JPH06287715A - High strength lead frame material and its production - Google Patents

High strength lead frame material and its production

Info

Publication number
JPH06287715A
JPH06287715A JP7354393A JP7354393A JPH06287715A JP H06287715 A JPH06287715 A JP H06287715A JP 7354393 A JP7354393 A JP 7354393A JP 7354393 A JP7354393 A JP 7354393A JP H06287715 A JPH06287715 A JP H06287715A
Authority
JP
Japan
Prior art keywords
less
phase
austenite
austenite phase
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7354393A
Other languages
Japanese (ja)
Inventor
Shuichi Nakamura
秀一 中村
Takayuki Nagashio
隆之 長塩
Kazu Sasaki
計 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP7354393A priority Critical patent/JPH06287715A/en
Publication of JPH06287715A publication Critical patent/JPH06287715A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain a material minimal in anisotropy, having superior laminar shape, and excellent in solderability and plating suitability by subjecting an alloy having respectively specified Co, Ni, Mn, Si, and Fe contents to cold rolling and annealing under respectively prescribed conditions and regulating inversely transformed austenite phase to >=30%. CONSTITUTION:An alloy having a composition consisting of, by weight, 0.5-22% Co, 15-27% Ni, <=1% Mn, <=0.5% Si, and the balance Fe is refined. Cold rolling is applied at <=80% to the alloy in the course of or after cooling after solid solution heat treatment at a temp. not lower than the austenitizing finishing temp., by which >=50% martensite phase is formed. Then, annealing is done at a temp. not higher than the austenitizing finishing temp. to regulate inversely transformed austenite phase to >=30%. By this method, the material whose principal structure is composed of at least two structures of martensite phase and austenite phase and which has minimal material anisotropy and superior shape can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は従来のものより高強度の
半導体装置用リードフレーム材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lead frame material for semiconductor devices, which has higher strength than conventional ones.

【0002】[0002]

【従来の技術】近年、ロジック等の半導体装置の高容
量、高集積化およびパッケージの薄肉化に伴いパッケー
ジは多ピン化、薄板化の傾向にある。このため従来にも
増して、高強度のリードフレーム材料が要求されてい
る。これら多ピン用Fe系リードフレーム材料として、
従来Fe-42Ni,Fe-29Ni-17Co(コバール)が
知られている。これらFe-Ni系の改良材の提案には
特開昭55-131155号あるいは特開平3-39446号があり、ま
たFe-Ni-Co系の改良材については特開昭55-12856
5号、特開昭57-82455号、特開昭61-6251号、特公平1-81
7号、特公平1-5562号、特開平3-39447号および本願発明
の出願人が先に提案した特開平3-166340号等がある。
2. Description of the Related Art In recent years, with the increase in capacity and integration of semiconductor devices such as logic and the reduction in thickness of packages, the package tends to have a large number of pins and a thin plate. For this reason, there is a demand for lead frame materials with higher strength than ever before. As these Fe-based lead frame materials for multiple pins,
Conventionally, Fe-42Ni and Fe-29Ni-17Co (Kovar) are known. JP-A-55-131155 and JP-A-3-39446 have been proposed for these Fe-Ni-based improvers, and JP-A-55-12856 for the Fe-Ni-Co-based improvers.
5, JP 57-82455, JP 61-6251, JP-B 1-81
7, JP-B-1-5562, JP-A-3-39447 and JP-A-3-166340 previously proposed by the applicant of the present invention.

【0003】[0003]

【発明が解決しようとする課題】多ピンリードフレーム
は主に微細加工が可能なフォトエッチング法で製造され
る。しかし、これら微細加工したFe-42NiまたはF
e-29Ni-17Co薄板多ピンリードフレームは、リード
の強度不足が原因でパッケージ組立て、搬送、実装など
の際に反り、曲がりなどリードばらつきが起こり易く、
また使用中の衝撃で座屈するなど種々問題があった。
The multi-pin lead frame is mainly manufactured by a photo-etching method which enables fine processing. However, these finely processed Fe-42Ni or F
The e-29Ni-17Co thin plate multi-pin lead frame is susceptible to lead variations such as warpage and bending during package assembly, transportation, mounting, etc. due to insufficient lead strength.
Further, there are various problems such as buckling due to impact during use.

【0004】Fe-Ni系あるいはFe-Ni-Co系合
金の改良については、Si,Mn,Crを含有させて強
化する試み((a)特開昭55-131155号)あるいはその他の
強化元素による高強度化の提案((b)特開平3-39446号、
(c)特開平3-39447号)、Fe-Ni-Co系合金について
の熱膨張に関するもの((イ)特開昭55-128565号、(ロ)特
開昭57-82455号、(ハ)特開昭61-6251号、(ニ)特公平1-817
号、(ホ)特公平1-5562号、(ヘ)特開平1-61042号)や、本
出願人が先に提案した2相組織強化によるもの((A)特
開平3-166340号)があるが、(a)〜(c)は主要元素の他に
強化元素を含有するため、表面酸化が起こり易くリード
フレームの主要特性であるハンダ性、メッキ性を著しく
劣化させる問題があり、また、(イ)〜(ヘ)のうち(イ)以外
のものは、いずれもリードフレームの強度を積極的に改
善しようとするものではない。なお前記(イ)のものは、
強化機構が高C(0.2〜0.35%程度)またはさらにHf,N
b,V,Zr,Ta,W,Alの1種以上または2種以上添加す
るものであり、異質のものである。また、前記(A)は加
工誘起マルテンサイトと逆変態オーステナイト析出によ
り高強度化することに主眼があるため、高強度特性を得
るのに十分な冷間加工を要するものであり、これに伴
い、多ピンかつ薄板のリードフレームに有害な素材異方
性(圧延方向と板幅方向の諸特性の差)および形状(強
圧延による材料の幅そり、うねり等)を与えるので、こ
の点で改良すべき部分があることがわかった。
In order to improve the Fe-Ni-based or Fe-Ni-Co-based alloy, it is attempted to strengthen it by adding Si, Mn, and Cr ((a) JP-A-55-131155) or other strengthening elements. Proposal of high strength ((b) JP-A-3-39446,
(c) JP-A-3-39447), related to thermal expansion of Fe-Ni-Co alloys ((A) JP-A-55-128565, (B) JP-A-57-82455, (C)) JP-A-61-6251, (D) Japanese Patent Publication 1-817
No. 1, (e) Japanese Patent Publication No. 1-5562, (f) Japanese Patent Laid-Open No. 1-61042), and the two-phase structure strengthening proposed by the applicant ((A) Japanese Patent Laid-Open No. 3-166340). However, since (a) ~ (c) contains a strengthening element in addition to the main element, there is a problem that surface oxidation is likely to occur and the solderability and plating properties which are the main characteristics of the lead frame are significantly deteriorated. None of (a) to (f) except (a) intends to positively improve the strength of the lead frame. In addition, the above (a) is
Reinforcement mechanism is high C (about 0.2 to 0.35%) or even Hf, N
One or more kinds of b, V, Zr, Ta, W, and Al are added, and they are different. Further, (A) is mainly focused on increasing the strength by work-induced martensite and reverse transformation austenite precipitation, and therefore requires cold working sufficient to obtain high-strength characteristics, and accordingly, This will be improved in this respect, because it gives harmful material anisotropy (difference between various characteristics in the rolling direction and the sheet width direction) and shape (material width warp, undulation, etc. due to strong rolling) to the multi-pin and thin lead frame. It turns out that there are parts that should be done.

【0005】[0005]

【課題を解決するための手段】そこで、本発明者らはF
e-Ni-Co系合金の相変態機構に着目して、組成およ
び製造条件について種々実験を行った結果、焼鈍および
冷間加工時のマルテンサイト変態と最終焼鈍で逆変態オ
ーステナイト相を析出させて少なくとも2相組織化する
ことによりリードフレームの各種特性、特にハンダ性、
メッキ性を損なわずに高強度化できるという前提案の特
徴をそのまま有するとともに、さらに低冷間加工率とす
ることで、前記の異方性および板形状の問題も解決でき
る領域があることを見出し、先に特願平4-65859号で提
案した。
Therefore, the present inventors
Focusing on the phase transformation mechanism of the e-Ni-Co alloy, various experiments were conducted on the composition and manufacturing conditions. As a result, the reverse transformation austenite phase was precipitated by the martensitic transformation and final annealing during annealing and cold working. By forming at least two phases, various characteristics of the lead frame, especially solderability,
It has been found that there are areas where the problems of anisotropy and plate shape can be solved by maintaining the characteristics of the previous proposal that strength can be increased without impairing the plating property, and by further reducing the cold working rate. , Which was previously proposed in Japanese Patent Application No. 4-65859.

【0006】すなわち、該提案(特願平4-65859号)は、
前記特開平3-166340号で、本発明者等が提案したFe-
Ni-Co系合金の冷間加工による加工誘起マルテンサ
イト変態とその後の逆変態オーステナイト相により析出
強化させるものであるのに対し、組成的に低Ni化する
ことで、固溶化処理後の冷却過程、またはさらにその
後、比較的低い加工度の冷間加工を施して、マルテンサ
イト相を得、これをさらに焼鈍して逆変態オーステナイ
ト相を析出させて強化するもので、高強度はもとより、
形状、異方性の点で多ピン化対応に適したリードフレー
ム材料を得るものである。また該提案の材料は前記特開
平3-166340号のものに比べコスト的にも安価なものとな
る。
That is, the proposal (Japanese Patent Application No. 4-65859)
In the above-mentioned JP-A-3-166340, Fe-
While the precipitation-strengthening is carried out by the work-induced martensitic transformation by cold working of Ni-Co alloy and the subsequent reverse transformation austenite phase, the cooling process after solid solution treatment is achieved by reducing Ni compositionally. , Or further thereafter, cold working with a relatively low working degree is performed to obtain a martensite phase, which is further annealed to precipitate a reverse transformation austenite phase and strengthen, and not only high strength,
It is intended to obtain a lead frame material suitable for multi-pinning in terms of shape and anisotropy. Further, the proposed material is cheaper than the one disclosed in JP-A-3-166340.

【0007】しかしながら、該提案の材料におけるマル
テンサイト相からオーステナイト相への逆変態は、温度
に敏感であるため、強度の焼鈍温度依存性が大きく、安
定生産上問題が多いことがわかった。そこで、本発明者
らマルテンサイト相からオーステナイト相への逆変態以
外に固溶硬化を利用してこの焼鈍温度依存性を緩和させ
ることにより、ハンダ性、メッキ性、熱膨張特性を損な
うことなく高強度化できることを見出した。
However, it was found that the reverse transformation from the martensite phase to the austenite phase in the proposed material is temperature-sensitive, so that the strength greatly depends on the annealing temperature and there are many problems in stable production. Therefore, the present inventors alleviate this annealing temperature dependency by utilizing solid solution hardening other than the reverse transformation from the martensite phase to the austenite phase, thereby improving the solderability, plating property, and thermal expansion characteristics without impairing it. It was found that it can be strengthened.

【0008】また、本発明の材料は、その組織制御と特
定元素による固溶強化あるいは析出強化に特徴を有する
が、本発明材料についてもハンダ性、メッキ性を評価し
ていく過程で、脱酸剤として添加され残留するMn,S
i、および炭素、硫黄、酸素、窒素の不純物について
は、特定の値以下に規制すると、一段とハンダ性、メッ
キ性が向上し、強度や熱膨張特性以外に求められる実用
特性が改善されることがわかった。さらに、本発明者ら
は、耐隙間腐食性に対する添加元素の影響を検討したと
ころ、特定元素を添加することでこの特性を改善するこ
とができることを見出した。すなわち、本発明の材料
は、合金組成およびその組織制御の組合せにおいて、全
く新規な材料であり、強度と熱膨張特性の優れたリード
フレーム材である前記新提案の発明に対し、固溶または
析出強化を利用して、強度の温度依存性を緩和した材
料、およびまたは前述の不純物を特定の値以下に規制
し、または特定元素を添加した材料で、ハンダ性、メッ
キ性を一段と向上し、または耐隙間腐食性を向上した材
料である。
The material of the present invention is characterized by its structure control and solid solution strengthening or precipitation strengthening by a specific element. The material of the present invention is also deoxidized in the process of evaluating solderability and plating property. Mn, S added as an agent and remaining
Regarding i, and impurities of carbon, sulfur, oxygen, and nitrogen, if soldering is regulated to a specific value or less, solderability and plating properties are further improved, and practical properties required other than strength and thermal expansion properties are improved. all right. Furthermore, the present inventors have studied the influence of the additional element on the crevice corrosion resistance, and have found that the addition of the specific element can improve this characteristic. That is, the material of the present invention is a completely novel material in the combination of the alloy composition and its structure control, and is a solid solution or a precipitate with respect to the newly proposed invention which is a lead frame material excellent in strength and thermal expansion characteristics. Utilizing strengthening, the material whose temperature dependence of strength is relaxed, and / or the above-mentioned impurities are regulated to a specific value or less, or a material to which a specific element is added to further improve solderability and plating property, or It is a material with improved crevice corrosion resistance.

【0009】具体的には本願の第1発明は、重量%にて
Co 0.5〜22%、Ni 15〜27%、Mn 1.0%以下、Si
0.5%以下、NiとCoの含有量はCo 12%未満ではNi
20%〜27%未満、Co12%以上では52%≦(2Ni+C
o)<66%の関係を満足し、残部Feと不可避的不純物
からなり、さらに主要組織がマルテンサイト相およびオ
ーステナイト相の少なくとも2相組織であり、前記オー
ステナイト相が30%以上である高強度リードフレーム材
料において、前記不可避的不純物のうち、Cが0.020%以
下、Sが0.015%以下、Oが150ppm以下、Nが100ppm、好
ましくはCが0.010%以下、Sが0.008%以下、Oが80ppm
以下、Nが50ppm以下であることを特徴とする高強度リ
ードフレーム材料、
Specifically, in the first invention of the present application, Co 0.5 to 22%, Ni 15 to 27%, Mn 1.0% or less, Si
0.5% or less, the content of Ni and Co is less than 12% Co Ni
20% -less than 27%, Co12% or more 52% ≤ (2Ni + C
o) High strength lead satisfying the relation of <66%, consisting of balance Fe and unavoidable impurities, and having a main structure of at least two-phase structure of martensite phase and austenite phase and said austenite phase being 30% or more. In the frame material, among the unavoidable impurities, C is 0.020% or less, S is 0.015% or less, O is 150 ppm or less, N is 100 ppm, preferably C is 0.010% or less, S is 0.008% or less, and O is 80 ppm.
Hereinafter, a high-strength lead frame material, characterized in that N is 50 ppm or less,

【0010】本願の第2発明は、重量%にてCo 0.5〜
22%、Ni 15〜27%未満、Mn 1.0%以下、Si 0.5%以
下、Nb,Ti,Zr,Mo,V,W,Beのいずれか
1種または2種以上を合計で 0.1〜3%、NiとCoの含
有量はCo 12%未満ではNi20%〜27%未満、Co 12%以
上では52%≦(2Ni+Co)<66%の関係を満足し、残
部はFeと不可避的不純物からなり、さらに主要組織が
マルテンサイト相およびオーステナイト相の少なくとも
2相組織であり、前記オーステナイト相が30%以上であ
ることを特徴とする高強度リードフレーム材料、本願の
第3発明は、前記不純物規程を満足しつつ、前記強化元
素を有する同様組織の高強度リードフレーム材料、
The second invention of the present application is, in% by weight, Co 0.5 to
22%, Ni 15 to less than 27%, Mn 1.0% or less, Si 0.5% or less, and one or more of Nb, Ti, Zr, Mo, V, W and Be in total of 0.1 to 3%, When the content of Ni and Co is less than 12% of Co, the content of Ni is 20% to less than 27%, and when the content of Co is 12% or more, the relationship of 52% ≦ (2Ni + Co) <66% is satisfied, and the balance is Fe and inevitable impurities. A high-strength leadframe material, characterized in that the main structure is at least a two-phase structure of a martensite phase and an austenite phase, and the austenite phase is 30% or more, and the third invention of the present application satisfies the above impurity regulations. While having the same structure as the high-strength leadframe material having the strengthening element,

【0011】本願の第4発明は、上記第1、第2または
第3発明に記載の組成の合金のNi0.5〜3%と等量をC
uで置換し、前記と同様の組織とした高強度リードフレ
ーム材料、ならびに本願の第5発明は、上記それぞれの
組成の合金をオーステナイト化終了温度以上の固溶化処
理後の冷却過程、またはその後80%以下の冷間圧延を施
して50%以上のマルテンサイト相を得、その後オーステ
ナイト化終了温度を越えない温度で焼鈍して逆変態オー
ステナイト相を30%以上とすることを特徴とする高強度
リードフレーム材料の製造方法である。
In a fourth invention of the present application, the alloy having the composition described in the first, second or third invention has a C content equivalent to 0.5 to 3% of Ni.
A high-strength lead frame material having a structure similar to that described above, which is substituted with u, and a fifth aspect of the present invention is the cooling process after the solution treatment at the austenitization end temperature or higher, or thereafter. 50% or more of martensite phase by cold rolling below 50%, and then annealed at a temperature not exceeding the austenitizing end temperature to make the reverse transformation austenite phase 30% or more, high strength lead It is a method of manufacturing a frame material.

【0012】[0012]

【作用】次に本発明の数値限定理由を述べる。Co含有
量は、その約17%付近およびで5%付近で熱膨張係数を極
小化するのに最適であり、0.5%より少ないか22%を越え
ると熱膨張係数が大きくなり、シリコンチップとの熱膨
張整合性を劣化させる。このため、Co含有量は、0.5%
〜22%の範囲に限定する。Ni含有量はCo量との関係
で決定される。Co12%未満でNiが20%より少ないかC
o12%以上で(2Ni+Co)が52%より少ないとオース
テナイトが不安定となり過ぎ、最終焼鈍時に析出する逆
変態オーステナイトが冷却過程でマルテンサイト変態を
起こし熱膨張係数が大きくなる。また、Co12%未満で
Niが27%またはこれより多いか、Co12%以上で(2N
i+Co)が66%またはこれより多いと、溶体化処理後
の冷却過程または冷間加工時のマルテンサイト変態が不
十分となる。このため、Co12%未満ではNi20%〜27%
未満、Co12%以上では52%≦(2Ni+Co)<66%の
関係を満足するようにNiを限定した。
Next, the reasons for limiting the numerical values of the present invention will be described. The Co content is optimal for minimizing the coefficient of thermal expansion at about 17% and about 5%, and the coefficient of thermal expansion becomes large when the content is less than 0.5% or exceeds 22%. Deteriorates thermal expansion consistency. Therefore, the Co content is 0.5%
Limited to ~ 22%. The Ni content is determined in relation to the Co content. Co less than 12% and Ni less than 20% C
If the content of (2Ni + Co) is less than 52% in the range of 12% or more, the austenite becomes too unstable, and the reverse transformation austenite precipitated during the final annealing causes the martensite transformation in the cooling process to increase the thermal expansion coefficient. Also, less than 12% Co and 27% or more Ni, or more than 12% Co (2N
When i + Co) is 66% or more, the martensite transformation during the cooling process after solution treatment or during cold working becomes insufficient. Therefore, if Co is less than 12%, Ni is 20% to 27%.
Less than 12% and more than 12% Co, Ni is limited so as to satisfy the relationship of 52% ≦ (2Ni + Co) <66%.

【0013】Mnは脱酸剤として使用するが1.0%を越え
ると熱膨張係数を増大させ、また、ハンダ性、メッキ性
を劣化させるので1.0%以下に限定した。Siは脱酸剤と
して添加され材料中に残存しない方が望ましいが、0.5%
までは熱膨張係数の極端な上昇やハンダ性、メッキ性の
極端な劣化は生じないので許容できる。次に不純物元素
について述べる。不純物であるCは0.020%を越えると素
材のエッチング性を著しく劣化させ、さらに炭化物の過
剰析出によりハンダ性、メッキ性を悪くするため、0.02
0%以下に限定する。Cの望ましい範囲は0.010%以下であ
る。Sは、0.015%を越えると、過剰のMnSが形成さ
れ、表面疵等が発生しやすくなり、また、固溶Sは熱間
加工性を低下させるため、0.015%以下に限定する。Sの
望ましい範囲は0.008%以下である。
Mn is used as a deoxidizing agent, but if it exceeds 1.0%, the coefficient of thermal expansion increases, and the solderability and plating property deteriorate, so it was limited to 1.0% or less. Si is added as a deoxidizer and it is desirable not to remain in the material, but 0.5%
Up to the above, there is no extreme increase in the coefficient of thermal expansion and no extreme deterioration in the solderability and the plating property, so it is acceptable. Next, the impurity element will be described. If C, which is an impurity, exceeds 0.020%, the etching property of the material is remarkably deteriorated, and the excessive precipitation of carbide deteriorates the solderability and plating property.
Limited to 0% or less. The desirable range of C is 0.010% or less. When S exceeds 0.015%, an excessive amount of MnS is formed, surface defects are likely to occur, and solid solution S reduces hot workability, so the content is limited to 0.015% or less. The desirable range of S is 0.008% or less.

【0014】Oは150ppmを越えると脱酸剤のSiおよび
不可避的に混入したAl,Mg等、Oとの親和力の強い元
素と過剰の酸化物を形成し、それが表面清浄度を悪く
し、ハンダ性、メッキ性を低下させるため150ppm以下と
する。Oの望ましい範囲は、80ppm以下である。Nはオ
ーステナイト安定化作用があるため、100ppmを越えて含
有させるとオーステナイト相が安定化しすぎ、加工誘起
変態が起りにくくなる。さらに窒化物が過剰に析出しハ
ンダ性、メッキ性を低下させるため、100ppm以下とす
る。Nの好ましい量は50ppm以下である。
When O exceeds 150 ppm, O forms an excess oxide with an element having a strong affinity with O, such as Si as a deoxidizer and Al, Mg which are inevitably mixed, which deteriorates the surface cleanliness. 150ppm or less to reduce solderability and plating property. The desirable range of O is 80 ppm or less. Since N has an austenite stabilizing effect, if it is contained in an amount exceeding 100 ppm, the austenite phase is excessively stabilized and the work-induced transformation is hard to occur. Further, the nitride is excessively deposited to deteriorate the solderability and the plating property, so the content is set to 100 ppm or less. The preferred amount of N is 50 ppm or less.

【0015】Nb,Ti,Zr,Mo,V,W,Beは、本発明合
金の固溶強化あるいは析出強化により基地を強化する元
素として重要である。本発明合金は、最終焼鈍の際の逆
変態オーステナイト相の析出により強化されるが、熱膨
張特性の点からオーステナイト量は多い方が望ましく、
最終焼鈍温度はできるだけ高くとることが望ましい。し
かし、これらの添加元素が無添加の場合、焼鈍温度の上
昇とともに、機械的特性が急激に低下する。このため、
生産安定上高温焼鈍側の機械的特性を安定化させること
が望ましい。
Nb, Ti, Zr, Mo, V, W and Be are important as elements for strengthening the matrix by solid solution strengthening or precipitation strengthening of the alloy of the present invention. The alloy of the present invention is strengthened by precipitation of the reverse transformation austenite phase at the time of final annealing, but it is desirable that the amount of austenite is large from the viewpoint of thermal expansion characteristics,
The final annealing temperature should be as high as possible. However, when these additive elements are not added, the mechanical properties sharply decrease as the annealing temperature rises. For this reason,
For stable production, it is desirable to stabilize the mechanical properties on the high temperature annealing side.

【0016】本発明は、これら固溶強化元素あるいは析
出強化元素を添加することで、最終焼鈍の特に高温側の
硬さ、すなわち機械的特性の低下を改善できることを見
出したことによるものである。これらの元素の添加量が
0.1%未満では、機械的特性低下の改善に効果がなく、3%
を越えると表面酸化を促進し、ハンダ性、メッキ性を著
しく損なう。また、これら元素はオーステナイト生成側
に作用するので添加量が増えると基質のオーステナイト
が安定化し過ぎるため、添加量は0.1〜3%に限定する。
The present invention is based on the finding that the addition of these solid solution strengthening elements or precipitation strengthening elements can improve the hardness of the final annealing, especially on the high temperature side, that is, the deterioration of mechanical properties. The amount of addition of these elements
If it is less than 0.1%, there is no effect in improving the deterioration of mechanical properties, and 3%
If it exceeds, the surface oxidation is promoted and the solderability and plating property are significantly impaired. Further, since these elements act on the austenite generation side, if the addition amount increases, the austenite of the substrate becomes too stable, so the addition amount is limited to 0.1 to 3%.

【0017】Cuは本発明では必須ではないが、パッケ
ージ樹脂とリードフレーム間の耐隙間腐食性を向上させ
る元素であるので、必要により添加するとよい。Cuは
添加する場合には0.5%より少ないと耐隙間腐食性向上に
効果がなく、また3%を越えるとハンダとの界面にCuと
Snの脆い金属間化合物を形成し、ハンダ剥離を起こし
易くなる。またCuはオーステナイト安定化元素である
ため、3%を越えて添加した場合はオーステナイト相が安
定となり過ぎ、マルテンサイト変態が生じにくくなるた
めCu0.5%〜3%に限定する。
Although Cu is not essential in the present invention, it is an element that improves the crevice corrosion resistance between the package resin and the lead frame, so it may be added if necessary. When Cu is added in an amount of less than 0.5%, it is not effective in improving crevice corrosion resistance. When it exceeds 3%, a brittle intermetallic compound of Cu and Sn is formed at the interface with the solder, and solder peeling easily occurs. Become. Further, since Cu is an austenite stabilizing element, if added in excess of 3%, the austenite phase becomes too stable and martensitic transformation is less likely to occur, so Cu is limited to 0.5% to 3%.

【0018】また、最終の主要組織は、実質的にマルテ
ンサイト相とオーステナイト相(一部残留オーステナイ
トを含んでも可)からなる少なくとも2相でなる組織を
示すが、オーステナイト相が30%以下では十分な析出強
化が得られず、また熱膨張係数も大きくなり、シリコン
チップとの整合性が悪くなるため、オーステナイト相は
30%以上に限定する。なお、本発明におけるオーステナ
イト相の量(%)は、後述の実施例にて説明するX線回折
強度から求めた値とする。
Further, the final main structure is a structure consisting of at least two phases consisting essentially of a martensite phase and an austenite phase (a part of retained austenite may be included), but if the austenite phase is 30% or less, it is sufficient. However, the austenite phase is
Limit to 30% or more. The amount (%) of the austenite phase in the present invention is a value obtained from the X-ray diffraction intensity described in Examples below.

【0019】次に、本発明材料の製造方法において、固
溶化処理温度がオーステナイト化終了温度以下ではその
室温までの冷却過程またはさらにその後、加工誘起マル
テンサイト変態を促進させるために、必要により挿入す
る冷間圧延でマルテンサイト変態が起こらないため、こ
の固溶化処理温度はオーステナイト化終了温度以上とす
る。オーステナイト化終了温度は成分系で変化するが、
本発明成分では800℃以上が望ましい範囲である。ま
た、固溶化処理後の冷間加工の加工率は、80%を越える
と圧延方向と板幅方向の素材異方性が強くなり、また形
状的に幅反り、うねり等の点で好ましくないため、冷間
加工率は80%以下に限定する。望ましくは、冷間加工は6
0%以下、さらに望ましくは50%以下に抑えることでより
良好な素材形状が得られる。また、この冷間加工では固
溶化処理時に残留したオーステナイト相を加工誘起マル
テンサイトに変態させる効果もある。
Next, in the method for producing the material of the present invention, if the solution treatment temperature is lower than the austenitization end temperature, a cooling process to the room temperature or further after that, in order to promote the work-induced martensite transformation, it is inserted if necessary. Since the martensitic transformation does not occur in cold rolling, the solution treatment temperature is set to the austenitization completion temperature or higher. The austenitization finish temperature changes depending on the component system,
For the components of the present invention, 800 ° C or higher is a desirable range. Further, if the working rate of cold working after solution treatment exceeds 80%, the material anisotropy in the rolling direction and the sheet width direction becomes strong, and it is not preferable in terms of shape warpage, waviness, etc. The cold working rate is limited to 80% or less. Desirably, cold working is 6
By controlling the content to be 0% or less, and more preferably 50% or less, a better material shape can be obtained. Further, this cold working also has an effect of transforming the austenite phase remaining during the solution treatment into work-induced martensite.

【0020】このようにして上記固溶化処理後の冷却過
程またはその後の冷間加工で得たマルテンサイト相は、
50%以下であると次工程の焼鈍で十分な逆変態オーステ
ナイト析出強化が得られないため、焼鈍前のマルテンサ
イト量は50%以上に限定するが、より安定した析出強化
を得るために70%以上とするのが望ましい。さらに上記
の溶体化処理または冷間加工後の焼鈍温度は、これがオ
ーステナイト化終了温度を越えると全てのマルテンサイ
ト相がオーステナイト相に変態し、少なくとも2相から
なる組織とすることができず、所望の析出強化が得られ
ないためオーステナイト化終了温度以下に限定する。
Thus, the martensite phase obtained in the cooling process after the solution treatment or in the subsequent cold working is
Since it is not possible to obtain sufficient reverse transformation austenite precipitation strengthening in the subsequent step annealing is 50% or less, the amount of martensite before annealing is limited to 50% or more, 70% to obtain a more stable precipitation strengthening It is desirable to set it as above. Furthermore, when the annealing temperature after the solution treatment or cold working exceeds the austenite finish temperature, all the martensite phases are transformed into the austenite phase, and the structure cannot be composed of at least two phases. Since precipitation strengthening of is not obtained, the temperature is limited to the austenitization end temperature or lower.

【0021】[0021]

【実施例】本発明材料を実施例により説明する。表1に
示す組成の合金を真空溶解炉で溶解、鋳造し、1100〜11
50℃の鍛造と熱間圧延で3mm厚さとし、さらに1000℃×1
Hrの溶体化処理後0.25mmまで冷間圧延を施した。表の試
料No.のうちA〜Nは本発明の材料である。O〜Rは、それ
ぞれ不純物であるC,S,O,Nを過剰に含有するもの、Sは強
化元素を過剰に含有するものであり、UはNiが本発明の
規定より低いもの、VはNiが本発明の規定より高い比較
材料である。また、Zは従来のコバール合金であり、や
はりNi,Coが本発明の規定より高いものである。表2
に、上記各々の材料(0.25mm厚さ)に800℃の固溶化処
理、0.125mmまでの冷間圧延(50%)、続いて580℃最終焼
鈍の一連の処理を施した材料の各種特性(測定条件等は
表に付記)を示す。
EXAMPLES The material of the present invention will be described with reference to examples. Alloys having the compositions shown in Table 1 were melted and cast in a vacuum melting furnace,
Forged at 50 ℃ and hot rolled to a thickness of 3mm, then 1000 ℃ × 1
After Hr solution treatment, cold rolling was performed to 0.25 mm. Of the sample Nos. In the table, A to N are the materials of the present invention. O to R each contain impurities C, S, O, and N in excess, S contains excess strengthening elements, U has Ni lower than the regulation of the present invention, and V has Ni is a comparative material that is higher than specified in the present invention. Z is a conventional Kovar alloy, and Ni and Co are higher than those specified in the present invention. Table 2
In addition, various characteristics of the material obtained by subjecting each of the above materials (0.25 mm thickness) to a solution treatment at 800 ° C., cold rolling to 0.125 mm (50%), and subsequently a series of treatments at 580 ° C. final annealing ( The measurement conditions are shown in the table).

【0022】なお、組織比率Iは、800℃の固溶化処理
冷却後のマルテンサイト量、同IIはさらに50%の冷間圧
延した後のマルテンサイト量、および同IIIは、またさ
らに580〜600℃で焼鈍した後のオーステナイト量をそれ
ぞれ%で示したもので、その測定は、以下により求めた
値である。 マルテンサイト相(%)={Iα/(Iα+Iγ)}×100 オーステナイト相(%)=100−マルテンサイト相(%) Iα=Iα(110)+Iα(200)+Iα(211) Iα(110)等はマルテンサイトのX線回折強度 Iγ=Iγ(111)+Iγ(200)+Iγ(220)+Iγ(311) Iγ(111)等はオーステナイトのX線回折強度
The structural ratio I is the amount of martensite after the solution treatment cooling at 800 ° C., the amount II is the amount of martensite after 50% cold rolling, and the amount III is 580 to 600. The amount of austenite after annealing at ° C is shown in%, and the measurement is the value obtained by the following. Martensite phase (%) = {Iα / (Iα + Iγ)} × 100 Austenite phase (%) = 100-Martensite phase (%) Iα = Iα (110) + Iα (200) + Iα (211)(110) X-ray diffraction intensity of martensite Iγ = Iγ (111) + Iγ (200) + Iγ (220) + Iγ (311)(111) is the austenite X-ray diffraction intensity

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】本表から、本発明材料A〜Nおよび比較材料
O〜Sは冷間圧延後のマルテンサイト量が50%以上であ
り、かつ最終焼鈍後の組織比率IIIが、オーステナイト
を30%以上含むマルテンサイトとの混合相であり、これ
によりU,V,Zに対し、硬さおよび引張強さの値から判る
ように、高い機械的特性を示すことがわかる。さらに本
発明材料A〜Nは、比較材料U、Vとの比較において優れて
いる。すなわち、組成上からオーステナイトが不安定に
なり過ぎたUは、固溶化処理後(I)および冷間圧延後
(II)ともマルテンサイト量が100%になるが、最終焼鈍
で逆変態オーステナイトが析出しないため所望の強度が
得られず、熱膨張係数も高く、また、組成上からオース
テナイトが安定になり過ぎたVは、0.25mm厚さでの固溶
化処理後マルテンサイト変態が起こらず(組成比率Iが0
%)、また冷間加工後の加工誘起マルテンサイト変態も16
%と不十分になるため、最終焼鈍での逆変態オーステナ
イト析出量が98-84=14%と少なく、このため、強度も小
さいことがわかる。
From this table, the invention materials A to N and the comparative materials
O-S is a martensite amount after cold rolling is 50% or more, and the microstructure ratio III after final annealing is a mixed phase with martensite containing austenite of 30% or more, whereby U, V, As can be seen from the values of hardness and tensile strength with respect to Z, it can be seen that high mechanical properties are exhibited. Further, the inventive materials A to N are excellent in comparison with the comparative materials U and V. That is, U whose austenite became too unstable due to its composition had a martensite content of 100% after the solution treatment (I) and after cold rolling (II), but the reverse transformation austenite was precipitated in the final annealing. Since it does not have the desired strength, the coefficient of thermal expansion is also high, and V in which the austenite has become too stable from the composition does not cause martensitic transformation after solution treatment at a thickness of 0.25 mm (composition ratio). I is 0
%), And the work-induced martensitic transformation after cold working is 16
%, The reverse transformation austenite precipitation amount in the final annealing is as small as 98-84 = 14%, which shows that the strength is also small.

【0026】また、本発明合金A〜Nは、不純物であるC,
S,O,Nが少なく、比較材料O〜Rと比べてハンダ性、メッ
キ性が優れている。Sは強化元素を過剰に含有するた
め、メッキ性、ハンダ性とも悪い。また、Cuを添加し
たC,M,Nは他の実施例と比較して耐隙間腐食性に優れる
ことがわかる。また、Nb,Ti,Zr,Mo,V,W,Beの
1種または2種以上添加した本発明材料D〜Nは、これら
を添加しないA〜Cに比べて、高い機械的特性が得られて
いる。
The alloys A to N of the present invention are C, which is an impurity,
It has less S, O, N and has superior solderability and plating properties compared to the comparative materials O to R. Since S contains an excessive amount of reinforcing elements, it has poor plating properties and soldering properties. Further, it can be seen that C, M and N with Cu added are superior in crevice corrosion resistance as compared with the other examples. Further, the materials D to N of the present invention added with one or more of Nb, Ti, Zr, Mo, V, W and Be have higher mechanical properties than those of A to C without addition thereof. ing.

【0027】図1および図2に、それぞれ本発明材料J
とBの最終焼鈍温度に対する硬さおよび熱膨張係数の関
係を示す。本発明材料のうち、強化元素を添加した材料
Jは、これらを添加しない本発明材料にBに比べて、熱
膨張係数はほぼ同等で、かつ特に580℃以上の温度で、
最終焼鈍を行なっても、高い機械的特性を維持したまま
であり、このため、低熱膨張と高強度の特性を併せ持つ
ことができる。また、量産での安定生産上からも有利で
ある。一方、これらの強化元素が3%を越える材料Sは、
前述のようにメッキ性、ハンダ性が著しく低下する。
1 and 2 show the material J of the present invention.
The relationship of hardness and coefficient of thermal expansion with respect to the final annealing temperature of B and B is shown. Among the materials of the present invention, the material J to which the strengthening element is added has a coefficient of thermal expansion substantially equal to that of the material of the present invention to which these elements are not added, and particularly at a temperature of 580 ° C. or higher,
Even after the final annealing, the high mechanical properties are still maintained, and therefore, it is possible to have both the properties of low thermal expansion and high strength. It is also advantageous from the standpoint of stable production in mass production. On the other hand, the material S in which these strengthening elements exceed 3%,
As described above, the plating properties and soldering properties are significantly reduced.

【0028】[0028]

【発明の効果】以上に述べたように、本発明材料は本発
明者らによる特開平4-65859号のFe-Ni-Co系の特
定組成における、固溶化処理と冷間加工でマルテンサイ
ト変態をさせ、これをその後の焼鈍で逆変態オーステナ
イトとする高強度リードフレーム材において、さらにN
b,Ti,Zr,Mo,V,W,Beの1種または2種
以上を添加することで、より安定した低熱膨張、高強度
の特性が得られるものである。また、C,S,O,Nの
不純物元素を低減することでさらに優れたメッキ性、ハ
ンダ性を得るものである。また、本発明の材料は広い温
度範囲で熱膨張が安定して低いにもかかわらず、高い強
度が得られるのでリードの反りや曲りがなく安定してパ
ッケージの組立ができる。さらに、Cuを添加した本発
明の材料は一層の高強度比が達成でき、耐隙間腐食性も
向上するものである。本発明の方法によれば、材料の組
成との組合せ効果で、比較的低い冷間圧延率にもかかわ
らず、冷間圧延の前後の熱処理で実質的に少なくとも2
相からなる組織にすることができるので、材料の異方性
が小さく形状的にも優れた高強度リードフレーム材料を
得ることができる。
As described above, the material of the present invention is the martensite transformation by solution treatment and cold working in the Fe-Ni-Co system specific composition of JP-A-4-65859 by the present inventors. In a high-strength lead frame material that is converted to reverse transformed austenite by subsequent annealing.
By adding one or more of b, Ti, Zr, Mo, V, W and Be, more stable low thermal expansion and high strength characteristics can be obtained. Further, by reducing the impurity elements of C, S, O and N, more excellent plating properties and soldering properties are obtained. Further, although the material of the present invention has a stable and low thermal expansion over a wide temperature range, high strength can be obtained, so that the package can be stably assembled without warping or bending of the leads. Further, the material of the present invention to which Cu is added can achieve a higher strength ratio and improve crevice corrosion resistance. According to the method of the present invention, due to the combined effect of the material composition, the heat treatment before and after the cold rolling is substantially at least 2 even though the cold rolling ratio is relatively low.
Since the structure can be composed of phases, it is possible to obtain a high-strength lead frame material having small anisotropy of material and excellent in shape.

【図面の簡単な説明】[Brief description of drawings]

【図1】最終焼鈍温度と機械的硬さを示す図である。FIG. 1 is a diagram showing a final annealing temperature and mechanical hardness.

【図2】最終焼鈍温度と熱膨張係数αRT-300の関係を示
す図である。
FIG. 2 is a diagram showing a relationship between a final annealing temperature and a thermal expansion coefficient α RT-300 .

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 重量%にてCo 0.5〜22%、Ni 15〜27
%未満、Mn 1.0%以下、Si 0.5%以下、NiとCoの
含有量はCo 12%未満ではNi 20%〜27%未満、Co 12
%以上では52%≦(2Ni+Co)<66%の関係を満足
し、残部はFeと不可避的不純物からなり、さらに主要
組織がマルテンサイト相およびオーステナイト相の少な
くとも2相組織であり、前記オーステナイト相が30%以
上である高強度リードフレーム合金において、前記不可
避的不純物のうち、Cが0.020%以下、Sが0.015%以下O
が150ppm以下、Nが100ppmであることを特徴とする高強
度リードフレーム材料。
1. Co 0.5 to 22% and Ni 15 to 27 in% by weight.
%, Mn 1.0% or less, Si 0.5% or less, and if the content of Ni and Co is less than Co 12%, Ni 20% to less than 27%, Co 12
% Or more, the relation of 52% ≦ (2Ni + Co) <66% is satisfied, the balance consists of Fe and unavoidable impurities, and the main structure is at least two-phase structure of martensite phase and austenite phase, and the austenite phase is In the high-strength lead frame alloy of 30% or more, C is 0.020% or less and S is 0.015% or less of the inevitable impurities.
Is 150ppm or less and N is 100ppm. A high strength leadframe material.
【請求項2】 重量%にてCo 0.5〜22%、Ni 15〜27
%未満、Mn 1.0%以下、Si 0.5%以下、Nb,Ti,
Zr,Mo,V,W,Beのいずれか1種または2種以
上を合計で 0.1〜3%、NiとCoの含有量はCo 12%未
満ではNi 20%〜27%未満、Co 12%以上では52%≦(2
Ni+Co)<66%の関係を満足し、残部はFeと不可避
的不純物からなり、さらに主要組織がマルテンサイト相
およびオーステナイト相の少なくとも2相組織であり、
前記オーステナイト相が30%以上であることを特徴とす
る高強度リードフレーム材料。
2. Co 0.5 to 22% and Ni 15 to 27% by weight.
%, Mn 1.0% or less, Si 0.5% or less, Nb, Ti,
Any one or more of Zr, Mo, V, W, and Be is 0.1 to 3% in total, and if the content of Ni and Co is less than Co 12%, Ni is 20% to less than 27% and Co is 12% or more. 52% ≤ (2
Ni + Co) <66%, the balance consists of Fe and inevitable impurities, and the main structure is at least two-phase structure of martensite phase and austenite phase,
A high-strength leadframe material, characterized in that the austenite phase is 30% or more.
【請求項3】 重量%にてCo 0.5〜22%、Ni 15〜27
%未満、Mn 1.0%以下、Si 0.5%以下、Nb,Ti,
Zr,Mo,V,W,Beのいずれか1種または2種以
上を合計で 0.1〜3%、NiとCoの含有量はCo 12%未
満ではNi 20%〜27%未満、Co 12%以上では52%≦(2
Ni+Co)<66%の関係を満足し、残部はFeと不可避
的不純物からなり、前記不可避的不純物のうち、Cが0.
020%以下、Sが0.015%以下Oが150ppm以下、Nが100ppm
であり、さらに主要組織がマルテンサイト相およびオー
ステナイト相の少なくとも2相組織であり、前記オース
テナイト相が30%以上であることを特徴とする高強度リ
ードフレーム材料。
3. Co 0.5 to 22% and Ni 15 to 27% by weight.
%, Mn 1.0% or less, Si 0.5% or less, Nb, Ti,
Any one or more of Zr, Mo, V, W, and Be is 0.1 to 3% in total, and if the content of Ni and Co is less than Co 12%, Ni is 20% to less than 27% and Co is 12% or more. 52% ≤ (2
Ni + Co) <66%, the balance consists of Fe and inevitable impurities, and C is 0.
020% or less, S 0.015% or less O 150ppm or less, N 100ppm
And a main structure is at least a two-phase structure of a martensite phase and an austenite phase, and the austenite phase is 30% or more.
【請求項4】 請求項1,2または3に記載の組成の合
金のNi0.5〜3%を等量のCuで置換したものからな
り、さらに主要組織がマルテンサイト相およびオーステ
ナイト相の少なくとも2相組織であり、前記オーステナ
イト相が30%以上であることを特徴とする高強度リード
フレーム材料。
4. An alloy having the composition of claim 1, 2 or 3, wherein 0.5 to 3% of Ni is replaced by an equal amount of Cu, and the main structure is at least 2 of a martensite phase and an austenite phase. A high-strength leadframe material having a phase structure, wherein the austenite phase is 30% or more.
【請求項5】 室温から300℃までの平均熱膨張係数が
(3〜9)×10マイナス6乗/℃、硬さがHVで260以上、引張
強さが80kgf/mm2(784.5MPa)以上である請求項1,2,
3または4に記載の高強度リードフレーム材料。
5. The average coefficient of thermal expansion from room temperature to 300 ° C.
(3 to 9) × 10 -6 power / ° C, hardness is 260 or more at HV, and tensile strength is 80 kgf / mm 2 (784.5 MPa) or more.
The high-strength leadframe material according to 3 or 4.
【請求項6】 請求項1,2,3または4に記載の組成
の合金をオーステナイト化終了温度以上の固溶化処理後
の冷却過程で、またはさらにその後、80%以下の冷間圧
延を施すことにより、50%以上のマルテンサイト相を
得、その後、オーステナイト化終了温度を越えない温度
で燒鈍して逆変態オーステナイト相(残留オーステナイ
トを伴うことを可)を30%以上とすることを特徴とする
高強度リードフレーム材料の製造方法。
6. An alloy having the composition according to claim 1, 2, 3 or 4 is subjected to cold rolling at 80% or less in the cooling process after the solution treatment at a temperature above the austenitizing end temperature or further thereafter. According to the above, a martensite phase of 50% or more is obtained, and thereafter, it is annealed at a temperature not exceeding the austenitization end temperature to make the reverse transformation austenite phase (which may be accompanied by retained austenite) 30% or more. High strength lead frame material manufacturing method.
JP7354393A 1993-03-31 1993-03-31 High strength lead frame material and its production Pending JPH06287715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7354393A JPH06287715A (en) 1993-03-31 1993-03-31 High strength lead frame material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7354393A JPH06287715A (en) 1993-03-31 1993-03-31 High strength lead frame material and its production

Publications (1)

Publication Number Publication Date
JPH06287715A true JPH06287715A (en) 1994-10-11

Family

ID=13521263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7354393A Pending JPH06287715A (en) 1993-03-31 1993-03-31 High strength lead frame material and its production

Country Status (1)

Country Link
JP (1) JPH06287715A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0745834A2 (en) * 1995-05-30 1996-12-04 Hitachi, Ltd. Semiconductor pressure sensor
CN100359680C (en) * 1997-05-20 2008-01-02 三星航空产业株式会社 Lead frame and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0745834A2 (en) * 1995-05-30 1996-12-04 Hitachi, Ltd. Semiconductor pressure sensor
EP0745834A3 (en) * 1995-05-30 1997-07-23 Hitachi Ltd Semiconductor pressure sensor
CN100359680C (en) * 1997-05-20 2008-01-02 三星航空产业株式会社 Lead frame and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP5094887B2 (en) Manufacturing method of high strength and low specific gravity steel sheet with excellent ductility
US6692585B2 (en) Ferritic Fe-Cr-Ni-Al alloy having exellent oxidation resistance and high strength and a plate made of the alloy
JP6569845B1 (en) High carbon hot rolled steel sheet and manufacturing method thereof
JP4248430B2 (en) High strength low specific gravity steel plate excellent in ductility and method for producing the same
US5026435A (en) High strength lead frame material and method of producing the same
JP4430502B2 (en) Method for producing low specific gravity steel sheet with excellent ductility
US5246511A (en) High-strength lead frame material and method of producing same
JPH06287715A (en) High strength lead frame material and its production
US5147470A (en) High strength lead frame material and method of producing the same
JPH073403A (en) High strength fe-ni-co alloy sheet and production thereof
JPH07216510A (en) High strength lead frame material and its production
JP3510445B2 (en) Fe-Ni alloy thin plate for electronic parts with excellent softening and annealing properties
JPH0741906A (en) Superplastic two-phase stainless steel
JP2797835B2 (en) High-strength Fe-Ni-Co alloy thin plate excellent in corrosion resistance and repeated bending characteristics, and method for producing the same
JP2501157B2 (en) High strength and low thermal expansion Fe-Ni alloy with excellent hot workability
JPH05271876A (en) High strength lead frame material and its manufacture
JPH0565602A (en) High strength lead frame material and its production
JP3299487B2 (en) Method for producing Fe-Ni alloy thin plate
JP2830472B2 (en) High-strength Fe-Ni-Co alloy thin plate excellent in corrosion resistance, repeated bending characteristics, and etching properties, and method for producing the same
JPH07216509A (en) High strength lead frame material and its production
JPH0874006A (en) Precipitation hardening type stainless steel excellent in strength and twisting property
JP3959671B2 (en) High-strength Fe-Cr-Ni-Al-based ferrite alloy with excellent oxidation resistance and alloy plate using the same
JPH04120245A (en) High strength lead frame material and its production
JP2614395B2 (en) Method for producing thin sheet of Fe-Ni-based electronic material having excellent shrink resistance
JP3033459B2 (en) Manufacturing method of non-heat treated high strength steel