JP3498289B2 - Manufacturing method of high chromium cast iron castings - Google Patents

Manufacturing method of high chromium cast iron castings

Info

Publication number
JP3498289B2
JP3498289B2 JP2001101044A JP2001101044A JP3498289B2 JP 3498289 B2 JP3498289 B2 JP 3498289B2 JP 2001101044 A JP2001101044 A JP 2001101044A JP 2001101044 A JP2001101044 A JP 2001101044A JP 3498289 B2 JP3498289 B2 JP 3498289B2
Authority
JP
Japan
Prior art keywords
cooling
temperature
cast iron
hardness
chromium cast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001101044A
Other languages
Japanese (ja)
Other versions
JP2002294389A (en
Inventor
朗 田村
貴俊 三谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2001101044A priority Critical patent/JP3498289B2/en
Publication of JP2002294389A publication Critical patent/JP2002294389A/en
Application granted granted Critical
Publication of JP3498289B2 publication Critical patent/JP3498289B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、破砕機や粉砕機等
の打撃板、衝突板、ライナ等として用いられる高クロム
鋳鉄鋳物の製造方法に関する。
The present invention relates to the striker plate, such as crushers and mills, impingement plate, a method for producing a high chromium cast iron cast product to be used as a liner or the like.

【0002】[0002]

【従来の技術】従来、この種の高クロム鋳鉄鋳物として
は、鋳放ししたもの、鋳造物を衝風焼入れしたもの、あ
るいは鋳造物を自然冷却焼入れしたもの等が知られてい
る。
2. Description of the Related Art Heretofore, as this type of high chromium cast iron casting, there have been known as-cast, cast-blast hardened, and naturally-cooled cast.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来の高クロ
ム鋳鉄鋳物のうち、鋳放ししたものは、熱処理コストが
必要ないものの、硬さが低く、残留応力が高い不具合が
ある。一方、鋳造物を衝風冷却焼入れしたものは、高硬
度であるものの、残留応力が高い不具合がある。他方、
鋳造物を自然冷却焼入れや焼戻し(350〜600℃)
したものは、残留応力を低減できるものの、硬さが低下
する不具合がある。
However, among the conventional high chromium cast iron castings, as-cast ones have the drawbacks of low hardness and high residual stress, although heat treatment costs are not required. On the other hand, a cast product obtained by quenching and quenching with an air blast has high hardness, but has a problem of high residual stress. On the other hand,
Natural cooling quenching and tempering of castings (350-600 ° C)
Although the residual stress can be reduced, there is a problem that the hardness decreases.

【0004】そこで、本発明は、耐用寿命長くし、か
つ、使用中の破損を防止し得る高クロム鋳鉄鋳物の製造
方法を提供することを目的とする。
[0004] Therefore, the present invention is useful life longer, and aims to provide a method for producing a high chromium cast iron cast material capable of preventing damage in use.

【0005】[0005]

【課題を解決するための手段】前記課題を解決するた
め、本発明の第1の高クロム鋳鉄鋳物の製造方法は、C
2.0〜3.8wt%、Si0.5〜1.5wt%、Mn
0.5〜2.5wt%、Cr15〜30wt%、Mo wt
以下、Ni wt %以下、及び残部がFeと不可避不純物
からなる鋳造物を900〜1100℃の温度に加熱後、
300〜600℃の温度まで衝風冷却し、しかる後に、
自然冷却することを特徴とする。又、第2の高クロム鋳
鉄鋳物の製造方法は、C3.0〜3.8wt%、Si0.
5〜1.5wt%、Mn0.5〜2.5wt%、Cr15〜
20wt%、Mo2〜4wt%、Ni wt %以下、及び残部
がFeと不可避不純物からなる鋳造物を900〜110
0℃の温度に加熱後、300〜600℃の温度まで衝風
冷却し、しかる後に、自然冷却することを特徴とする。
In order to solve the above-mentioned problems , the first method for producing a high chromium cast iron casting of the present invention is C
2.0-3.8 wt%, Si 0.5-1.5 wt%, Mn
0.5-2.5 wt % , Cr 15-30 wt % , Mo 7 wt %
Hereinafter , after heating a casting containing Ni 7 wt % or less and the balance of Fe and unavoidable impurities to a temperature of 900 to 1100 ° C.,
Impulsive cooling to a temperature of 300 to 600 ° C, and then,
Characterized by natural cooling. The second method for producing a high-chromium cast iron casting is C3.0-3.8 wt%, Si0.
5 ~ 1.5wt%, Mn0.5 ~ 2.5wt%, Cr15 ~
900 to 110 of a casting containing 20 wt %, Mo 2 to 4 wt %, Ni 3 wt % or less , and the balance Fe and inevitable impurities.
It is characterized in that after heating to a temperature of 0 ° C., it is cooled with an air blow to a temperature of 300 to 600 ° C., and then naturally cooled.

【0006】Cは、鋳鉄の硬さ(耐摩耗性)を確保する
ものであり、その含有量が第1の方法において、2.0
wt%未満、又、第2の方法においては、3.0wt%未満
であると、所望の硬さが得られない。一方、3.8wt%
を超えると、所望の衝撃値(靭性)が得られず、かつ、
焼入性が得られない。
C is for ensuring the hardness (wear resistance) of cast iron, and the content thereof is 2.0 in the first method .
If it is less than wt%, or less than 3.0 wt% in the second method , the desired hardness cannot be obtained. On the other hand, 3.8 wt%
If it exceeds, the desired impact value (toughness) cannot be obtained, and
Hardenability cannot be obtained.

【0007】Siは、Cr、Moと共に低温焼戻し脆性
を高温側へ移行させる性質を有するものであり、その含
有量が、0.5wt%未満であると、強度が低下する。一
方、1.5wt%を超えると、衝撃値、硬度が低下する。
Si, together with Cr and Mo, has the property of transferring the low temperature tempering brittleness to the high temperature side, and if its content is less than 0.5 wt%, the strength decreases. On the other hand, if it exceeds 1.5 wt%, the impact value and hardness decrease.

【0008】Mnは、脱酸脱硫に寄与するものであり、
その含有量が、0.5wt%未満であると、脱酸脱硫効果
が得られない。一方、2.5wt%を超えると、衝撃値が
低下し、又、残留γ量が多くなり、硬さも低下する。
Mn contributes to deoxidation and desulfurization,
If the content is less than 0.5 wt%, the deoxidizing / desulfurizing effect cannot be obtained. On the other hand, if it exceeds 2.5 wt%, the impact value decreases, the amount of residual γ increases, and the hardness also decreases.

【0009】Crは、低温焼戻し脆性を高温側へ移行さ
せる性質を有するものであり、その含有量が、15wt%
未満であると、焼入れ性が低下する。一方、第1の方法
においては30wt%を超え、又、第2の方法において2
0wt%を超えると、耐摩耗性が低下し、靭性も低下す
る。
[0009] Cr has the property of transferring the low temperature tempering brittleness to the high temperature side, and its content is 15 wt%.
If it is less than 100%, hardenability is deteriorated. On the other hand, in the first method , it exceeds 30 wt%, and in the second method , 2%.
If it exceeds 0 wt%, the wear resistance is lowered and the toughness is also lowered.

【0010】Moは、焼入れ性を高め、強度を高める性
質を有するものであり、その含有量が、第2の方法にお
いては2wt%未満であると、所望の焼入れ性が得られな
い。一方、第1の方法においては7wt%を超え、又、第
2の方法において4wt%を超えると、上記効果が一定と
なり、経済的メリットがない。
Mo has the property of enhancing the hardenability and the strength. If the content of Mo is less than 2 wt% in the second method , the desired hardenability is obtained. I can't get it. On the other hand, when the amount exceeds 7 wt% in the first method and exceeds 4 wt% in the second method , the above effect becomes constant and there is no economic merit.

【0011】Niは、CrやMoと協働して焼入れ性の
向上に寄与するものであり、その含有量が、第1の方法
において7wt%を超え、又、第2の方法においては3wt
%を超えると、上記効果が得られるが、残留γ量が増加
し硬さが低下し、かつ、経済的メリットもない。
Ni contributes to the improvement of hardenability in cooperation with Cr and Mo, the content of which exceeds 7 wt% in the first method , and the second method. At 3 wt
If it exceeds%, the above effect can be obtained, but the residual γ amount increases, the hardness decreases, and there is no economic merit.

【0012】一方、第1、第2の方法において、130
0〜1350℃の温度で鋳込み、自然冷却した後型ばら
した鋳造物の加熱温度が、900℃未満であると、マト
リックス中のC濃度が低下し、かつ、硬さも低下する。
一方、1100℃を超えると、マトリックス中のC、C
r等の合金元素濃度が高くなりすぎ、残留γ量が増加し
硬さが低下する。鋳造物の加熱温度は、950〜105
0℃が好ましく、より好ましくは950〜1000℃で
ある。
On the other hand, in the first and second methods, 130
If the heating temperature of the cast product that has been cast at a temperature of 0 to 1350 ° C and naturally cooled is less than 900 ° C, the C concentration in the matrix decreases and the hardness also decreases.
On the other hand, when the temperature exceeds 1100 ° C, C and C in the matrix
The concentration of alloying elements such as r becomes too high, the amount of residual γ increases, and the hardness decreases. The heating temperature of the casting is 950 to 105.
0 degreeC is preferable, More preferably, it is 950-1000 degreeC.

【0013】加熱後の鋳造物の衝風冷却を、300℃未
満の温度まで行うと、残留応力は大きくなる。一方、6
00℃を超える温度まで行うと、パーライトが析出し硬
さが低下する。加熱後の鋳造物の衝風冷却は、350〜
550℃の温度まで行うことが好ましく、より好ましく
は、400〜500℃の温度までである。衝風冷却の冷
却速度は、20〜200℃/min が好ましく、より好ま
しくは30〜100℃/min である。
If the cast air after cooling is heated to a temperature of less than 300 ° C., the residual stress increases. On the other hand, 6
When the temperature is higher than 00 ° C, pearlite precipitates and the hardness decreases. The cooling of the cast after heating is 350 ~.
The temperature is preferably up to 550 ° C, more preferably 400 to 500 ° C. The cooling rate of the airflow cooling is preferably 20 to 200 ° C / min, more preferably 30 to 100 ° C / min.

【0014】[0014]

〔実施例1、比較例1〕[Example 1, Comparative Example 1]

先ず、C、Si、Mn、Cr、Mo、Niの各元素を表
1に示す割合で含有し(表1においては、鋳造物の硬さ
と靭性に特に影響を与えるCとCrの含有割合を変え、
Si、Mn、Mo、Niの含有割合をそれぞれの範囲内
の適宜の値とした。)、かつ、残部がFeが不可避不純
物からなる鋳造物を所要の鋳込温度(1300〜135
0℃)で鋳込み、その3時間後に型ばらしし、しかる後
に、自然冷却して肉厚80mm、重量100kgの各種のテ
ストピース(No.1〜6:実施例1、No.7〜1
0:比較例1)を得た。
First, each element of C, Si, Mn, Cr, Mo, and Ni is contained in a ratio shown in Table 1 (in Table 1, the content ratios of C and Cr, which particularly affect the hardness and toughness of the cast, are changed. ,
The content ratios of Si, Mn, Mo, and Ni were set to appropriate values within the respective ranges. ), And the balance Fe is an unavoidable impurity at a required casting temperature (1300 to 135).
Casting at 0 ° C.), releasing from the mold after 3 hours, and then cooling naturally, various test pieces having a thickness of 80 mm and a weight of 100 kg (No. 1 to 6: Example 1, No. 7 to 1)
0: Comparative Example 1) was obtained.

【0015】[0015]

【表1】 [Table 1]

【0016】次に、各テストピースを、下記の焼準条件
及び焼戻し条件で熱処理したところ、硬さと残留応力
は、それぞれ表2、表3に示すようになった(各表、′
の付いたNo.のものは、鋳込み5日後に型ばらしした
ものである。)。 焼準条件 A:なし B:980℃より200℃まで衝風冷却した後、自然冷
却 C:980℃より300℃まで衝風冷却した後、自然冷
却 D:980℃より400℃まで衝風冷却した後、自然冷
却 E:980℃より600℃まで衝風冷却した後、自然冷
却 F:980℃より700℃まで衝風冷却した後、自然冷
却 G:980℃より自然冷却 焼戻し条件 a:なし b:200℃で5時間保持 c:400℃で5時間保持 d:600℃で5時間保持
Next, when each test piece was heat-treated under the following normalizing conditions and tempering conditions, the hardness and the residual stress were as shown in Tables 2 and 3 (each table, ′).
No. with The product was unmolded 5 days after casting. ). Normalizing conditions A: None B: After cooling with blast from 980 ° C to 200 ° C, natural cooling C: With blast cooling from 980 ° C to 300 ° C, and then with natural cooling D: From 980 ° C to 400 ° C After that, natural cooling E: after cooling with blast from 980 ° C to 600 ° C, natural cooling F: after cooling with blast from 980 ° C to 700 ° C, natural cooling G: from 980 ° C natural cooling and tempering condition a: none b: Hold at 200 ° C for 5 hours c: Hold at 400 ° C for 5 hours d: Hold at 600 ° C for 5 hours

【0017】[0017]

【表2】 [Table 2]

【0018】[0018]

【表3】 [Table 3]

【0019】表1〜表3から分るように、C2.0〜
3.8wt%、Si0.5〜1.5wt%、Mn0.5〜
2.5wt%、Cr15〜30wt%、Mo wt %以下、N
wt %以下、及び残部がFeと不可避不純物からなる
鋳造物を900〜1100℃の温度に加熱後、300〜
600℃の温度まで衝風冷却し、しかる後、自然冷却す
ることにより、硬さ63〜67HRC、残留応力−50
〜50MPaの高クロム鋳鉄鋳物が得られる。
As can be seen from Tables 1 to 3, C2.0-
3.8 wt%, Si 0.5-1.5 wt%, Mn 0.5-
2.5 wt%, Cr 15 to 30 wt % , Mo 7 wt % or less , N
i 7 wt % or less , and the balance consisting of Fe and inevitable impurities is heated to a temperature of 900 to 1100 ° C., and then 300 to
By cooling with a wind blow to a temperature of 600 ° C. and then naturally cooling, hardness 63 to 67 HRC, residual stress −50
A high chromium cast iron casting of ˜50 MPa is obtained.

【0020】〔実施例2、比較例2〕 先ず、C、Si、Mn、Cr、Mo、Niの各元素を表
4に示す割合で含有し(表4においては、鋳造物の硬さ
と靭性に特に影響を与えるCとCrの含有割合を変え、
Si、Mn、Mo、Niの含有割合をそれぞれの範囲内
の適宜の値とした。)、かつ、残部がFeが不可避不純
物からなる鋳造物を所要の鋳込温度(1300〜135
0℃)で鋳込み、その3時間後に型ばらしし、しかる後
に、自然冷却して肉厚80mm、重量100kgの各種のテ
ストピース(No.11〜14:実施例2、No.15
〜18:比較例2)を得た。
[Example 2 and Comparative Example 2] First, each element of C, Si, Mn, Cr, Mo and Ni was contained in the ratio shown in Table 4 (in Table 4, the hardness and toughness of the casting are Change the content ratio of C and Cr, which especially affects
The content ratios of Si, Mn, Mo, and Ni were set to appropriate values within the respective ranges. ), And the balance Fe is an unavoidable impurity at a required casting temperature (1300 to 135).
Casting at 0 ° C.), releasing the mold after 3 hours, and then cooling naturally, various test pieces having a thickness of 80 mm and a weight of 100 kg (No. 11 to 14: Example 2, No. 15).
-18: Comparative example 2) was obtained.

【0021】[0021]

【表4】 [Table 4]

【0022】次に、各テストピースを、下記の焼準条件
及び焼戻し条件で熱処理したところ、硬さと残留応力
は、それぞれ表5、表6に示すようになった(各表、′
の付いたNo.のものは、鋳込み5日後に型ばらしした
ものである。)。 焼準条件 A:なし B:980℃より200℃まで衝風冷却した後、自然冷
却 C:980℃より300℃まで衝風冷却した後、自然冷
却 D:980℃より400℃まで衝風冷却した後、自然冷
却 E:980℃より600℃まで衝風冷却した後、自然冷
却 F:980℃より700℃まで衝風冷却した後、自然冷
却 G:980℃より自然冷却 焼戻し条件 a:なし b:200℃で5時間保持 c:400℃で5時間保持 d:600℃で5時間保持
Next, when each test piece was heat-treated under the following normalizing conditions and tempering conditions, the hardness and the residual stress were as shown in Tables 5 and 6, respectively (each table, ′).
No. with The product was unmolded 5 days after casting. ). Normalizing conditions A: None B: After cooling with blast from 980 ° C to 200 ° C, natural cooling C: With blast cooling from 980 ° C to 300 ° C, and then with natural cooling D: From 980 ° C to 400 ° C After that, natural cooling E: after cooling with blast from 980 ° C to 600 ° C, natural cooling F: after cooling with blast from 980 ° C to 700 ° C, natural cooling G: from 980 ° C natural cooling and tempering condition a: none b: Hold at 200 ° C for 5 hours c: Hold at 400 ° C for 5 hours d: Hold at 600 ° C for 5 hours

【0023】[0023]

【表5】 [Table 5]

【0024】[0024]

【表6】 [Table 6]

【0025】表4〜表6から分るように、C3.0〜
3.8wt%、Si0.5〜1.5wt%、Mn0.5〜
2.5wt%、Cr15〜20wt%、Mo2〜4wt%、N
wt %以下、及び残部がFeと不可避不純物からなる
鋳造物を900〜1100℃の温度に加熱後、300〜
600℃の温度まで衝風冷却し、しかる後に、自然冷却
することにより、硬さ65〜70HRC、残留応力−5
0〜50MPaの高クロム鋳鉄鋳物が得られる。
As can be seen from Tables 4 to 6, C3.0-
3.8 wt%, Si 0.5-1.5 wt%, Mn 0.5-
2.5 wt%, Cr 15-20 wt%, Mo 2-4 wt%, N
i 3 wt % or less , and the balance consisting of Fe and inevitable impurities is heated to a temperature of 900 to 1100 ° C.
Hardness is 65 to 70 HRC, residual stress is -5 by cooling with wind blow to a temperature of 600 ° C and then naturally cooling.
A high chromium cast iron casting of 0 to 50 MPa can be obtained.

【0026】[0026]

【発明の効果】以上説明したように、本発明の高クロム
鋳鉄鋳物及びその製造方法によれば、高い硬さと低い残
留応力を備えたものとなるので、従来に比べ肉厚100
mm程度の高クロム鋳鉄鋳物の耐用寿命を長くし、かつ、
使用中の破損を防止することができると共に、焼戻し工
程が省略されるので、熱処理コストを低減することがで
きる
As described above, according to the high chromium cast iron casting and the method for producing the same of the present invention, since it has high hardness and low residual stress, it has a wall thickness of 100 as compared with the conventional one.
Long life of high chrome cast iron castings of about mm, and
It is possible to prevent damage during use and at the same time tempering
Since it is omitted, heat treatment cost can be reduced.
Can .

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平11−236615(JP,A) 特開 平11−229071(JP,A) 特開2001−81527(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21D 5/00 C22C 37/08 C22C 37/10 ─────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-11-236615 (JP, A) JP-A-11-229071 (JP, A) JP-A-2001-81527 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C21D 5/00 C22C 37/08 C22C 37/10

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 C2.0〜3.8wt%、Si0.5〜
1.5wt%、Mn0.5〜2.5wt%、Cr15〜30
wt%、Mo wt %以下、Ni wt %以下、及び残部がF
eと不可避不純物からなる鋳造物を900〜1100℃
の温度に加熱後、300〜600℃の温度まで衝風冷却
し、しかる後に、自然冷却することを特徴とする高クロ
ム鋳鉄鋳物の製造方法。
1. C2.0-3.8 wt%, Si0.5-
1.5 wt%, Mn 0.5-2.5 wt%, Cr 15-30
wt%, Mo 7 wt % or less , Ni 7 wt % or less , and the balance F
Castings consisting of e and inevitable impurities at 900-1100 ° C
The method for producing a high-chromium cast iron casting, which comprises heating to a temperature of 3 ° C., cooling with an impinging wind to a temperature of 300 to 600 ° C., and then naturally cooling.
【請求項2】 C3.0〜3.8wt%、Si0.5〜
1.5wt%、Mn0.5〜2.5wt%、Cr15〜20
wt%、Mo2〜4wt%、Ni wt %以下、及び残部がF
eと不可避不純物からなる鋳造物を900〜1100℃
の温度に加熱後、300〜600℃の温度まで衝風冷却
し、しかる後に、自然冷却することを特徴とする高クロ
ム鋳鉄鋳物の製造方法。
2. C3.0-3.8 wt%, Si0.5-
1.5 wt%, Mn 0.5-2.5 wt%, Cr 15-20
wt%, Mo2~4wt%, Ni 3 wt% or less, and the balance F
Castings consisting of e and inevitable impurities at 900-1100 ° C
The method for producing a high-chromium cast iron casting, which comprises heating to a temperature of 3 ° C., cooling with an impinging wind to a temperature of 300 to 600 ° C., and then naturally cooling.
JP2001101044A 2001-03-30 2001-03-30 Manufacturing method of high chromium cast iron castings Expired - Fee Related JP3498289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001101044A JP3498289B2 (en) 2001-03-30 2001-03-30 Manufacturing method of high chromium cast iron castings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001101044A JP3498289B2 (en) 2001-03-30 2001-03-30 Manufacturing method of high chromium cast iron castings

Publications (2)

Publication Number Publication Date
JP2002294389A JP2002294389A (en) 2002-10-09
JP3498289B2 true JP3498289B2 (en) 2004-02-16

Family

ID=18954418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001101044A Expired - Fee Related JP3498289B2 (en) 2001-03-30 2001-03-30 Manufacturing method of high chromium cast iron castings

Country Status (1)

Country Link
JP (1) JP3498289B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4666388B2 (en) * 2006-10-30 2011-04-06 株式会社神戸製鋼所 Heat-resistant and wear-resistant high Cr cast iron
JP5945935B2 (en) * 2012-05-16 2016-07-05 新東工業株式会社 High chromium wear resistant cast iron and method for producing the same
CN105063515A (en) * 2015-04-17 2015-11-18 思维福特南通精密机械有限公司 Metal alloy for liner guide rail pressing block
KR102063134B1 (en) * 2018-01-08 2020-01-08 주식회사 성일터빈 High Chrome Cast Iron With Excellent Abrasion Resistance and Corrosion Resistance
CN110129663A (en) * 2018-02-02 2019-08-16 河南省化工机械制造有限公司 A kind of circulation axial-flow pump high-strength corrosion-resisting impeller
KR102090743B1 (en) * 2019-08-28 2020-03-18 주식회사 비와이인더스트리 High chrome cast iron alloy with excellent wear resistance and manufacturing method thereof

Also Published As

Publication number Publication date
JP2002294389A (en) 2002-10-09

Similar Documents

Publication Publication Date Title
KR20050077008A (en) Alloy tool steel
CN111074148B (en) 800 MPa-level hot stamping axle housing steel and manufacturing method thereof
JPS6311423B2 (en)
JP3498289B2 (en) Manufacturing method of high chromium cast iron castings
JP5061455B2 (en) Hot die tool steel for aluminum die casting with reduced cracking from water-cooled holes
JP2834654B2 (en) High toughness hot work tool steel
JPS61279656A (en) Non-heattreated steel for hot forging
JP2001288531A (en) Steel for machine structure in which coarsening of crystal grain is suppressed
JP2003201513A (en) High strength case hardening steel
JP7438967B2 (en) High strength austenitic high manganese steel and manufacturing method thereof
JP3031816B2 (en) Low decarburized spring steel
JP2934226B1 (en) Manufacturing method of high toughness alloy cast iron
JP3115563B2 (en) Manufacturing method of wear-resistant cast steel
JPH08225845A (en) Production of high strength bolt excellent in delayed fracture resistance
JPH07173571A (en) High workability wear resistant steel and production thereof
JP3833379B2 (en) Cold work tool steel with excellent machinability
JP3662151B2 (en) Heat-resistant cast steel and heat treatment method thereof
JPH07179988A (en) Hot tool steel excellent in high temperature strength
JPH06322483A (en) Hot tool steel excellent in hardenability and creep property
JPH0796696B2 (en) Alloy tool steel
JP3088626B2 (en) Non-heat treated steel for nitriding
JPH0559431A (en) Production of spring with high stress excellent in delayed fracture resistance
JPH05230530A (en) Production of high tensile strength steel plate
JPS62112753A (en) High strength cast steel and its manufacture
JP2001192762A (en) High toughness non-heat treated steel for hot forging

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071205

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071205

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091205

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101205

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141205

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees