JPH04176844A - High strength lead frame material and its manufacture - Google Patents

High strength lead frame material and its manufacture

Info

Publication number
JPH04176844A
JPH04176844A JP26469390A JP26469390A JPH04176844A JP H04176844 A JPH04176844 A JP H04176844A JP 26469390 A JP26469390 A JP 26469390A JP 26469390 A JP26469390 A JP 26469390A JP H04176844 A JPH04176844 A JP H04176844A
Authority
JP
Japan
Prior art keywords
phase
temperature
lead frame
austenite phase
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26469390A
Other languages
Japanese (ja)
Inventor
Shuichi Nakamura
秀一 中村
Kazu Sasaki
計 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Publication of JPH04176844A publication Critical patent/JPH04176844A/en
Priority to US07/946,794 priority Critical patent/US5246511A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PURPOSE:To manufacture a lead frame material improving strength by making the specific composition of Fe-Ni-Co series material the specific two-phase structure with a final cold-working and a final annealing. CONSTITUTION:An allay composed of, by wt.%, of <=0.05 C, 0.5-22 Co, 22-32.5 Ni, <=1.0 Mn, <=0.5 Si, 0.0001-0.05 B and/or Mg, and in the case of <12 Co, 27-32.5 Ni and in the case of >=12 Co, under satisfying the relation of 66<=2Ni+Co<=74, and further, 0.1-5.0 one or more kinds of Nb, Ti, Zr, Mo, V, W and Be and the balance Fe with impurities, is prepared. Solution treatment is executed to this alloy at austenitizing completing temp. or higher and successively, a part of the austenitic phase is transformed to strain induced martensite with 40-90% cold-working and further, the finish annealing 18 executed at the austenitizing completing temp. or lower to precipitate inverse transformation austenitic phase. This material is composed of two phase of the inverse transformation austenitic phase and the martenstic phase and the austenitic phase is made to be <=50% in the structure.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は従来のものより高強度の半導体装置用リードフ
レーム材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to lead frame materials for semiconductor devices that have higher strength than conventional materials.

〔従来の技術〕[Conventional technology]

近年、ロジック等の半導体装置の高容量、高集積化およ
びパッケージの薄肉化に伴い、リードフレームは多ビン
化、薄板化の傾向にある。このため、従来にも増して高
強度のリードフレーム材料が要求されている。
In recent years, as semiconductor devices such as logic devices have become higher in capacity and higher in integration, and packages have become thinner, there has been a tendency for lead frames to have more bins and become thinner. For this reason, higher strength lead frame materials are required than ever before.

これら多ビン用Fe系リードフレーム材料として、従来
Fe−42Ni、  Fe−29Ni−17Co(コバ
ール)が知られている。これらのF e−N i系およ
びFe−Ni−Co系の改良材の提案には、特開昭55
.−1.31155号あるいは種々強化元素を添加した
高強度Fe−Ni糸金合金提案があり、またFe−N1
−Co系の改良合金については、特開昭55〜1285
65号、特開昭57−82455号、特開昭61−62
51号、特公平1−817号、特公平1−15562号
、本願発明の出願人が先に提案した特開平1−6104
2号がある。
Conventionally, Fe-42Ni and Fe-29Ni-17Co (Kovar) are known as Fe-based lead frame materials for multiple bins. Proposals for improved materials for these Fe-Ni and Fe-Ni-Co systems were made in Japanese Patent Application Laid-Open No. 55
.. -1.31155 or a high-strength Fe-Ni thread alloy with the addition of various reinforcing elements, and Fe-N1
- Regarding improved Co-based alloys, please refer to JP-A-55-1285.
No. 65, JP-A-57-82455, JP-A-61-62
51, Japanese Patent Publication No. 1-817, Japanese Patent Publication No. 1-15562, and Japanese Patent Application Publication No. 1-6104, which was previously proposed by the applicant of the present invention.
There is number 2.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

多ビンリードフレームは、主に微細加工が可能なフォト
エツチング法で製造される。しかし、これら微細加工し
たF e−42N iまたはF e−29N 1−17
COの薄板多ビンリードフレームは、リードの強度不足
が原因でパッケージ組立、搬送、実装などの際に、反り
、曲がりなどリードのバラツキが起こり易く、また使用
中の衝撃で座屈するなど種々の問題があった。
Multi-bin lead frames are mainly manufactured using a photo-etching method that allows fine processing. However, these finely processed Fe-42N i or Fe-29N 1-17
CO's thin plate multi-bin lead frame is prone to warping, bending, and other variations in the leads during package assembly, transportation, and mounting due to lack of lead strength, and various problems such as buckling due to impact during use. was there.

Fe−Ni系あるいはFe−Ni−Co系合金の改良に
ついては、Si、Mn、Crを含有させて強化する試み
(特開昭55〜131155号)、あるいはその他の強
化元素による高強度化の提案、Fe−N1−Cc系合金
についての熱膨張に関するもの((イ)特開昭55〜1
′28565号、(ロ)特開昭57−82455号、(
ハ)4!開昭6176251号、(ニ)特公平1−81
7号、(ホ)特公平1−15562号、(へ)特開平1
−61042号)があるが、前者は主要元素の他に強化
元素を過剰に含有するため、表面酸化が起り易く、リー
ドフレームの主要特性であるハンダ性、メツキ性を著し
く劣化させる問題があり、また、後者のうち、(イ)以
外はいずれもリードフレームの強度を積極的に改善しよ
うとするものではない。なお、前記(イ)のものは、本
発明材料と強化機構を異にするものである。
Regarding the improvement of Fe-Ni-based or Fe-Ni-Co-based alloys, attempts have been made to strengthen them by incorporating Si, Mn, and Cr (Japanese Patent Application Laid-Open No. 131155/1983), or proposals to increase strength by using other strengthening elements. , relating to thermal expansion of Fe-N1-Cc alloys ((a) JP-A-1983-1
'28565, (b) JP-A-57-82455, (
c) 4! Kaisho No. 6176251, (d) Special Publication No. 1-81
No. 7, (e) Japanese Patent Publication No. 1-15562, (f) Japanese Patent Publication No. 1-15562.
-61042), but since the former contains an excessive amount of reinforcing elements in addition to the main elements, surface oxidation is likely to occur and there is a problem that the solderability and plating properties, which are the main characteristics of lead frames, are significantly deteriorated. Moreover, among the latter, none of the methods other than (a) are intended to actively improve the strength of the lead frame. Note that the material of (a) above has a reinforcing mechanism different from that of the material of the present invention.

〔課題を解決するための手段〕[Means to solve the problem]

そこで、本発明者は、常温でオーステナイト相が不安定
なFe−N1−Co系合金に着目して、組成および製造
条件について種々実験を行なった結果、特定の加工率に
よる加工誘起マルテンサイト変態とその後の焼鈍で逆変
態オーステナイト相を析出させて特定の比率で二相組織
とすることにより、リードフレームの各種特性、特にハ
ンダ性、メツキ性を損なわずに高強度化することができ
ることを見出した。
Therefore, the present inventors focused on Fe-N1-Co alloys whose austenite phase is unstable at room temperature, and conducted various experiments regarding the composition and manufacturing conditions. It was discovered that by precipitating the reversely transformed austenite phase during subsequent annealing to form a two-phase structure at a specific ratio, it was possible to increase the strength of the lead frame without impairing its various properties, especially its solderability and plating properties. .

しかしながら、マルテンサイト相からオーステナイト相
への逆変態は、温度に敏感であるため、強度の焼鈍温度
依存性が大きく、安定生産上問題が多い。そこで、本発
明者らはマルテンサイト相からオーステナイト相への逆
変態を利用するとともに固溶硬化あるいは析出強化を利
用することにより、ハンダ性、メツキ性、熱膨張特性を
損なうことなく、焼鈍温度依存性を緩和させ、高強度化
できることを見出した。
However, since the reverse transformation from the martensitic phase to the austenite phase is sensitive to temperature, the strength is highly dependent on the annealing temperature, which causes many problems in terms of stable production. Therefore, the present inventors have developed an annealing temperature-dependent method that utilizes the reverse transformation from martensitic phase to austenite phase, as well as solid solution hardening or precipitation strengthening. It was discovered that it is possible to reduce the properties and increase the strength.

一方、本発明が対象とするFe−Ni−Co糸の合金に
おいては、高温延性を改善するためにBとMgの1種ま
たは2種を合計で添加するとその効果が大きいことを見
出した。すなわち、少量のBとMgの1種または2種を
合計で添加することにより、大きな鋼塊からでも容易に
熱間加工ができるようになり、本発明の目的であるリー
ドフレーム材料のような薄い材料が歩留よく得られる。
On the other hand, in the Fe-Ni-Co yarn alloy targeted by the present invention, it has been found that adding one or both of B and Mg in total has a great effect in order to improve high-temperature ductility. In other words, by adding a small amount of one or both of B and Mg in total, even large steel ingots can be easily hot worked, and thin materials such as lead frame materials, which is the object of the present invention, can be easily worked. Materials can be obtained with good yield.

具体的には、本発明は重量%にて、G 0.05%以下
、Co 0.5〜22%、N i 22−32.5%M
n1.0%以下、Si 0.5%以下、BとMgの1種
または2種を合計で0.(100,L、−0,03%を
含有し、NiとCoの含有量は、Co 12%未満では
Ni 27−32.5%、’ Co 12%以上では6
6%≦ZNi+Co≦74%の関係を満足し、さらにN
b。
Specifically, in terms of weight percent, the present invention contains G 0.05% or less, Co 0.5-22%, Ni 22-32.5%M
n1.0% or less, Si 0.5% or less, and one or two of B and Mg in total of 0. (Contains 100,L, -0,03%, the content of Ni and Co is 27-32.5% for Co less than 12%, 6 for Co more than 12%)
Satisfies the relationship of 6%≦ZNi+Co≦74%, and further N
b.

Ti、、Zr、Mo、V、W、Beのいずれか1種また
は2種以上を0.1〜3.0%含有し、残部は不慧物を
除き実質的にFeからなり、さらに組織が逆変態オース
テナイト相(残留オーステナイト相を伴うことを得)お
よびマルテンサイト相の二相からなり、前記オーステナ
イト相が50%以上であることを特徴とする高強度リー
ドフレーム材料、ならびに上記の組成の合金を、オース
テナイト化終了温度以上の温度で溶体化処理し、次いで
40〜90%の冷間加工でオーステナイト相の一部を加
工誘起マルテンサイトに変態させ、さらにオーステナイ
ト化終了温度未満の温度で最終焼鈍して逆変態オーステ
ナイト相を析出させることを特徴とする高強度リードフ
レーム材料の製造方法である。
Contains 0.1 to 3.0% of one or more of Ti, Zr, Mo, V, W, and Be, with the remainder consisting essentially of Fe excluding impurities, and the structure is A high-strength lead frame material comprising two phases: a reversely transformed austenite phase (accompanied by a retained austenite phase) and a martensite phase, the austenite phase accounting for 50% or more, and an alloy having the above composition. is solution-treated at a temperature above the austenitization finish temperature, then a part of the austenite phase is transformed into strain-induced martensite by 40 to 90% cold working, and then final annealed at a temperature below the austenitization finish temperature. This is a method for producing a high-strength lead frame material, which is characterized by precipitating a reversely transformed austenite phase.

〔作用〕[Effect]

次に本発明の数値限定理由を述べる。 Next, the reason for limiting the numerical values of the present invention will be described.

Co含有量は、その約17%付近および約5%付近で熱
膨張係数を極小化するのに最適であり、0.5%より少
ないか、22%を越えると熱膨張係数が大きくなり、シ
リコンチップとの熱膨張整合性を劣化させる。このため
、Co含有量は、0.5〜22%の範囲に限定する。
The Co content is optimal for minimizing the coefficient of thermal expansion at around 17% and around 5%, and when it is less than 0.5% or over 22%, the coefficient of thermal expansion increases and silicon Degrades thermal expansion compatibility with the chip. Therefore, the Co content is limited to a range of 0.5 to 22%.

Ni含有量は、Co量との関係で決定される。The Ni content is determined in relation to the Co content.

Co 12%未満でNiが27%より少ないか、001
21以上で(2Ni十Co)が66%より少ないと、マ
ルテンサイト変態開始温度が高く、オーステナイトが不
安定となり、溶体化処理時の冷却過程でマルテンサイト
変態を起し、十分なオーステナイト量が得られない。ま
た、Co 12%未満でNiが32.5%を越えるか、
C012%以上で(2Ni+Co)が74%を越えると
、室温においてオーステナイト相が安定となり過ぎ、加
工誘起変態が生じにくくなる。このため、Co 12%
未満でN’i 27−32.5%、 Co 12%以上
で、66%≦2Ni十Co≦74%の関係を滴定するよ
うにNiを限定した。また、最適組成はマルテンサイト
開始温度がO”C以下になるようにNi、Co含有量な
調整することが重要である。
Co less than 12% and Ni less than 27% or 001
21 or more and (2Ni + Co) is less than 66%, the martensitic transformation start temperature is high, austenite becomes unstable, martensitic transformation occurs during the cooling process during solution treatment, and a sufficient amount of austenite is not obtained. I can't. Also, if Co is less than 12% and Ni is more than 32.5%,
When CO exceeds 12% and (2Ni+Co) exceeds 74%, the austenite phase becomes too stable at room temperature, making deformation-induced transformation difficult to occur. For this reason, Co 12%
Ni was titrated so that the relationship of 66%≦2Ni+Co≦74% was titrated when N'i was less than 27-32.5% and Co was 12% or more. Further, it is important to adjust the Ni and Co contents so that the martensite starting temperature becomes O''C or lower as for the optimum composition.

Nb、’ri、Zr、Mo、V、W、Beは、本発明合
金の固溶強化あるいは析出強化により基地を強化する元
素として重要である。本発明合金は、最終焼鈍の際の逆
変態オーステナイト相の析出により強化されるが、熱膨
張特性の点からオーステナイト量は多い方が望ましく、
このためには、最終焼鈍温度はできるだけ高くとる必要
がある。しかし、第1図の実線に示、すようにFe−N
i−Co系では、焼鈍温度の上昇とともに、機械的特性
が急激に低下する。このため、生産安定上から機械的特
性の焼鈍温度依存性を緩和することが望ましい。
Nb, 'ri, Zr, Mo, V, W, and Be are important elements that strengthen the matrix by solid solution strengthening or precipitation strengthening of the alloy of the present invention. The alloy of the present invention is strengthened by the precipitation of reversely transformed austenite phase during final annealing, but from the viewpoint of thermal expansion characteristics, it is desirable to have a large amount of austenite.
For this purpose, the final annealing temperature must be as high as possible. However, as shown by the solid line in Figure 1, Fe-N
In the i-Co system, the mechanical properties decrease rapidly as the annealing temperature increases. Therefore, from the viewpoint of production stability, it is desirable to reduce the dependence of mechanical properties on annealing temperature.

本発明は、これら固溶強化あるいは析出強化元素を添加
することで、第1図点線に示すように機械的特性の焼鈍
温度依存性を緩和することができ、さらに高温側の特性
を大幅に改善できることを見出したことによるものであ
る。
By adding these solid solution strengthening or precipitation strengthening elements, the present invention can alleviate the dependence of mechanical properties on annealing temperature, as shown by the dotted line in Figure 1, and further improve the properties on the high temperature side. This is because I discovered what I could do.

これらの強化元素の添加量が0.1%未満では、安定化
に効果がなく、3%を越えると表面酸化を促進し、ハン
ダ性、メツキ性を著しく損なう。また、これらの元素は
オーステナイト生成側に作用するので添加量が増えると
基質のオーステナイトが安定化し過ぎるため0.1〜3
%に限定する。
If the amount of these reinforcing elements added is less than 0.1%, there is no stabilizing effect, and if it exceeds 3%, surface oxidation is promoted and the solderability and plating properties are significantly impaired. In addition, these elements act on the austenite formation side, so if the amount added increases, the austenite in the matrix becomes too stable.
%.

Mnは脱酸剤として作用するが、1.0%を越えると熱
膨張係数を増大させ、また、ハンダ性、メツキ性を劣化
させるので1.0%以下に限定した。
Mn acts as a deoxidizing agent, but if it exceeds 1.0%, it increases the coefficient of thermal expansion and also deteriorates solderability and plating properties, so it is limited to 1.0% or less.

Siは脱酸剤として添加され、材料中に残存しない方が
望ましいが、0.5%までは熱膨張係数の極端な上昇や
、ハンダ性、メツキ性の極端な劣化は生じないので許容
できる。
Si is added as a deoxidizing agent, and it is preferable that it not remain in the material, but Si up to 0.5% is acceptable because it does not cause an extreme increase in the coefficient of thermal expansion or extreme deterioration of solderability and plating performance.

B、Mgは、熱間加工性向上のため添加され、1種また
は2種合計の添加量で0.0001%未満ではその効果
が少なく、0.03%を超えると逆に冷間加工時の延性
を低め、かつ素材エツチング性を劣化させるため、0.
0001〜0.03%に限定する。より好ましくは0.
01%以下である。
B and Mg are added to improve hot workability, and if the amount of one or both added amounts is less than 0.0001%, the effect will be small, and if it exceeds 0.03%, the effect will be reduced during cold working. 0.0 to lower ductility and deteriorate material etching properties.
0001-0.03%. More preferably 0.
01% or less.

Cは不純物であり、0.05%を越えると素材のエツチ
ング性を著しく劣化させるため、0.05%以下に限定
する。Cのより望ましい範囲は0.015%以下である
C is an impurity, and if it exceeds 0.05%, the etching properties of the material will deteriorate significantly, so it is limited to 0.05% or less. A more desirable range of C is 0.015% or less.

また、最終の組織は、溶体化処理での残留オーステナイ
ト相、加工誘起マルテンサイト相、そして最終焼鈍で析
出する逆変態オーステナイト相で決まるが、残留および
逆変態のオーステナイトが50%より少ないと熱膨張係
数が大きくなり、シリコンチップとの熱膨張整合性を劣
化させる。また、オーステナイト相が100%になる′
と基質の強度が著しく低下するため、組織は残留オース
テナイトと逆変態オーステナイトからなるオーステナイ
ト相およびマルテンサイト相の二相からなり、前記オー
ステナイト相の総和を50%以上に限定した。
In addition, the final structure is determined by the retained austenite phase during solution treatment, the deformation-induced martensite phase, and the reversely transformed austenite phase that precipitates during final annealing, but if the residual and reversely transformed austenite is less than 50%, thermal expansion The coefficient becomes large and the thermal expansion matching with the silicon chip deteriorates. Also, the austenite phase becomes 100%.
Since this significantly reduces the strength of the matrix, the structure consists of two phases: an austenite phase consisting of retained austenite and reverse transformed austenite, and a martensite phase, and the total amount of the austenite phase is limited to 50% or more.

なお、本発明におけるオーステナイト相の量(%)は、
後述の実施例にて説明するX線回折強度から求めた値と
する。
In addition, the amount (%) of austenite phase in the present invention is
The value is determined from the X-ray diffraction intensity, which will be explained in Examples below.

次に、本発明の材料の製造方法において、冷間加工前の
溶体化処理がオーステナイト化終了温度以下では、オー
ステナイト相が十分な量にならないため、溶体化処理温
度はオーステナイト化終了温度以上とする。ただし、好
ましくは、次工程で結晶粒を微細化する必要から、この
溶体化処理温度は950℃以下の温度とすることがより
好ましい。
Next, in the method for producing the material of the present invention, if the solution treatment before cold working is performed at a temperature below the austenitization end temperature, the austenite phase will not be in sufficient amount, so the solution treatment temperature is set at a temperature equal to or higher than the austenitization end temperature. . However, since it is necessary to refine the crystal grains in the next step, the solution treatment temperature is preferably 950° C. or lower.

冷間加工率は、40%より小さいと十分な量の加工誘起
マルテンサイト変態が起こらず、また、これが90%を
越えると素材異方性が強くなるため、40−90%に限
定する。
The cold working rate is limited to 40-90% because if it is less than 40%, a sufficient amount of deformation-induced martensitic transformation will not occur, and if it exceeds 90%, the anisotropy of the material will become strong.

さらに最終焼鈍温度は、これがオーステナイト化終了温
度を越えるとすべての加工誘起マルテンサイト相が逆変
態オーステナイトに変態し、2相組織による所望の析出
強化が得られないため、オーステナイト化終了温度未満
に限定する。
Furthermore, the final annealing temperature is limited to below the austenitization end temperature because if it exceeds the austenitization end temperature, all the deformation-induced martensite phase will transform into reverse transformed austenite, and the desired precipitation strengthening due to the two-phase structure cannot be obtained. do.

なお、αRT−s。。(室温〜300℃の平均熱膨張係
数)、硬さ、引張強さについては、パッケージ組立工程
、および使用環境を検討した結果、αに、■−3゜。は
(3−9) X 10” /”C1硬さHv≧260、
引張強さ80 kgf/ mm ”以上で十分に使用に
耐えつるものであると判断した。
In addition, αRT-s. . (Average coefficient of thermal expansion from room temperature to 300°C), hardness, and tensile strength were determined by considering the package assembly process and usage environment. is (3-9) X 10”/”C1 hardness Hv≧260,
It was judged that a tensile strength of 80 kgf/mm'' or more was sufficient to withstand use.

〔実施例〕〔Example〕

本発明材料を実施例により説明する。第1表に示す組成
の合金を真空誘導溶解炉で溶解、鋳造し、1100〜1
150℃の鍛造、熱間圧延で3mm厚さとし、さらに、
950℃×1時間(水冷)の溶体化処理後0.35調ま
で冷間圧延を施した。
The material of the present invention will be explained using examples. An alloy having the composition shown in Table 1 was melted and cast in a vacuum induction melting furnace, and
Forged at 150°C and hot rolled to a thickness of 3mm, and
After solution treatment at 950° C. for 1 hour (water cooling), cold rolling was performed to a tone of 0.35.

第2表に、上記それぞれの材′料を、0.35mn+j
Xさのまま750℃で溶体化処理し、次いで0.1Mま
で冷間圧延(71%)して→500〜650℃で最終焼
鈍を施す一連の処理を施した材料の各種特性を示す。な
お合金30’は、上記0.35sのN o、30の材料
をその標準製造工程により、0.1画厚みに仕上げた材
料である。
Table 2 shows each of the above materials at 0.35mm+j
Various properties of the material subjected to a series of treatments including solution treatment at 750° C. as in X, followed by cold rolling (71%) to 0.1 M and final annealing at 500 to 650° C. are shown. The alloy 30' is a material obtained by finishing the above-mentioned 0.35s No.30 material to a thickness of 0.1 stroke using the standard manufacturing process.

なお、オーステナイト相の量(%)は、以下により求め
た値である。
Note that the amount (%) of the austenite phase is a value determined as follows.

1丁 工y:ITu++++Irt2oo++11tzzo+
+Iy(3+n+Iγ+222+ITf+++1等はオ
ーステナイトのXM回折強度Ia=Iat++o++I
a(zoo)+Ia(2+++■α(1101等はマル
テンサイトのX線回折強度木表から、本発明の材料1〜
23および比較材料24〜29は、オーステナイト単相
(オーステナイト量100%)である従来材料30また
は30′に対して、前述のマルテンサイトとの混合相で
あり、これにより格段に高い機械的特性、すなわち、H
v≧260、引張強さ≧80kgf/mm”を示すこと
がわかる。また、固溶強化または析出強化元素を含まな
い比較材料24は第1図に示すように500℃以上の加
熱により硬さが急激に低下する。また、本発明合金1〜
23は、高強度化したにもかかわらず、ハンダ性、メツ
キ性、エツチング性も問題なく良好であり、また、比較
材料28および29との対比から、B、Mgの添加によ
り熱間加工時の耳割れの発生がなくなり、適量のB、M
g添加により生産性は向上することがわかる。しかし、
過剰のB、Mgの添加(比較材料25.26.27)は
エツチング性を悪くする結果となることがわかる。
1 cho y: ITu++++Irt2oo++11tzzo+
+Iy(3+n+Iγ+222+ITf+++1, etc. is the XM diffraction intensity of austenite Ia=Iat++o++I
a(zoo)+Ia(2+++■α(1101 etc. is the X-ray diffraction intensity of martensite from the wood surface, materials 1 to 1 of the present invention
23 and Comparative Materials 24 to 29 have a mixed phase with the aforementioned martensite, unlike the conventional material 30 or 30', which is a single austenite phase (austenite content 100%), and as a result, they have significantly higher mechanical properties, That is, H
v≧260, tensile strength≧80 kgf/mm”.Also, as shown in Fig. 1, comparative material 24, which does not contain solid solution strengthening or precipitation strengthening elements, shows hardness when heated to 500°C or higher. In addition, alloys 1 to 1 of the present invention
Despite having high strength, 23 has good solderability, plating performance, and etching performance without any problems, and in comparison with comparative materials 28 and 29, the addition of B and Mg improves the properties during hot working. No more ear cracking, appropriate amount of B, M
It can be seen that productivity is improved by adding g. but,
It can be seen that addition of excessive B and Mg (comparative materials 25, 26, and 27) results in poor etching properties.

第1図は、前記固溶強化または析出強化元素のうち、N
bの添加、無添加それぞれについて、最終焼鈍温度に対
する硬さの変化を対比した図である。
Figure 1 shows N among the solid solution strengthening or precipitation strengthening elements.
FIG. 3 is a diagram comparing changes in hardness with respect to final annealing temperature for cases with and without addition of b.

これによると、いずれも最終焼鈍温度的500℃に硬さ
ピークがあり、Nb無添加材はピークにおいては、無添
加材より高硬度であるが、最終焼鈍温度の上昇とともに
、急峻に硬度低下し、焼#i!i温度依存性が高いこと
がわかる。これに対し、Nb2.5%添加材は、焼鈍温
度依存性は低く、がっ、520〜530℃より高温側で
は、無添加材より優れた機械的特性を有することがわか
る。
According to this, both have a hardness peak at the final annealing temperature of 500°C, and the Nb-free material has higher hardness than the non-additive material at the peak, but as the final annealing temperature increases, the hardness decreases sharply. , Yaki#i! It can be seen that the i temperature dependence is high. On the other hand, it can be seen that the 2.5% Nb additive material has low annealing temperature dependence, and has better mechanical properties than the non-additive material at temperatures higher than 520 to 530°C.

〔発明の効果〕〔Effect of the invention〕

以上に述べたように、本発明材料はFe−N1−C○系
の特定組成において、最終の冷間加工、および最終焼鈍
により、加工誘起によるマルテンサイト変態と逆変態オ
ーステナイトの析出を組合せ、さらに固溶強化による高
温側の強度を安定させることで、多ビン薄型用リードフ
レームに必要な高強度を得るものであり、かつ、その強
度の焼鈍温度依存性を緩和するとともに、熱間加工性を
増進したもので、工業上の効果は極めて大きいものであ
る。
As described above, the material of the present invention combines deformation-induced martensitic transformation and precipitation of reverse transformed austenite through final cold working and final annealing in a specific composition of Fe-N1-C○ system, and further By stabilizing the strength on the high temperature side through solid solution strengthening, it is possible to obtain the high strength required for multi-bottle thin lead frames, reduce the dependence of the strength on annealing temperature, and improve hot workability. The industrial effect is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (1)

【特許請求の範囲】 1 重量%にて、C0.05%以下、Co0.5〜22
%、Ni22〜32.5%Mn1.0%以下、Si0.
5%以下、BとMgの1種または2種を合計で0.00
01〜0.03%を含有し、NiとCoの含有量は、C
o12%未満ではNi27〜32.5%、Co12%以
上では66%≦2Ni+Co≦74%の関係を満足し、
さらにNb、Ti、Zr、Mo、V、W、Beのいずれ
か1種または2種以上を0.1〜3.0%含有し、残部
は不純物を除き実質的にFeからなり、さらに組織が逆
変態オーステナイト相(残留オーステナイト相を伴うこ
とを得)およびマルテンサイト相の二相からなり、前記
オーステナイト相が50%以上であることを特徴とする
高強度リードフレーム材料。 2 室温から300℃の平均熱膨張係数が、(3〜9)
×10^−^6/℃、硬さがHvで260以上、引張強
さが80kgf/mm^2以上であることを特徴とする
請求項1に記載の高強度リードフレーム材料。 3 請求項1の組成の合金を、オーステナイト化終了温
度以上の温度で溶体化処理し、次いで40〜90%の冷
間加工でオーステナイト相の一部を加工誘起マルテンサ
イトに変態させ、さらにオーステナイト化終了温度を越
えない温度で最終焼鈍して逆変態オーステナイト相を析
出させることを特徴とする高強度リードフレーム材料の
製造方法。
[Claims] 1% by weight, C0.05% or less, Co0.5-22
%, Ni 22-32.5% Mn 1.0% or less, Si 0.
5% or less, one or two of B and Mg in total 0.00
01 to 0.03%, and the content of Ni and Co is C
When O is less than 12%, Ni is 27 to 32.5%, and when Co is 12% or more, it satisfies the relationship of 66%≦2Ni+Co≦74%,
Furthermore, it contains 0.1 to 3.0% of one or more of Nb, Ti, Zr, Mo, V, W, and Be, and the remainder consists essentially of Fe excluding impurities, and the structure is A high-strength lead frame material comprising two phases: a reversely transformed austenite phase (accompanied by a retained austenite phase) and a martensite phase, the austenite phase accounting for 50% or more. 2 The average coefficient of thermal expansion from room temperature to 300°C is (3 to 9)
The high-strength lead frame material according to claim 1, having a hardness of 260 or more in Hv and a tensile strength of 80 kgf/mm^2 or more. 3. The alloy having the composition of claim 1 is solution-treated at a temperature equal to or higher than the austenitization finish temperature, and then a portion of the austenite phase is transformed into deformation-induced martensite by 40 to 90% cold working, and further austenitization is performed. A method for producing a high-strength lead frame material, characterized by final annealing at a temperature not exceeding the final temperature to precipitate a reversely transformed austenite phase.
JP26469390A 1990-05-14 1990-10-01 High strength lead frame material and its manufacture Pending JPH04176844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/946,794 US5246511A (en) 1990-05-14 1992-09-18 High-strength lead frame material and method of producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP19459590 1990-07-23
JP2-194595 1990-07-23

Publications (1)

Publication Number Publication Date
JPH04176844A true JPH04176844A (en) 1992-06-24

Family

ID=16327158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26469390A Pending JPH04176844A (en) 1990-05-14 1990-10-01 High strength lead frame material and its manufacture

Country Status (1)

Country Link
JP (1) JPH04176844A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05306436A (en) * 1992-05-01 1993-11-19 Nkk Corp High strength fe-ni-co alloy sheet excellent in corrosion resistance and repeated bendability and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05306436A (en) * 1992-05-01 1993-11-19 Nkk Corp High strength fe-ni-co alloy sheet excellent in corrosion resistance and repeated bendability and its production

Similar Documents

Publication Publication Date Title
JP5820889B2 (en) High strength steel material with excellent cryogenic toughness and method for producing the same
KR100682802B1 (en) Ultra-high strength metastable austenitic stainless steel containing Ti and a method of producing the same
JP5744678B2 (en) Precipitation hardening type metastable austenitic stainless steel wire excellent in fatigue resistance and method for producing the same
JP2012525500A (en) High strength and high softness steel plate with high manganese nitrogen content and manufacturing method thereof
JP4472015B2 (en) High strength low specific gravity steel plate excellent in ductility and method for producing the same
KR20120036296A (en) Precipitation hardening metastable austenitic stainless steel wire excellent in fatigue resistance and method for producing the same
JPH03166340A (en) High strength lead frame material and its manufacture
JP2003328079A (en) Steel pipe superior in workability for cold forging, and manufacturing method therefor
US5246511A (en) High-strength lead frame material and method of producing same
JP2909089B2 (en) Maraging steel and manufacturing method thereof
JP2968430B2 (en) High strength low thermal expansion alloy
JPS59170244A (en) Strong and tough co-free maraging steel
JPH04176844A (en) High strength lead frame material and its manufacture
JP3498289B2 (en) Manufacturing method of high chromium cast iron castings
JPH07216510A (en) High strength lead frame material and its production
JP3762700B2 (en) High-strength steel sheet excellent in formability and chemical conversion treatment and method for producing the same
US5147470A (en) High strength lead frame material and method of producing the same
JP2661875B2 (en) Superplastic duplex stainless steel with low deformation resistance and excellent elongation properties
JPH04120245A (en) High strength lead frame material and its production
JP2614395B2 (en) Method for producing thin sheet of Fe-Ni-based electronic material having excellent shrink resistance
JPH06287715A (en) High strength lead frame material and its production
JP2501157B2 (en) High strength and low thermal expansion Fe-Ni alloy with excellent hot workability
JPH0565602A (en) High strength lead frame material and its production
JPH07216509A (en) High strength lead frame material and its production
JPH0874006A (en) Precipitation hardening type stainless steel excellent in strength and twisting property