JPH07179988A - Hot tool steel excellent in high temperature strength - Google Patents

Hot tool steel excellent in high temperature strength

Info

Publication number
JPH07179988A
JPH07179988A JP34770893A JP34770893A JPH07179988A JP H07179988 A JPH07179988 A JP H07179988A JP 34770893 A JP34770893 A JP 34770893A JP 34770893 A JP34770893 A JP 34770893A JP H07179988 A JPH07179988 A JP H07179988A
Authority
JP
Japan
Prior art keywords
steel
temperature
toughness
strength
steels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34770893A
Other languages
Japanese (ja)
Inventor
Toru Yamazaki
徹 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP34770893A priority Critical patent/JPH07179988A/en
Publication of JPH07179988A publication Critical patent/JPH07179988A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To produce a hot tool steel excellent in high temp. strength by preparing a steel having a specific composition specified in C, Mo, W, and V contents and performing hardening and tempering under respectively specified temp. conditions. CONSTITUTION:A steel consisting of, by weight ratio, 0.30-0.50% C, 0.10-1.50% Si, 0.10-1.00% Mn, 0.1-1.5% Ni, 2.0-4.0% Cr, 2.0-4.0% Mo, 0.1-1.0% V, 0.1-1.0% W, and the balance Fe with impurity elements, is prepared. This steel is hardened at 1060-1100 deg.C and tempered at 500-620 deg.C. By this method, the hot tool steel excellent in strength at high temp. can be obtained. The steel has toughness equal to or higher than that of conventional steel even if subjected to hardening at a temp. higher than heretofore and can secure superior strength at high temp.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、従来鋼に比べ優れた高
温強度を有しつつ同等以上の靱性の得ることのできる高
温強度の優れた熱間工具鋼に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot work tool steel having an excellent high temperature strength and a toughness equal to or higher than that of a conventional steel, and an excellent high temperature strength.

【0002】[0002]

【従来の技術】従来、SKD61 、SKD62 、SKD7等のW を添
加しないか、添加しても少量しか添加しないJIS で規定
された熱間工具鋼はSKT3、SKT4を除き1000〜1050℃の温
度にて焼入が行われている。これは、W を多量に添加す
るSKD4、SKD5、SKD8の場合、W系の介在物を固溶するた
めに、1100℃を越える温度で焼入を行っているが、その
他の鋼種では、焼入温度を上げると結晶粒が粗大化し、
焼もどし時に析出する粒界炭化物による影響が大きくな
って、靱性が低下し、金型として使用中の大割れを懸念
するために、焼入温度を1050℃以下に抑える必要があっ
たためである。
2. Description of the Related Art Conventionally, hot work tool steels specified by JIS that do not add W such as SKD61, SKD62, SKD7, etc., or add a small amount even if added, have a temperature of 1000 to 1050 ℃ except SKT3 and SKT4. Is being hardened. This is because in the case of SKD4, SKD5, and SKD8, in which a large amount of W is added, quenching is performed at a temperature exceeding 1100 ° C in order to form a solid solution with W-based inclusions, but with other steel types, quenching is performed. When the temperature is raised, the crystal grains become coarse,
This is because it was necessary to suppress the quenching temperature to 1050 ° C. or less in order to increase the influence of the grain boundary carbides that precipitate during tempering, reduce the toughness, and cause large cracks during use as a mold.

【0003】焼入温度を1050℃以下に抑えることによ
り、必要な靱性が確保され、金型として使用中に負荷さ
れる繰返し衝撃荷重によっても割れの発生しにくい材料
を確保することができたのである。
By suppressing the quenching temperature to 1050 ° C. or lower, the required toughness was secured, and it was possible to secure a material that was resistant to cracking under repeated impact loads applied during use as a mold. is there.

【0004】[0004]

【発明が解決しようとする課題】従来のように、焼入温
度を低くすると、マトリックス中の炭化物の固溶が不十
分となり、焼もどし時に得られる二次硬化の程度が小さ
くなって、強度向上効果が十分に得られなくなる。しか
し、従来鋼を使用して単に焼入温度を高くするだけで
は、高温強度を高めることはできるが、結晶粒が粗大化
し靱性が低下して、耐衝撃性が低下し、金型として使用
中に大割れの危険がある。従って、従来は必要な靱性が
確保できる焼入温度の上限である1050℃を越える温度で
は焼入が行われていないのが通常であった。
As in the prior art, when the quenching temperature is lowered, the solid solution of carbides in the matrix becomes insufficient, and the degree of secondary hardening obtained during tempering decreases, resulting in improved strength. The effect cannot be obtained sufficiently. However, the high temperature strength can be increased by simply increasing the quenching temperature using conventional steel, but the crystal grains become coarse and the toughness decreases, the impact resistance decreases, and during use as a mold. There is a risk of large cracks. Therefore, conventionally, quenching has not normally been performed at a temperature exceeding 1050 ° C., which is the upper limit of the quenching temperature at which the required toughness can be secured.

【0005】本発明は、従来より高い温度で焼入を行っ
ても従来鋼と同等以上の靱性が得られ、かつ優れた高温
強度を確保することのできる高温強度の優れた熱間工具
鋼を提供することを目的とする。
The present invention provides a hot work tool steel excellent in high-temperature strength that can obtain toughness equal to or higher than that of conventional steel even if quenching is performed at a higher temperature than before, and that can secure excellent high-temperature strength. The purpose is to provide.

【0006】[0006]

【課題を解決するための手段】本発明者は従来鋼の靱性
低下が粒界脆化によって引き起こされていることに注目
し、粒界脆化の原因となる粒界への炭化物析出挙動と成
分との関係について詳しく調査した。その結果、以下の
知見を得ることができた。
The inventors of the present invention have noticed that the decrease in toughness of conventional steel is caused by grain boundary embrittlement, and the behavior and composition of carbide precipitation at the grain boundary causing grain boundary embrittlement. I investigated in detail about the relationship with. As a result, the following findings were obtained.

【0007】Cr炭化物は比較的低温の焼もどし温度か
ら粒界に析出するが、Cr添加量を4%以下に抑えた場合に
は、600 ℃程度の焼もどし温度であれば粒界への析出量
は、靱性に大きな影響を与える程多くない。 Cr添加量を4%以下に抑えた場合でも、焼もどし温度が
620 ℃を越えると、炭化物の粒界への析出量が多くなっ
て靱性の低下が顕著になる。 Mo、W 等は比較的高温でないと炭化物が粒界に析出し
ないので、MoをSKD61 、SKD62 に比べ増量し、W は添加
するが、W 系炭化物の固溶温度は高いので、少量の添加
に抑えた方が靱性の点で良い。 焼入温度を1060〜1100℃に高めることにより、炭化物
の固溶が進むため、マトリックスの靱性が向上する。ま
た、Niを少量添加することにより、マトリックスの靱性
がさらに向上する。 焼入温度を1060〜1100℃に高めることにより、結晶粒
は若干粗大化するが、粒界炭化物による靱性低下を小さ
く抑えるために前記〜の知見に基づき対策を行うこ
とにより、影響は小さく抑えることができる。 Cr量を従来のSKD61 、SKD62 に比べ低減し、Moを増量
し、V 、W を複合添加した場合には、SKD61 、SKD62 に
比べ高い温度にて炭化物が析出し二次硬化が得られるの
で、高温での使用時に優れた性能が得られる。
Cr carbide precipitates at grain boundaries from the tempering temperature of a relatively low temperature, but when the Cr addition amount is suppressed to 4% or less, at the tempering temperature of about 600 ° C., precipitation at grain boundaries occurs. The amount is not so great as to have a great effect on toughness. Even if the Cr addition amount is suppressed to 4% or less, the tempering temperature is
If it exceeds 620 ° C, the precipitation amount of carbides on the grain boundaries increases, and the toughness decreases significantly. Since carbides do not precipitate at grain boundaries unless the temperature of Mo, W, etc. is relatively high, Mo is increased compared to SKD61, SKD62, and W is added, but the solid solution temperature of W-based carbides is high. It is better to suppress it in terms of toughness. By increasing the quenching temperature to 1060 to 1100 ° C, the solid solution of carbide proceeds, so that the toughness of the matrix is improved. Further, the toughness of the matrix is further improved by adding a small amount of Ni. By increasing the quenching temperature to 1060 to 1100 ° C, the crystal grains become slightly coarser, but in order to suppress the decrease in toughness due to grain boundary carbides, the effect should be kept small by taking measures based on the findings of the above. You can When Cr content is reduced compared to conventional SKD61 and SKD62, Mo content is increased, and V and W are added together, carbide precipitates at a higher temperature than SKD61 and SKD62, and secondary hardening is obtained. Excellent performance when used at high temperatures.

【0008】すなわち、本発明の第1発明は、重量比に
してC:0.30〜0.50% 、Si:0.10 〜1.50% 、Mn:0.10 〜1.
00% 、Ni:0.1〜1.5%、Cr:2.0〜4.0%、Mo:2.0〜4.0%、V:
0.1〜1.0%、W:0.1 〜1.0%を含有し、残部がFe及び不純
物元素からなる鋼を1060〜1100℃で焼入後、 500〜620
℃にて焼もどしを施すことを特徴とする高温強度の優れ
た熱間工具鋼であり、第2発明は第1発明に比べ靱性、
被削性を向上させるため、Caを0.001 〜0.010%をさらに
含有させたものである。
That is, in the first invention of the present invention, C: 0.30 to 0.50%, Si: 0.10 to 1.50%, Mn: 0.10 to 1.
00%, Ni: 0.1-1.5%, Cr: 2.0-4.0%, Mo: 2.0-4.0%, V:
Steel containing 0.1 to 1.0% and W: 0.1 to 1.0%, the balance of which is Fe and impurity elements, is quenched at 1060 to 1100 ° C, then 500 to 620
It is a hot work tool steel excellent in high temperature strength characterized by being tempered at ℃, the second invention is tougher than the first invention,
In order to improve machinability, Ca is further contained in an amount of 0.001 to 0.010%.

【0009】次に、本発明における高温強度の優れた熱
間工具鋼の成分組成限定理由、熱処理条件限定理由につ
いて以下に説明する。 C:0.30〜0.50% C は炭化物形成元素と結合し、熱間工具鋼として必要な
硬度、耐摩耗性を得るため0.30% 以上の含有が必要であ
る。しかし、多量に含有させると靱性が低下するので上
限を0.50% とした。
Next, the reasons for limiting the component composition and heat treatment conditions of the hot work tool steel having excellent high temperature strength in the present invention will be explained below. C: 0.30 to 0.50% C is required to be contained in an amount of 0.30% or more in order to combine with a carbide forming element and obtain the hardness and wear resistance required for hot work tool steel. However, if contained in a large amount, the toughness decreases, so the upper limit was made 0.50%.

【0010】Si:0.10 〜1.00% Siは製鋼時の脱酸のために必要であり、かつ高温強度、
耐ヒートチェック性を高める効果のある元素である。従
って、最低でも0.10% の含有が必要である。しかし、多
量に含有させると、靱性が低下し、かつ金型への加工性
も悪くなるため、上限を1.00% とした。
Si: 0.10 to 1.00% Si is necessary for deoxidation during steel making, and has high temperature strength,
It is an element that has the effect of enhancing heat check resistance. Therefore, a minimum content of 0.10% is required. However, if contained in a large amount, the toughness is lowered and the workability into a mold is deteriorated, so the upper limit was made 1.00%.

【0011】Mn:0.10 〜1.00% Mnは、製鋼時に脱酸、脱硫効果を有し、かつ焼入性向上
のために必要な元素であり、0.10% 以上の含有が必要で
ある。しかし、多量に含有させるとSiと同様に靱性と加
工性が低下するため、上限を1.00% とした。
Mn: 0.10 to 1.00% Mn is an element that has a deoxidizing and desulfurizing effect during steelmaking and is necessary for improving hardenability, and it is necessary to contain 0.10% or more. However, if contained in a large amount, the toughness and workability deteriorate as with Si, so the upper limit was made 1.00%.

【0012】Ni:0.10 〜1.50% Niはマトリックスの靱性を向上するとともに、焼入性向
上にも効果のある元素であり、0.10% 以上の含有が必要
である。しかし、多量に含有させると、被削性が低下し
て金型の製造が難しくなるので、上限を1.50% とした。
Ni: 0.10 to 1.50% Ni is an element effective not only in improving the toughness of the matrix but also in improving the hardenability, and the content of 0.10% or more is necessary. However, if contained in a large amount, the machinability deteriorates and it becomes difficult to manufacture the mold, so the upper limit was made 1.50%.

【0013】Cr:2.00 〜4.00% CrはC と結合して炭化物を形成し、耐摩耗性向上に効果
があるとともに、焼入性向上にも寄与する元素であり、
2.00% 以上の含有が必要である。しかし、多量に含有さ
せると粒界炭化物の析出量が増加し、靱性が大幅に低下
するため、上限を4.00% とした。
Cr: 2.00 to 4.00% Cr is an element which combines with C to form a carbide, which is effective in improving wear resistance and contributes to improving hardenability.
It is necessary to contain 2.00% or more. However, if contained in a large amount, the amount of precipitation of grain boundary carbides increases and the toughness decreases significantly, so the upper limit was made 4.00%.

【0014】Mo:2.0〜4.0%、V:0.1 〜1.0%、W:0.1 〜1.
0% Mo、V 、W はC と結合して炭化物を形成し、焼もどし時
の二次硬化によって高温強度を向上させるとともに、必
要な耐摩耗性を確保するために不可欠な元素である。従
って、最低でもMoは2.0%、V は0.1%、W は0.1%を複合添
加する必要がある。しかし、多量に含有させると過度に
生成した炭化物が粒界に析出して、靱性が低下するの
で、上限をMoは4.0%、V は1.0%、W は1.0%とした。ま
た、W 系炭化物は固溶温度が高いため、焼入時に炭化物
を十分に固溶するためにも、上限を1.0%以下に規制する
ことが必要である。
Mo: 2.0-4.0%, V: 0.1-1.0%, W: 0.1-1.
0% Mo, V, and W are elements that are essential to combine with C to form carbides, improve the high-temperature strength by secondary hardening during tempering, and ensure the necessary wear resistance. Therefore, it is necessary to add at least 2.0% of Mo, 0.1% of V, and 0.1% of W in combination. However, when contained in a large amount, excessively formed carbide precipitates at the grain boundaries and the toughness decreases, so the upper limits were set to 4.0% for Mo, 1.0% for V, and 1.0% for W. Further, since the W 3 carbide has a high solid solution temperature, it is necessary to regulate the upper limit to 1.0% or less in order to sufficiently dissolve the carbide during quenching.

【0015】Ca:0.001〜0.010% Caは介在物の形態を球状化し、靱性および被削性向上の
ために効果のある元素で、0.001%以上含有させることが
必要である。しかし、多量に含有させても前記効果が飽
和し、逆に靱性が低下するので、上限を0.010%とした。
Ca: 0.001 to 0.010% Ca is an element effective for making the morphology of inclusions spherical and improving toughness and machinability. It is necessary to contain 0.001% or more. However, even if contained in a large amount, the above effect is saturated and conversely the toughness decreases, so the upper limit was made 0.010%.

【0016】次に、熱処理条件の限定理由について説明
する。焼入温度の下限を1060℃としたのは、1060℃未満
の温度では高温強度向上効果が十分に得られず、従来の
JIS 鋼に比べ優れた強度が得られないためであり、1100
℃を越える温度で焼入を行った場合には、結晶粒が粗大
化し、前記した成分、焼もどし条件の適正化を図って
も、従来鋼と同等以上の靱性を確保することが困難にな
るためである。
Next, the reasons for limiting the heat treatment conditions will be described. The lower limit of the quenching temperature is set to 1060 ° C because the effect of improving high temperature strength cannot be sufficiently obtained at a temperature lower than 1060 ° C.
This is because superior strength cannot be obtained compared to JIS steel.
When quenching is performed at a temperature exceeding ℃, the crystal grains become coarse, and it is difficult to secure toughness equivalent to or better than that of conventional steel even if the above-mentioned components and tempering conditions are optimized. This is because.

【0017】また、焼もどし温度の範囲を500 〜620 ℃
の範囲としたのは、500 ℃未満の温度では二次硬化によ
る強度向上効果が十分に得られず、かつ靱性も劣るため
であり、620 ℃を越えると粒界に析出する炭化物量が増
加して、靱性が低下するためである。
The tempering temperature range is 500 to 620 ° C.
The reason for this range is that at a temperature of less than 500 ° C, the strength improvement effect due to secondary hardening is not sufficiently obtained and the toughness is poor, and if it exceeds 620 ° C, the amount of carbides that precipitate at grain boundaries increases. It is because the toughness decreases.

【0018】[0018]

【作用】本発明の熱間工具鋼は、Niの添加と高い焼入温
度によってマトリックスの靱性を高め、かつ焼もどし温
度の上限を低めに規制し、Cr量を低減して粒界炭化物の
析出を抑制しているので、焼入温度を高めても靱性が低
下することなく、従来鋼に比べ優れた高温強度を得るこ
とができる。
The hot work tool steel of the present invention enhances the toughness of the matrix by the addition of Ni and the high quenching temperature, and regulates the upper limit of the tempering temperature to a lower limit to reduce the amount of Cr and to precipitate the grain boundary carbides. Therefore, even if the quenching temperature is increased, the toughness does not decrease, and high temperature strength superior to that of the conventional steel can be obtained.

【0019】[0019]

【実施例】以下に本発明の特徴を比較鋼および従来鋼と
比較し、実施例でもって明らかにする。表1は、実施例
に用いた供試材の化学成分を示すものである。
EXAMPLES The features of the present invention will be described below in comparison with comparative steels and conventional steels with reference to examples. Table 1 shows the chemical components of the test materials used in the examples.

【0020】[0020]

【表1】 [Table 1]

【0021】表1において、1〜8鋼は本発明鋼であ
り、1〜4鋼は第1発明鋼、5〜8鋼は第2発明鋼であ
る。また、9〜15鋼は比較鋼であり、16〜18鋼はそれぞ
れ従来鋼であるSKD61 、SKD7、SKD62 である 。
In Table 1, steels 1 to 8 are steels of the present invention, steels 1 to 4 are steels of the first invention, and steels 5 to 8 are steels of the second invention. Steels 9 to 15 are comparative steels, and steels 16 to 18 are conventional steels SKD61, SKD7 and SKD62, respectively.

【0022】表1に示す成分を有する供試材を20kg高周
波溶解炉にて溶解し、直径15mmの丸棒に鍛伸後、試験片
加工した。そして硬さ、高温強度(700℃における引張強
さ)、衝撃値 (JIS3号Uノッチシャルピー試験)につい
て測定し、各供試材の性能を評価した。なお、熱処理条
件は焼入温度1080℃、焼もどし温度600 ℃にて行い、従
来鋼である16〜18鋼については通常の焼入温度である10
30℃で行った場合(焼もどし温度 600℃)についても同
時に評価した。評価結果を表2に示す。
Specimens having the components shown in Table 1 were melted in a high frequency melting furnace of 20 kg, forged into a round bar having a diameter of 15 mm, and processed into test pieces. The hardness, high temperature strength (tensile strength at 700 ° C.) and impact value (JIS No. 3 U notch Charpy test) were measured to evaluate the performance of each test material. Note that the heat treatment conditions are a quenching temperature of 1080 ° C and a tempering temperature of 600 ° C. For conventional steels 16-18, the normal quenching temperature is 10
At the same time, the evaluation was performed at 30 ° C (tempering temperature 600 ° C). The evaluation results are shown in Table 2.

【0023】[0023]

【表2】 [Table 2]

【0024】表2から明らかなように、比較鋼、従来鋼
である9〜18鋼を本発明の実施例と比較すると、9鋼は
C 含有率が高いため、靱性が劣るものであり、10鋼は逆
にC含有率が低いため硬さ、高温強度がともに劣るもの
である。11鋼はSi含有率が高いため、靱性が劣るもので
あり、12鋼はNi含有率が低いため、靱性が若干劣るもの
であり、13鋼はCr含有率が高いため、焼入温度を高めた
ことにより靱性が大きく低下したものであり、14、15鋼
はMo、V 、W の含有率が低いため、高温強度が劣るもの
である。
As is clear from Table 2, when the comparative steels, the conventional steels 9 to 18 are compared with the examples of the present invention, the 9 steels are
Since the C content is high, the toughness is inferior, and on the contrary, the 10 steel has a low C content and thus has poor hardness and high-temperature strength. 11 steel has a high Si content and thus poor toughness, 12 steel has a low Ni content and therefore a little inferior toughness, and 13 steel has a high Cr content, which increases the quenching temperature. As a result, the toughness was significantly reduced, and the 14th and 15th steels had a low Mo, V, and W content, and therefore had poor high-temperature strength.

【0025】また、従来鋼の場合には、焼入温度を高め
ると若干強度は上昇するが、靱性が大きく低下し、従来
の条件にて熱処理を施した場合は、高温強度が本発明に
比べ大きく劣るものである。
Further, in the case of the conventional steel, when the quenching temperature is raised, the strength is slightly increased, but the toughness is greatly lowered, and when the heat treatment is performed under the conventional conditions, the high temperature strength is higher than that of the present invention. It is inferior.

【0026】これに対して、本発明鋼である1〜8鋼は
Niを添加してマトリックスの靱性向上を図るとともに、
Cr、Mo、W 量の適正化を図ることにより、焼入温度を高
めても靱性が劣ることがなく、優れた高温強度を得るこ
とができた。
On the other hand, the steels 1 to 8 of the present invention are
While adding Ni to improve the toughness of the matrix,
By optimizing the amounts of Cr, Mo, and W, even if the quenching temperature was raised, the toughness did not deteriorate, and excellent high-temperature strength could be obtained.

【0027】次に熱処理条件の変化による本発明の性能
への影響について別の実施例により明らかにする。表1
に示す供試材のうち、本発明鋼の1鋼と5鋼を用い、焼
入温度と焼もどし温度を変化させて性能への影響を調査
した。結果を表3に示す。
Next, the influence of changes in heat treatment conditions on the performance of the present invention will be clarified by another example. Table 1
Using the steels 1 and 5 of the present invention among the test materials shown in (1), the influence on the performance was investigated by changing the quenching temperature and the tempering temperature. The results are shown in Table 3.

【0028】[0028]

【表3】 [Table 3]

【0029】表3から明らかなように、本発明鋼である
1、5鋼を使用しても、所定の焼入温度、焼もどし温度
の範囲外で熱処理した場合には、高温強度、靱性につい
て共に優れた性能を得ることができないことがわかる。
従って、本発明の効果を十分に引き出すためには、規制
した範囲内の条件で熱処理を施す必要がある。
As is clear from Table 3, even when the steels of the present invention 1 and 5 are used, when they are heat-treated at temperatures outside the predetermined quenching temperature and tempering temperature range, the high temperature strength and toughness It can be seen that both cannot obtain excellent performance.
Therefore, in order to bring out the effect of the present invention sufficiently, it is necessary to perform the heat treatment under the conditions within the regulated range.

【0030】[0030]

【発明の効果】本発明により、焼入温度を少し高めるだ
けで優れた高温強度が得られる鋼の提供が可能となる。
従って、金型として使用した際、大幅な寿命向上を図る
ことができ、金型交換の手間が少なくなり、生産性向上
に大きく寄与することができる。
According to the present invention, it is possible to provide a steel having excellent high temperature strength by only slightly increasing the quenching temperature.
Therefore, when it is used as a mold, the life of the mold can be significantly improved, the time and effort required for mold replacement can be reduced, and the productivity can be greatly improved.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量比にしてC:0.30〜0.50% 、Si:0.10
〜1.50% 、Mn:0.10〜1.00% 、Ni:0.1〜1.5%、Cr:2.0〜
4.0%、Mo:2.0〜4.0%、V:0.1 〜1.0%、W:0.1〜1.0%を含
有し、残部がFe及び不純物元素からなる鋼を1060〜1100
℃で焼入後、500〜620 ℃にて焼もどしを施したことを
特徴とする高温強度の優れた熱間工具鋼。
1. C: 0.30 to 0.50% by weight ratio, Si: 0.10
~ 1.50%, Mn: 0.10 ~ 1.00%, Ni: 0.1 ~ 1.5%, Cr: 2.0 ~
Steel containing 60%, Mo: 2.0 to 4.0%, V: 0.1 to 1.0%, W: 0.1 to 1.0%, the balance Fe and impurity elements 1060 to 1100
A hot work tool steel with excellent high-temperature strength, characterized by being tempered at 500 to 620 ° C after being quenched at ℃.
【請求項2】 重量比にしてC:0.30〜0.50% 、Si:0.10
〜1.50% 、Mn:0.10〜1.00% 、Ni:0.1〜1.5%、Cr:2.0〜
4.0%、Mo:2.0〜4.0%、V:0.1 〜1.0%、W:0.1〜1.0%と、C
a:0.001〜0.010%を含有し、残部がFe及び不純物元素か
らなる鋼を1060〜1100℃で焼入後、 500〜620 ℃にて焼
もどしを施したことを特徴とする高温強度の優れた熱間
工具鋼。
2. C: 0.30 to 0.50% by weight ratio, Si: 0.10
~ 1.50%, Mn: 0.10 ~ 1.00%, Ni: 0.1 ~ 1.5%, Cr: 2.0 ~
4.0%, Mo: 2.0 to 4.0%, V: 0.1 to 1.0%, W: 0.1 to 1.0%, C
a: Steel containing 0.001 to 0.010% with the balance being Fe and impurity elements was quenched at 1060 to 1100 ° C, and then tempered at 500 to 620 ° C. Hot work tool steel.
JP34770893A 1993-12-24 1993-12-24 Hot tool steel excellent in high temperature strength Pending JPH07179988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34770893A JPH07179988A (en) 1993-12-24 1993-12-24 Hot tool steel excellent in high temperature strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34770893A JPH07179988A (en) 1993-12-24 1993-12-24 Hot tool steel excellent in high temperature strength

Publications (1)

Publication Number Publication Date
JPH07179988A true JPH07179988A (en) 1995-07-18

Family

ID=18392049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34770893A Pending JPH07179988A (en) 1993-12-24 1993-12-24 Hot tool steel excellent in high temperature strength

Country Status (1)

Country Link
JP (1) JPH07179988A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001042524A3 (en) * 1999-12-07 2002-01-03 Timken Co Low carbon, low chromium carburizing high speed steels
EP1887096A1 (en) * 2006-08-09 2008-02-13 Rovalma, S.A. Hot working steel
WO2017025397A1 (en) * 2015-08-07 2017-02-16 Böhler Edelstahl GmbH & Co KG Method for producing a tool steel
WO2018056884A1 (en) * 2016-09-26 2018-03-29 Uddeholms Ab Hot work tool steel

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001042524A3 (en) * 1999-12-07 2002-01-03 Timken Co Low carbon, low chromium carburizing high speed steels
US6702981B2 (en) 1999-12-07 2004-03-09 The Timken Company Low-carbon, low-chromium carburizing high speed steels
EP1887096A1 (en) * 2006-08-09 2008-02-13 Rovalma, S.A. Hot working steel
WO2008017341A1 (en) * 2006-08-09 2008-02-14 Rovalma, S.A. Process for setting the thermal conductivity of a steel, tool steel, in particular hot-work steel, and steel object
US8557056B2 (en) 2006-08-09 2013-10-15 Rovalma, S.A. Process for setting the thermal conductivity of a steel, tool steel, in particular hot-work steel, and steel object
EP3228724A1 (en) * 2006-08-09 2017-10-11 Rovalma, S.A. Method for setting the thermal conductivity of a steel, tool steel, in particular hot-work steel, and steel object
WO2017025397A1 (en) * 2015-08-07 2017-02-16 Böhler Edelstahl GmbH & Co KG Method for producing a tool steel
WO2018056884A1 (en) * 2016-09-26 2018-03-29 Uddeholms Ab Hot work tool steel

Similar Documents

Publication Publication Date Title
US6383311B1 (en) High strength drive shaft and process for producing the same
JPH0253505B2 (en)
JPH0551691A (en) Wear resistant steel sheet excellent in delayed fracture resistance and its production
JP3593255B2 (en) Manufacturing method of high strength shaft
JP3327635B2 (en) Non-tempered steel for hot forging excellent in fatigue strength and method for producing non-heat-treated hot forged product using the steel
JP5061455B2 (en) Hot die tool steel for aluminum die casting with reduced cracking from water-cooled holes
JP3100492B2 (en) Manufacturing method of high fatigue strength hot forgings
JP6903507B2 (en) Hot tool steel with excellent hardenability and toughness
JP2650225B2 (en) Spring steel
JPWO2019035401A1 (en) Steel with high hardness and excellent toughness
JPH07179988A (en) Hot tool steel excellent in high temperature strength
JPH07188840A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
JP2004169055A (en) Age hardening type high-strength bainitic steel parts superior in machinability and manufacturing method therefor
JP2004124190A (en) Induction-tempered steel having excellent twisting property
JPH07116550B2 (en) Low alloy high speed tool steel and manufacturing method thereof
JP2576857B2 (en) High strength non-tempered tough steel
JP2563164B2 (en) High strength non-tempered tough steel
JP7176877B2 (en) Alloy steel for machine structural use with excellent impact resistance
JP3185236B2 (en) Processing tool and method of manufacturing the same
JP3566120B2 (en) Cold tool steel with high cycle fatigue life and excellent machinability
JPH0796696B2 (en) Alloy tool steel
JP3833379B2 (en) Cold work tool steel with excellent machinability
JP2784128B2 (en) Precipitation hardening type hot work tool steel
JPH06299296A (en) Steel for high strength spring excellent in decarburizing resistance
JPH02145744A (en) Carbon steel for machine structural use having excellent cold forgeability and induction hardenability