed grain structure containing coarse grains of No. 7 or less is not obtained, and the repeated bending characteristics as intended in the present invention cannot be obtained. If the annealing temperature exceeds 740 ° C., the grain size after annealing becomes a coarse grain structure of No. 7 or less, and even if the manufacturing conditions other than the annealing temperature are within the specified range of the present invention, the final structure is the grain size. No. 7 or less coarse grains and a mixed grain structure, and the repeated bending characteristics as intended in the present invention cannot be obtained.

【0045】以上より、本合金において、最終の組織が
結晶粒度No.8以上の整粒組織が得られる焼鈍条件とし
て、焼鈍温度を700〜740℃と定めた。
As described above, in the present alloy, the annealing temperature was set at 700 to 740 ° C. as an annealing condition for obtaining a grain-size structure having a final grain size of No. 8 or more.

【0046】以上のような工程を経た材料の組織、機械
的性質および熱膨張特性の制御は、最終冷間圧延(3次
冷延)で圧下率の適正化および適切な低温熱処理により
付与される。即ち、図1には後述する発明合金No.1でC
1 、CR2 、T1 、T2 が本発明規定内の材料の最終
冷延まま、および低温焼鈍後の機械的性質(引張性質、
繰返し曲げ特性、硬度)、オーステナイト量、熱膨張係
数と最終冷間圧延率の関係を示すが、この図1から、低
温熱処理前の冷延率が20%未満では、本発明で意図す
る強度、および硬度が得られない。一方、冷延率で70
%超では、本発明で意図する強度および硬度は得られて
いるものの繰返し曲げ特性および熱膨張係数に関して本
発明で意図するレベルが得られていない。なお、冷延率
が20%以上では、残留オーステナイト量は90%以下
であり、70%以上では30%以下になる。低温処理後
の逆変態オーステナイト量は冷延率70%で5%であ
り、また冷延率80%では7%である。
Control of the structure, mechanical properties, and thermal expansion properties of the material that has undergone the above-described steps is provided by optimizing the rolling reduction and appropriate low-temperature heat treatment in the final cold rolling (third cold rolling). . In other words, FIG.
When R 1 , CR 2 , T 1 , and T 2 are the final cold-rolled materials and the mechanical properties after low-temperature annealing (tensile properties,
The relationship between the repeated bending characteristics, hardness), the amount of austenite, the coefficient of thermal expansion, and the final cold rolling reduction is shown. From FIG. 1, when the cold rolling reduction before the low-temperature heat treatment is less than 20%, the strength, And hardness cannot be obtained. On the other hand, the cold rolling rate is 70
%, The strength and hardness intended in the present invention are obtained, but the levels intended in the present invention with respect to the repeated bending characteristics and the coefficient of thermal expansion are not obtained. In addition, when the cold rolling reduction is 20% or more, the amount of retained austenite is 90% or less, and when it is 70% or more, it becomes 30% or less. The amount of reverse transformed austenite after the low temperature treatment is 5% at a cold rolling reduction of 70%, and is 7% at a cold rolling reduction of 80%.

【0047】以上のような技術的関係からして、本発明
で意図する強度、硬度、繰返し曲げ特性、および熱膨張
係数が得られるオーステナイト量は30〜90%であ
り、このオーステナイト量が得られる冷延率として20
〜70%をそれぞれ定めた。
From the above technical relationships, the amount of austenite at which the strength, hardness, cyclic bending characteristics, and coefficient of thermal expansion intended in the present invention are obtained is 30 to 90%, and this amount of austenite is obtained. 20 as cold rolling rate
7070% respectively.

【0048】なお、本発明において、図1に示すように
上記した最終冷延の後の適切な低温焼鈍は、強度を変化
させることなく、熱膨張特性を向上させ、かつ繰返し曲
げ特性を向上させる。
In the present invention, as shown in FIG. 1, appropriate low-temperature annealing after the final cold rolling described above improves the thermal expansion characteristics and the repeated bending characteristics without changing the strength. .

【0049】この熱処理は、400℃未満かつ/または
0.5分未満であると、十分な特性の向上が得られず、一
方、540℃超かつ/または60min 超の場合では合金
内に逆変態オーステナイトが20%を超えて生成し、本
発明で意図する強度が得られない。この逆変態オーステ
ナイトは、他の金属相(残留オーステナイトおよび加工
誘起マルテンサイト)に比べて、転位密度が低く、この
相の存在により、繰返し曲げ特性、耐食性が劣化してし
まう。これらのことより、優れた繰返し曲げ特性および
耐食性を示す低温熱処理条件として次式のように定め
た。
The heat treatment is performed at a temperature lower than 400 ° C. and / or
If the time is less than 0.5 minutes, sufficient improvement in properties cannot be obtained, while if it exceeds 540 ° C. and / or exceeds 60 minutes, reverse-transformed austenite is formed in the alloy in excess of 20%. The intended strength cannot be obtained. This reverse-transformed austenite has a lower dislocation density than other metal phases (retained austenite and work-induced martensite), and the presence of this phase deteriorates repeated bending characteristics and corrosion resistance. Based on these facts, low-temperature heat treatment conditions exhibiting excellent repeated bending characteristics and corrosion resistance were determined as follows.

【0050】[0050]

【数3】T3 :400〜540℃ t:0.5〜30minT 3 : 400 to 540 ° C. t: 0.5 to 30 min

【0051】然して本発明においては逆変態によるオー
ステナイトが20%以下の範囲で含有されてもよいが、
この場合において該逆変態オーステナイトは強度、繰り
返し曲げ加工性および耐食性を劣化させないように、均
一且つ微細に分散させる必要がある。
In the present invention, the austenite by the reverse transformation may be contained in the range of 20% or less.
In this case, the inverse transformed austenite needs to be uniformly and finely dispersed so as not to deteriorate the strength, the repeated bending workability and the corrosion resistance.

【0052】上記したような合金の製造方法において
は、合金の組成に応じて、本発明規定値内で、適切に条
件が選択されることにより、より優れた特性(強度、繰
返し曲げ特性、熱膨張特性等)が付与される。
In the method for producing an alloy as described above, by selecting conditions appropriately within the specified value of the present invention according to the composition of the alloy, more excellent characteristics (strength, repeated bending characteristics, heat Expansion properties).

【0053】なお、α30-400 C (30℃〜400℃の
平均熱膨張係数)、硬度、引張り強さについては、パッ
ケージ組立工程、および使用条件を検討した結果、α
30-400 C は(4〜8)×10-6/℃、硬度HV ≧28
0、引張り強さ85kgf/mm2 以上で十分に使用に耐えら
れるものであることより、前記のような特性値を本発明
範囲に定めた。
Note that α 30-400 . As for C (average coefficient of thermal expansion from 30 ° C. to 400 ° C.), hardness and tensile strength, as a result of studying the package assembling process and use conditions, α
30-400 . C is (4-8) × 10 −6 / ° C., hardness H V ≧ 28
0, since the tensile strength is 85 kgf / mm 2 or more, which can sufficiently withstand use, the above-mentioned characteristic values are set in the range of the present invention.

【0054】[0054]

【実施例】本発明によるものの具体的な実施例について
より仔細を説明すると、以下の如くである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific examples according to the present invention will be described in more detail as follows.

【0055】実施例1 その表1に示す化学成分を有する本発明合金および比較
合金について真空溶解炉にて溶解、鋳造を経た鋼塊を分
塊圧延、熱間圧延、脱スケール・表面疵取りを行ない、
板厚2.5mmの冷延素材を得た。
Example 1 The ingots of the present invention and comparative alloys having the chemical components shown in Table 1 were melted and cast in a vacuum melting furnace, and subjected to slab rolling, hot rolling, descaling and descaling and surface flaw removal. Do,
A cold-rolled material having a thickness of 2.5 mm was obtained.

【0056】[0056]

【表1】 [Table 1]

【0057】上記のようにして得られた冷延素材は、以
降、1次冷延(圧下率60%)→焼鈍(730℃×2mi
n)→2次冷延(圧下率75%)→焼鈍(720℃×2mi
n)→3次冷延(圧下率60%)→低温熱処理(500℃
×10min)の一連の処理を施し板厚0.10mmの合金薄板
を得た。又このようにして得られた各合金板について、
次の表2,表3に示すような各特性値について調査し
た。
The cold-rolled material obtained as described above is then subjected to primary cold-rolling (rolling reduction 60%) → annealing (730 ° C. × 2 mi)
n) → Secondary cold rolling (75% reduction) → Annealing (720 ° C x 2mi)
n) → Third cold rolling (60% reduction) → Low temperature heat treatment (500 ℃
X 10 min) to obtain an alloy thin plate having a thickness of 0.10 mm. Also, for each alloy plate obtained in this way,
Each characteristic value as shown in the following Tables 2 and 3 was investigated.

【0058】[0058]

【表2】 [Table 2]

【0059】[0059]

【表3】 [Table 3]

【0060】なお前記表2において、そのオーステナイ
ト量は前記したようなX線回折の手法で求めた。また表
3のAgメッキ性は、前記合金薄板を溶剤脱脂−電解脱脂
−酸処理後、厚さ0.5μmのCuストライクメッキを行な
い、その上に厚さ2μmのAgメッキを施し、450℃×
5min 、大気中で加熱し、メッキ層のフクレの発生の有
無を50倍に拡大して調べた。
In Table 2, the amount of austenite was determined by the X-ray diffraction technique as described above. The Ag plating property in Table 3 is as follows. The alloy thin plate is subjected to solvent degreasing, electrolytic degreasing, and acid treatment, and then subjected to Cu strike plating with a thickness of 0.5 μm, followed by Ag plating with a thickness of 2 μm, and 450 ° C.
The plating layer was heated in the air for 5 min, and the presence or absence of blisters on the plating layer was investigated by magnifying 50 times.

【0061】表3のハンダ性は前記合金薄板上に1.5μ
m厚さのスズメッキを施した素材を用いメニスコグラフ
法により、ハンダ組成Sn60%、Pb40%、ハンダ浴温
度235℃±5℃、ハンダ浴浸漬深さ2mm、ハンダ浴浸
漬時間5秒の条件でハンダ浴中に浸漬し、評価は、ハン
ダ濡れ時間t2 で行なった。また耐食性は前記合金薄板
について、JIS Z 2371による塩水噴霧試験を100時間
実施し、その後の点錆発生頻度を調べた。
The solderability shown in Table 3 was 1.5 μm on the alloy thin plate.
Using a tin-plated material having a thickness of m and a meniscograph method, the solder composition is set to 60% Sn, 40% Pb, solder bath temperature 235 ° C. ± 5 ° C., solder bath immersion depth 2 mm, and solder bath immersion time 5 seconds. It was immersed in the sample and evaluated at a solder wetting time t 2 . The corrosion resistance was evaluated by conducting a salt spray test according to JIS Z 2371 on the alloy thin plate for 100 hours, and then examining the frequency of rust spots.

【0062】前記表2,表3の結果から、試料No.1〜N
o.7の各材は、本発明の成分規定を満たすものであり、
本発明で意図する組織、機械的性質、熱膨張特性、メッ
キ性および耐食性を示している。特に試料No.1〜No.3お
よびNo.7は試料No.4〜No.6に比べて、Si、P、S、O、
Crがより好ましいレベルまで低減されたものであり、ハ
ンダ性がより優れたレベルを示している。また、試料N
o.1、No.3〜No.7はMoに加えて、本発明規定内で、更な
る耐食性向上元素が添加されたものであり、それらの元
素が添加されていない試料No.2に比較して点錆発生頻度
が低く、耐食性がより優れていることが明らかである。
From the results shown in Tables 2 and 3, the samples No. 1 to N
Each material of o.7 satisfies the component rules of the present invention,
It shows the texture, mechanical properties, thermal expansion properties, plating properties and corrosion resistance intended in the present invention. In particular, Samples No. 1 to No. 3 and No. 7 have higher Si, P, S, O,
Cr has been reduced to a more preferable level, indicating a more excellent level of solderability. Sample N
o.1, No. 3 to No. 7 are elements in which, in addition to Mo, additional corrosion resistance improving elements are added within the scope of the present invention, compared to Sample No. 2 in which those elements are not added. It is clear that the frequency of spot rust occurrence is low and the corrosion resistance is more excellent.

【0063】これらの発明例に比べて、試料No.8は、そ
れぞれC量が本発明規定の上限を超えるものでありオー
ステナイト量が本発明規定上限を超えており、所要の強
度が得られておらず、メッキ性も劣っている。また試料
No.9はC量および2Ni+Co+Mn量が本発明下限未満の場
合でありオーステナイト量が本発明規定未満となってお
り所要の熱膨張特性が得られていない。
Compared to these invention examples, in sample No. 8, the C content exceeded the upper limit specified in the present invention, the austenite amount exceeded the upper limit specified in the present invention, and the required strength was obtained. No plating property is inferior. Also sample
No. 9 is a case where the amount of C and the amount of 2Ni + Co + Mn are less than the lower limit of the present invention, and the amount of austenite is less than the specified value of the present invention, and the required thermal expansion characteristics are not obtained.

【0064】更に、試料No.10 はSi量が本発明規定の上
限を超えており、また2Ni+Co+Mn量が本発明規定下限
未満であり、オーステナイトは本発明規定の下限未満と
なっておりα30-400 C は8×10-6/℃を超え、熱膨
張特性は劣っており、メッキ性も劣っている。また、試
料No.11 はMn量が本発明規定の上限を超えるものであ
り、オーステナイト量は本発明規定の上限を超えてお
り、所要の強度が得られていない。一方、試料No.12 は
Mn量が本発明規定の下限未満のものであり、オーステナ
イトは本発明規定の下限未満となっており、所要の熱膨
張特性が得られていない。
[0064] Furthermore, sample No.10 is Si amount is above the upper limit specified by the present invention, also less than 2Ni + Co + Mn amount present invention defines the lower limit, the austenite has become less than the lower limit of the present invention defined alpha 30- 400 . C exceeds 8 × 10 −6 / ° C., and has poor thermal expansion characteristics and poor plating properties. In sample No. 11, the amount of Mn exceeded the upper limit specified in the present invention, and the amount of austenite exceeded the upper limit specified in the present invention, and the required strength was not obtained. On the other hand, sample No. 12
The Mn content is less than the lower limit specified in the present invention, and austenite is lower than the lower limit specified in the present invention, and the required thermal expansion characteristics are not obtained.

【0065】試料No.13 、No.14 、No.15 、No.16 およ
びNo.17 はそれぞれ、P量、S量、N量、O量、Cr量が
本発明規定の上限を超えるものであり、いずれもメッキ
性が本発明例に比べて劣っている。特に試料No.14 およ
びNo.16 では繰返し曲げ特性が他の比較例に比べて、更
に劣っている。
Samples No. 13, No. 14, No. 15, No. 16 and No. 17 each had a P content, S content, N content, O content and Cr content exceeding the upper limits specified in the present invention. In any case, the plating properties are inferior to those of the examples of the present invention. Particularly, in samples No. 14 and No. 16, the repeated bending characteristics are further inferior to those of the other comparative examples.

【0066】試料No.19 は、H量が本発明規定上限を超
えるものであり、メッキ性が本発明例に比べて劣ってい
る。また試料No.20 、No.21 は2Ni+Co+Mn量が本発明
規定の上限を超えるものであり、いずれの場合もオース
テナイト量は本発明規定の上限を超えており、所要の強
度が得られていない。また、Si量も本発明規定の上限を
超えておりメッキ性が劣っている。
In sample No. 19, the amount of H exceeds the upper limit specified in the present invention, and the plating property is inferior to those of the examples of the present invention. In Samples Nos. 20 and 21, the amount of 2Ni + Co + Mn exceeded the upper limit specified in the present invention. In each case, the amount of austenite exceeded the upper limit specified in the present invention, and the required strength was not obtained. Also, the Si content exceeds the upper limit specified in the present invention, and the plating property is inferior.

【0067】とくに、試料No.20 、No.21 は特開平3-16
6340に見られる合金を調べたものであるが、いずれの材
料も本発明で意図するAgメッキ性、ハンダ性、耐食性が
得られておらず、従来技術のみでは、本発明で意図する
効果は達成されていないことは明らかである。また、試
料No.18 はMoが本発明規定未満の場合であり、錆発生頻
度は本発明例に比べて著しく高く、耐食性が劣ってお
り、本発明においては、Moの適量添加が必須であること
が理解される。
In particular, samples No. 20 and No. 21 are disclosed in
Although the alloys found in 6340 were examined, none of the materials achieved the Ag plating properties, solderability, and corrosion resistance intended in the present invention, and the effects intended in the present invention were achieved with the prior art alone. Obviously not. Sample No. 18 is a case where Mo is less than the present invention, the frequency of rust generation is remarkably higher than that of the present invention, the corrosion resistance is inferior, and in the present invention, addition of an appropriate amount of Mo is essential. It is understood that.

【0068】以上のように、本発明で意図する組織、機
械的性質、熱膨張特性、メッキ性および耐食性を得るに
は、本発明の成分規定を満たした時のみに達成されるこ
とが、この実施例で明かとなった。
As described above, in order to obtain the texture, mechanical properties, thermal expansion properties, plating properties, and corrosion resistance intended in the present invention, it can be achieved only when the component specifications of the present invention are satisfied. It became clear in the examples.

【0069】実施例2 表1の試料No.1の成分を有する発明合金について、真空
溶解炉にて、溶解、鋳造を経た鋼塊を分塊圧延、熱間圧
延、脱スケール・表面疵取りを行ない、冷延素材を得
た。以降次の表4に示す一連の処理を施し、板厚0.10
mmの合金薄板を得て、表5,表6に示すような特性値に
ついて、実施例1と同じ手法にて調査した。
Example 2 An ingot having the composition of sample No. 1 in Table 1 was subjected to slab-rolling, hot rolling, descaling, and descaling of a steel ingot that had been melted and cast in a vacuum melting furnace. Performed to obtain cold rolled material. Thereafter, a series of processing shown in the following Table 4 was performed, and the sheet thickness was 0.10.
An alloy thin plate having a thickness of 1 mm was obtained, and the characteristic values as shown in Tables 5 and 6 were investigated in the same manner as in Example 1.

【0070】[0070]

【表4】 [Table 4]

【0071】[0071]

【表5】 [Table 5]

【0072】[0072]

【表6】 [Table 6]

【0073】前記表4〜表6から、試料No.22 〜No.29
は本発明で規定した製造条件をすべて満たしており、本
発明で意図する組織、機械的性質、熱膨張特性、メッキ
性および耐食性を示している。これに対して試料No.30
、No.34 はそれぞれCR1 、CR2 が本発明規定の上
限を超える場合であり、組織は混粒となっており、所要
の繰返し曲げ特性が得られていない。また、試料No.31
、No.35 はそれぞれCR1 、CR2 が本発明規定の下
限未満の場合であり、組織は結晶粒度No. が本発明規定
の下限を下まわるものであり、所要の繰返し曲げ特性が
得られていない。
From the above Tables 4 to 6, samples No. 22 to No. 29
Satisfies all the manufacturing conditions defined in the present invention, and shows the structure, mechanical properties, thermal expansion properties, plating properties and corrosion resistance intended in the present invention. On the other hand, sample No. 30
, No. 34 are cases where CR 1 and CR 2 respectively exceed the upper limit specified in the present invention, the structure is a mixed grain, and the required repeated bending characteristics are not obtained. In addition, sample No. 31
, No. 35 is the case where CR 1 and CR 2 are respectively less than the lower limit of the present invention, and the structure is such that the crystal grain size number is lower than the lower limit of the present invention, and the required repetitive bending characteristics can be obtained. Not.

【0074】更に、試料No.32 、No.36 はそれぞれ
1 、T2 が本発明規定の上限を超えるものであり、組
織は混粒であり、結晶粒度No. が本発明規定の下限を下
まわるものであり、所要の繰返し曲げ特性が得られてい
ない。また、試料No.33 、No.37はそれぞれT1 、T2
が本発明規定の下限未満の場合であり、組織は混粒とな
っており、所要の繰返し曲げ特性が得られていない。
Further, in Samples No. 32 and No. 36, T 1 and T 2 respectively exceeded the upper limit specified in the present invention, the structure was mixed, and the grain size No. was lower than the lower limit specified in the present invention. The required bending characteristics were not obtained. Samples No. 33 and No. 37 are T 1 and T 2 respectively.
Is less than the lower limit of the present invention, the structure is a mixed grain, and the required repetitive bending characteristics are not obtained.

【0075】以上のように、1次および2次の冷延率お
よび焼鈍温度の制御が組織の結晶粒度、整粒度のために
極めて重要であり、この制御により繰返し曲げ特性を向
上し得ることが理解される。
As described above, the control of the primary and secondary cold rolling rates and the annealing temperature is extremely important for the crystal grain size and the uniform grain size of the structure, and it can be seen that the control can improve the repeated bending characteristics. Understood.

【0076】更に、試料No.38 、No.39 はそれぞれ、C
3 が本発明規定の上限を超えるもの、下限未満のもの
である。前者は、オーステナイト量が本発明規定の下限
未満であり、所要の熱膨張特性、繰返し曲げ特性が得ら
れていない。また後者は、オーステナイト量が本発明規
定の上限を超えるものであり、所要の強度が得られてい
ない。
Further, Samples No. 38 and No.
R 3 exceeds the upper limit and less than the lower limit of the present invention. In the former, the amount of austenite is less than the lower limit specified in the present invention, and required thermal expansion characteristics and repetitive bending characteristics are not obtained. In the latter, the amount of austenite exceeds the upper limit specified in the present invention, and the required strength is not obtained.

【0077】試料No.40 は最終の熱処理が施されていな
いものであり、所要の繰返し曲げ特性が得られていな
い。また試料No.41 、No.43 は、それぞれT3 、tが本
発明規定の上限を超えるものであり、最終熱処理前の残
留オーステナイト量はいずれも40%であったが、No.4
1 は逆変態によるオーステナイトが20%生成されてお
り、またNo.43 では逆変態によるオーステナイトが11
%生成されていた。これらの材料では所要の強度、繰返
し曲げ特性が得られておらず、メッキ性および耐食性も
本発明例に比べて劣っている。更に試料No.42 、No.44
は、それぞれT3、tが本発明規定の下限未満のもので
あり、所要の繰返し曲げ特性を有していない。
Sample No. 40 was not subjected to the final heat treatment, and the required repetitive bending characteristics were not obtained. In Samples No. 41 and No. 43, T 3 and t exceeded the upper limits specified in the present invention, and the amount of retained austenite before the final heat treatment was 40%.
In No. 1, 20% of austenite was formed by the reverse transformation, and in No. 43, austenite by the reverse transformation was 11%.
% Had been produced. These materials do not have the required strength and repetitive bending characteristics, and are inferior in plating properties and corrosion resistance as compared with the examples of the present invention. Sample No.42, No.44
Has T 3 and t respectively less than the lower limits specified in the present invention, and does not have the required repeated bending characteristics.

【0078】以上の試料No.40 〜No.44 に見られるよう
に適切な最終熱処理の付与が本発明で意図する組織、機
械的性質、熱膨張特性、メッキ性および耐食性を得るの
に必要であることが理解される。
As can be seen from the above samples Nos. 40 to 44, it is necessary to provide an appropriate final heat treatment in order to obtain the structure, mechanical properties, thermal expansion properties, plating properties and corrosion resistance intended in the present invention. It is understood that there is.

【0079】また、試料No.45 は、特開平3-166340で特
徴とする製造方法を採った場合であるが、オーステナイ
ト量は本発明規定の上限を超え、組織は混粒で、結晶粒
度No. は本発明規定の上限を超えている。なお、オース
テナイト量は2次焼鈍前で29%であり、2次焼鈍で逆
変態オーステナイトが63%生成されていた。この材料
は、所要の強度、繰返し曲げ特性、メッキ性、耐食性は
本発明例に比べて劣っており、従来技術によっては、本
発明で意図する効果は達成されていないことは明らかで
ある。
Sample No. 45 is a case where the manufacturing method characterized in Japanese Patent Application Laid-Open No. 3-166340 was adopted. The amount of austenite exceeded the upper limit specified in the present invention, the structure was mixed grains, and the crystal grain size No. Exceeds the upper limit of the present invention. The amount of austenite was 29% before the secondary annealing, and 63% of reverse transformed austenite was generated by the secondary annealing. This material is inferior in required strength, repetitive bending characteristics, plating property, and corrosion resistance as compared with the examples of the present invention, and it is clear that the effects intended by the present invention have not been achieved by the conventional technology.

【0080】即ち、本発明によるものは、冷延素材にお
いて1000℃×1hrというような溶体化処理は施さな
いもので、この溶体化処理を省略することにより最終組
織の結晶粒度および整粒度の調整が可能となるものであ
る。
That is, according to the present invention, the cold-rolled material is not subjected to a solution treatment such as 1000 ° C. for 1 hour, and by omitting the solution treatment, the crystal grain size and the uniform grain size of the final structure can be adjusted. Is possible.

【0081】以上のように、本発明において目的とする
組織、機械的性質、熱膨脹特性、メッキ性および耐食性
を的確に得るには、本発明における製造条件の規定も重
要な要件である。
As described above, the definition of the production conditions in the present invention is also an important requirement in order to accurately obtain the target structure, mechanical properties, thermal expansion characteristics, plating properties and corrosion resistance in the present invention.

【0082】[0082]

【発明の効果】以上説明したような本発明によるとき
は、Fe−Ni−Co系の特定組成において多ピン薄板リード
フレームに必要な高強度を具備すると共に優れた繰返し
曲げ特性、所要の熱膨脹特性、メッキ性、耐食性などを
兼備した合金薄板を提供し、又前記組成の合金を熱延以
降の冷延、焼鈍条件や最終冷間加工および熱処理の最適
化によって最終組織およびオーステナイト量を制御して
適切に前記合金薄板を製造し得るものであって、工業的
にその効果の大きい発明である。
According to the present invention as described above, a high strength required for a multi-pin thin-plate lead frame with a specific composition of Fe-Ni-Co system, excellent repetitive bending characteristics, and required thermal expansion characteristics are obtained. Provide alloy thin plate having both plating property, corrosion resistance, etc., and control the final structure and austenite amount of alloy of the above composition by optimizing cold rolling after hot rolling, annealing conditions and final cold working and heat treatment. This is an invention capable of appropriately producing the alloy thin plate, and is industrially effective.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Fe−Ni−Co系合金の引張強さ、硬度、繰返し曲
げ特性、α30-400 C およびオーステナイト量と最終冷
延率の関係を示した図表である。
FIG. 1 shows tensile strength, hardness, cyclic bending characteristics, α 30-400 of an Fe—Ni—Co alloy . 3 is a table showing the relationship between C and austenite content and final cold rolling reduction.

【符号の説明】[Explanation of symbols]

前記図表において、ソリッドは低温熱処理後(500℃
×10min)、オープンは低温熱処理を示すものである。
In the above chart, the solid was subjected to a low-temperature heat treatment (500 ° C.).
× 10 min), open indicates low temperature heat treatment.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−65602(JP,A) 特開 平4−176844(JP,A) (58)調査した分野(Int.Cl.6,DB名) C22C 38/00 302 C21D 8/02 C21D 9/46────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-5-65602 (JP, A) JP-A-4-176844 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C22C 38/00 302 C21D 8/02 C21D 9/46

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 wt%で、Ni:27〜30%,Co:5〜1
8%,Mn:0.10〜3.0%,Si:0.10%以下であっ
て、Ni,CoおよびMnの含有量はCo:10%未満では、 63.5%≦2Ni+Co+Mn≦65.0% であり、Co:10%以上では、 69.5%≦2Ni+Co+Mn≦72.5% の関係を満足し、 C:0.020〜0.070%,N:0.010%以下,H:
1.0ppm 以下, S:0.0030%以下,P:0.003%以下,O:0.0
040%以下, Cr:0.05%以下,Mo:0.01〜1.0% を含有し、残部Feおよび不可避的不純物から成り、更に
組織中のオーステナイト量が30〜90%、結晶粒度が
No. 8以上の整粒であることを特徴とした耐食性、繰返
し曲げ特性に優れた高強度Fe−Ni−Co合金薄板。
(1) In wt%, Ni: 27 to 30%, Co: 5-1.
8%, Mn: 0.10-3.0%, Si: 0.10% or less, and when the content of Ni, Co and Mn is less than 10%, 63.5% ≦ 2Ni + Co + Mn ≦ 65. 0%, Co: 10% or more satisfies the following relationship: 69.5% ≦ 2Ni + Co + Mn ≦ 72.5%, C: 0.020 to 0.070%, N: 0.010% or less, H:
1.0 ppm or less, S: 0.0030% or less, P: 0.003% or less, O: 0.0
040% or less, Cr: 0.05% or less, Mo: 0.01 to 1.0%, the balance consisting of Fe and unavoidable impurities, the austenite content in the structure is 30 to 90%, and the crystal grain size is small.
A high-strength Fe-Ni-Co alloy sheet with excellent corrosion resistance and repetitive bending characteristics characterized by a grain size of No. 8 or more.
【請求項2】 請求項1の成分に加え、B,Nb,Ti,Z
r,Ta,VおよびWの1種または2種以上を合計で0.0
1〜0.50%含有し、かつ請求項1の組織を有すること
を特徴とした耐食性、繰返し曲げ特性に優れた高強度Fe
−Ni−Co合金薄板。
2. In addition to the components of claim 1, B, Nb, Ti, Z
One or more of r, Ta, V and W are 0.0 in total.
A high-strength Fe containing 1 to 0.50% and having the structure according to claim 1, having excellent corrosion resistance and repetitive bending characteristics.
-Ni-Co alloy sheet.
【請求項3】 30〜400℃の平均熱膨脹係数が(4
〜8)×10-6/℃、硬さがビッカース硬度(HV ) で
280以上、引張強さが85kgf/mm2 以上であることを
特徴とする請求項1または2に記載の耐食性、繰返し曲
げ特性に優れた高強度Fe−Ni−Co合金薄板。
3. An average coefficient of thermal expansion at 30 to 400 ° C. is (4)
~8) × 10 -6 / ℃, Vickers hardness (H V) at least 280 Hardness, claim tensile strength is characterized in that it is 85 kgf / mm 2 or more 1 or 2 corrosion resistance according to, repeated High strength Fe-Ni-Co alloy thin plate with excellent bending characteristics.
【請求項4】 請求項1の組成を有する合金の冷延素材
を1次冷延−1次焼鈍−2次冷延−2次焼鈍−3次冷延
−低温熱処理の工程で薄板を製造するに際し、 1次冷延率(CR1)を、60〜80%、 1次焼鈍温度(T1)を、700〜740℃、 2次冷延率(CR2)を、75〜85%、 2次焼鈍温度(T2)を、700〜740℃、 3次冷延率(CR3)を、20〜70%、 低温熱処理温度(T3)を、400〜540℃ 低温熱処理時間(t)を、0.5〜60min . とすることを特徴とする耐食性、繰返し曲げ特性に優れ
た高強度Fe−Ni−Co合金薄板の製造方法。
4. A thin sheet is produced from a cold-rolled material of the alloy having the composition of claim 1 in the steps of primary cold rolling, primary annealing, secondary cold rolling, secondary annealing, tertiary cold rolling and low temperature heat treatment. At this time, the primary cold rolling rate (CR 1 ) is 60 to 80%, the primary annealing temperature (T 1 ) is 700 to 740 ° C., the secondary cold rolling rate (CR 2 ) is 75 to 85%, 2 The secondary annealing temperature (T 2 ) is 700 to 740 ° C., the third cold rolling reduction (CR 3 ) is 20 to 70%, the low temperature heat treatment temperature (T 3 ) is 400 to 540 ° C. The low temperature heat treatment time (t) 0.5-60 min. A method for producing a high-strength Fe-Ni-Co alloy thin plate having excellent corrosion resistance and repeated bending characteristics.
【請求項5】 請求項2の組成を有する合金の冷延素材
を1次冷延−1次焼鈍−2次冷延−2次焼鈍−3次冷延
−低温熱処理の工程で薄板を製造するに際し、 1次冷延率(CR1)を、60〜80%、 1次焼鈍温度(T1)を、700〜740℃、 2次冷延率(CR2)を、75〜85%、 2次焼鈍温度(T2)を、700〜740℃、 3次冷延率(CR3)を、20〜70%、 低温熱処理温度(T3)を、400〜540℃、 低温熱処理時間(t)を、0.5〜60min . とすることを特徴とする耐食性、繰返し曲げ特性に優れ
た高強度Fe−Ni−Co合金薄板の製造方法。
5. A thin plate is produced from a cold rolled material of the alloy having the composition of claim 2 in the steps of primary cold rolling, primary annealing, secondary cold rolling, secondary annealing, tertiary cold rolling and low temperature heat treatment. At this time, the primary cold rolling rate (CR 1 ) is 60 to 80%, the primary annealing temperature (T 1 ) is 700 to 740 ° C., the secondary cold rolling rate (CR 2 ) is 75 to 85%, 2 Next annealing temperature (T 2 ): 700 to 740 ° C., third cold rolling reduction (CR 3 ): 20 to 70%, Low temperature heat treatment temperature (T 3 ): 400 to 540 ° C., Low temperature heat treatment time (t) From 0.5 to 60 min. A method for producing a high-strength Fe-Ni-Co alloy thin plate having excellent corrosion resistance and repeated bending characteristics.
JP4137589A 1992-05-01 1992-05-01 High-strength Fe-Ni-Co alloy thin plate excellent in corrosion resistance and repeated bending characteristics, and method for producing the same Expired - Fee Related JP2797835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4137589A JP2797835B2 (en) 1992-05-01 1992-05-01 High-strength Fe-Ni-Co alloy thin plate excellent in corrosion resistance and repeated bending characteristics, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4137589A JP2797835B2 (en) 1992-05-01 1992-05-01 High-strength Fe-Ni-Co alloy thin plate excellent in corrosion resistance and repeated bending characteristics, and method for producing the same

Publications (2)

Publication Number Publication Date
JPH05306436A JPH05306436A (en) 1993-11-19
JP2797835B2 true JP2797835B2 (en) 1998-09-17

Family

ID=15202244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4137589A Expired - Fee Related JP2797835B2 (en) 1992-05-01 1992-05-01 High-strength Fe-Ni-Co alloy thin plate excellent in corrosion resistance and repeated bending characteristics, and method for producing the same

Country Status (1)

Country Link
JP (1) JP2797835B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2733630B1 (en) * 1995-04-27 1997-05-30 Imphy Sa CONNECTING LEGS FOR ELECTRONIC COMPONENT
JP2004018961A (en) * 2002-06-18 2004-01-22 Jfe Steel Kk High-strength low-thermal-expansion alloy thin-sheet superior in strength and magnetic property, and manufacturing method therefor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04176844A (en) * 1990-07-23 1992-06-24 Hitachi Metals Ltd High strength lead frame material and its manufacture
JPH0565602A (en) * 1991-09-03 1993-03-19 Hitachi Metals Ltd High strength lead frame material and its production

Also Published As

Publication number Publication date
JPH05306436A (en) 1993-11-19

Similar Documents

Publication Publication Date Title
US6605163B2 (en) Process for manufacturing a strip made of an Fe-Ni alloy
TWI789871B (en) Manufacturing method of Wostian iron-based stainless steel strip
US5792286A (en) High-strength thin plate of iron-nickel-cobalt alloy excellent in corrosion resisitance, repeated bending behavior and etchability, and production thereof
JP2002266042A (en) Copper alloy sheet having excellent bending workability
US6692992B1 (en) Hardened Fe-Ni alloy for the manufacture of integrated circuit leaderframes and manufacturing process
US5026435A (en) High strength lead frame material and method of producing the same
JP3692222B2 (en) High-strength cold-rolled steel sheet and high-strength plated steel sheet with good geomagnetic shielding characteristics and manufacturing method thereof
JP2797835B2 (en) High-strength Fe-Ni-Co alloy thin plate excellent in corrosion resistance and repeated bending characteristics, and method for producing the same
JPH0718356A (en) Copper alloy for electronic equipment, its production and ic lead frame
JPH073403A (en) High strength fe-ni-co alloy sheet and production thereof
JP3410125B2 (en) Manufacturing method of high strength copper base alloy
US5246511A (en) High-strength lead frame material and method of producing same
JP3510445B2 (en) Fe-Ni alloy thin plate for electronic parts with excellent softening and annealing properties
JP2929891B2 (en) High strength Fe-Ni-Co alloy sheet having excellent corrosion resistance and repeated bending properties
JP2830472B2 (en) High-strength Fe-Ni-Co alloy thin plate excellent in corrosion resistance, repeated bending characteristics, and etching properties, and method for producing the same
US5147470A (en) High strength lead frame material and method of producing the same
JPH0826429B2 (en) High strength and low thermal expansion Fe-Ni alloy excellent in plating property, soldering property and cyclic bending property and method for producing the same
JP2614395B2 (en) Method for producing thin sheet of Fe-Ni-based electronic material having excellent shrink resistance
JP2550784B2 (en) High strength and low thermal expansion Fe-Ni-Co alloy excellent in plating property, soldering property and cyclic bending property, and method for producing the same
JPH07216510A (en) High strength lead frame material and its production
JP2501157B2 (en) High strength and low thermal expansion Fe-Ni alloy with excellent hot workability
JP2663777B2 (en) Fe-Ni alloy excellent in plating property and method for producing the same
JP3042273B2 (en) Method for producing Fe-Ni-based alloy thin plate for IC lead frame with excellent rust resistance
JPH09268348A (en) Fe-ni alloy sheet for electronic parts and its production
JP3299487B2 (en) Method for producing Fe-Ni alloy thin plate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees