JPH05306436A - High strength fe-ni-co alloy sheet excellent in corrosion resistance and repeated bendability and its production - Google Patents

High strength fe-ni-co alloy sheet excellent in corrosion resistance and repeated bendability and its production

Info

Publication number
JPH05306436A
JPH05306436A JP13758992A JP13758992A JPH05306436A JP H05306436 A JPH05306436 A JP H05306436A JP 13758992 A JP13758992 A JP 13758992A JP 13758992 A JP13758992 A JP 13758992A JP H05306436 A JPH05306436 A JP H05306436A
Authority
JP
Japan
Prior art keywords
present
cold rolling
less
alloy
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13758992A
Other languages
Japanese (ja)
Other versions
JP2797835B2 (en
Inventor
Tadashi Inoue
正 井上
Kiyoshi Tsuru
清 鶴
Tomoyoshi Okita
智良 大北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP4137589A priority Critical patent/JP2797835B2/en
Publication of JPH05306436A publication Critical patent/JPH05306436A/en
Application granted granted Critical
Publication of JP2797835B2 publication Critical patent/JP2797835B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To produce an IC lead frame material haying high strength and excellent in corrosion resistance and repeated bendability. CONSTITUTION:This material has a composition consisting of, by weight, 27-30% Ni, 5-18% Co, 0.10-3.0% Mn, <=0.10% Si, 0.020-0.070% C, <=0.010% N, <=1.0ppm H, <=0.0030% S, <=0.03% P, <=0.0040% O, <=0.05% Cr, 0.01-1.0% Mo, and the balance Fe with inevitable impurities and satisfying either 63.5%<=2Ni+Co+ Mn<=65.0% (when Co<10%) or 69.5%<=2Ni+Co+Mn<=72.5% (when Co>=10%). Further, the amount of austenite in the structure is regulated to 30-90% and the grains are graded to grain size No.8 or above.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は耐食性、繰返し曲げ特性
に優れた高強度Fe−Ni−Co合金薄板およびその製造方法
に係り、高強度で耐食性および繰返し曲げ特性に優れた
ICリードフレーム用材料およびその好ましい製造方法
を提供しようとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength Fe-Ni-Co alloy sheet excellent in corrosion resistance and cyclic bending characteristics and a method for manufacturing the same, and is a material for an IC lead frame having high strength and excellent corrosion resistance and cyclic bending characteristics. And a preferable method for producing the same.

【0002】[0002]

【従来の技術】近年における半導体の高集積化およびパ
ッケードの薄肉化に伴い、リードフレームは多ピン化、
薄肉化の傾向を呈しており、このためリードフレーム用
材料に関しても更なる高強度化が求められている。
2. Description of the Related Art In recent years, with the high integration of semiconductors and the thinning of packages, the lead frame has a large number of pins,
Since there is a tendency toward thinning, there is a demand for higher strength in lead frame materials.

【0003】然して上記のような多ピン用Fe系高強度リ
ードフレーム材料としては、近時において特開平3-1663
40号公報が提案されている。即ちこの開示技術では、Fe
−Ni−Co系合金でのNi、Co量を制御し、かつ特定の加工
率による加工誘起マルテンサイト変態とその後の焼鈍で
逆変態オーステナイト相を析出させ、特定の比率で2相
組織とすることにより、リードフレームの各種特性、特
にハンダ性、メッキ性、低熱膨脹特性を損わずに高強度
化(HV で260以上、引張強さが80kgf/mm2 以上)
を達成するものである。
However, as the Fe-based high-strength lead frame material for a large number of pins as described above, there has been recently been disclosed in JP-A-3-6633.
Publication No. 40 is proposed. That is, in this disclosed technology, Fe
-Controlling the amount of Ni and Co in a -Ni-Co alloy and precipitating a reverse transformation austenite phase by work-induced martensitic transformation with a specific working ratio and subsequent annealing, and forming a two-phase structure at a specific ratio the various characteristics of the lead frame, in particular solderability, plating resistance, high strength and low thermal expansion properties, without compromising (H V in 260 or more, a tensile strength of 80 kgf / mm 2 or higher)
Is achieved.

【0004】[0004]

【発明が解決しようとする課題】上記のような従来の技
術では、HV =270〜380、引張強さ85〜117
kgf/mm2 、平均熱膨脹係数αRT-300=5.2〜8.5×10
-6/℃の特性を有し、かつ優れた銀メッキ性、ハンダ
性、隙間腐食性を合わせ有するが、下記に示すような問
題を依然として有していた。 (1)素材の耐食性に問題がある。 (2)繰返し曲げ特性(曲げ加工性)が劣る。 (3)HV 275以上の高強度材ではαRT-300は6.8×
10-6/℃以上の高い熱膨張係数となり、IC製造工程
でSiチップがリードフレームに実装される際の熱歪によ
りSiチップが破損する危険性が高い。
According to the conventional technique as described above, H V = 270 to 380 and tensile strength 85 to 117.
kgf / mm 2 , average coefficient of thermal expansion α RT-300 = 5.2-8.5 × 10
It has characteristics of -6 / ° C and excellent silver plating property, solder property, and crevice corrosion property, but it still has the following problems. (1) There is a problem in the corrosion resistance of the material. (2) The repeated bending property (bending workability) is inferior. (3) With high strength materials of H V 275 or higher, α RT-300 is 6.8 ×
It has a high coefficient of thermal expansion of 10 −6 / ° C. or higher, and there is a high risk that the Si chip will be damaged by thermal strain when the Si chip is mounted on the lead frame in the IC manufacturing process.

【0005】前記耐食性は本材料が、マルテンサイト+
オーステナイトの2相組織を呈し、かつ、オーステナイ
ト相は逆変態により形成された転位密度の低いオーステ
ナイト相が主であるため、転位密度が高いマルテンサイ
トおよび残留オーステナイトとの間で腐食が進行し易い
こととなり、著しく劣っていた。そして製品特性上、コ
イル製造後、スリット加工・リードフレームへの微細加
工等が施されるまでに、素材表面に点錆が発生し、著し
く重大な問題を起こしている。通常の42アロイ(Fe−
42wt%Ni)ではこのような問題は皆無であり、本素材
のようにNiが32.5%以下の低Ni合金であること、およ
び同一材料内で、転位密度の異なる金属相が共存するこ
とが、耐食性を劣化させた主因であると推察される。
The above-mentioned corrosion resistance of this material is martensite +
Corrosion between martensite and retained austenite having a high dislocation density is likely to occur because the austenite phase having a two-phase structure of austenite and the austenite phase mainly formed by reverse transformation and having a low dislocation density are mainly formed. It was markedly inferior. Due to the characteristics of the product, rust is generated on the surface of the material after the coil is manufactured and before slitting and fine processing of the lead frame are performed, causing a serious problem. Normal 42 alloy (Fe-
42 wt% Ni) has no such problems, it is a low Ni alloy with Ni of 32.5% or less like this material, and that metal phases with different dislocation densities coexist in the same material. However, it is speculated that this is the main cause of deterioration in corrosion resistance.

【0006】繰返し曲げ特性も、前記した本材料の特
徴、すなわち、転位密度が高く、高い強度のマルテンサ
イトに対し、転位密度が低く、低い強度である逆変態オ
ーステナイトが多量に存在することによって劣化する。
The cyclic bending property is also deteriorated by the above-mentioned characteristic of the present material, that is, the presence of a large amount of reverse transformation austenite having a low dislocation density and a low strength with respect to martensite having a high dislocation density and a high strength. To do.

【0007】また、熱膨張特性も、更なる高強度化を意
図した場合、この技術で特徴とするような冷延時の加工
誘起変態によるマルテンサイト量の増加とともに損われ
るものである。更に、本技術で特徴としている熱膨張お
よび高強度のバランス化だけでは最近の高い強度、低い
熱膨張特性のニーズに即応できない。すなわち、平均熱
膨張α30-400 C が4−8×10-6/℃で強度は引張強
さ120kgf/mm2 以上を満たす、成分、組織範囲はこの
技術において求め得ない。
Further, the thermal expansion characteristics are also impaired with an increase in the amount of martensite due to the work-induced transformation during cold rolling, which is a feature of this technique, when further strengthening is intended. Further, the balance of thermal expansion and high strength, which is a feature of the present technology, cannot immediately meet the recent needs for high strength and low thermal expansion characteristics. That is, the average thermal expansion α 30-400 . When C is 4-8 × 10 −6 / ° C., the strength satisfies the tensile strength of 120 kgf / mm 2 or more, and the composition and the structural range cannot be determined by this technique.

【0008】なお、最近のリードフレームに対する更な
る低コスト化の要望により、Agの薄メッキ化の傾向が強
まり、本技術でみられるAgメッキ厚(3μm)よりも薄
メッキ化が進んでおり、このような要望に対しては、本
技術で特徴とする合金においてもAgメッキ性の問題が生
じているのが現状である。さらに本合金のハンダ性も耐
候性の面では前記の特開平3-166340において、高い性能
が達成されているが、ぬれ性の面では未だ改善された技
術は見られていない。
Incidentally, due to the recent demand for further cost reduction of the lead frame, the tendency of thinning Ag plating has been strengthened, and the thickness of Ag plating (3 μm) seen in the present technology has become thinner. In response to such a demand, the present situation is that the alloy featuring in the present technology has a problem of Ag plating property. Further, the solderability of the present alloy has achieved high performance in the above-mentioned Japanese Patent Laid-Open No. 3-166340 in terms of weather resistance, but no technique has been found to be improved in terms of wettability.

【0009】[0009]

【課題を解決するための手段】本発明は上記したような
従来技術における課題を解消することについて検討を重
ね、この種Fe−Ni−Co系合金における組成を特定化する
と共に組織を特定することにより、その目的を有効に達
成し、又その好ましい製造方法を確立することに成功し
たものであって、以下の如くである。
Means for Solving the Problems The present invention has been studied to solve the problems in the prior art as described above, and to specify the composition and the structure in this kind of Fe-Ni-Co alloy. Have succeeded in achieving the object effectively and establishing a preferable manufacturing method thereof, and are as follows.

【0010】 wt%で、Ni:27〜30%,Co:5〜
18%,Mn:0.10〜3.0%,Si:0.10%以下であっ
て、Ni,CoおよびMnの含有量はCo:10%未満では、6
3.5%≦2Ni+Co+Mn≦65.0%であり、Co:10%以
上では、69.5%≦2Ni+Co+Mn≦72.5%の関係を満
足し、C:0.020〜0.070%,N:0.010%以
下,H:1.0ppm 以下,S:0.0030%以下,P:0.
003%以下,O:0.0040%以下,Cr:0.05%以
下,Mo:0.01〜1.0%を含有し、残部Feおよび不可避
的不純物から成り、更に組織中のオーステナイト量が3
0〜90%、結晶粒度がNo. 8以上の整粒であることを
特徴とした耐食性、繰返し曲げ特性に優れた高強度Fe−
Ni−Co合金薄板。
In wt%, Ni: 27-30%, Co: 5-
18%, Mn: 0.10 to 3.0%, Si: 0.10% or less, and the content of Ni, Co and Mn is less than 10% Co: 6
3.5% ≦ 2Ni + Co + Mn ≦ 65.0%, and when Co: 10% or more, the relationship of 69.5% ≦ 2Ni + Co + Mn ≦ 72.5% is satisfied, and C: 0.020 to 0.070%, N : 0.010% or less, H: 1.0 ppm or less, S: 0.0003% or less, P: 0.0.
003% or less, O: 0.0040% or less, Cr: 0.05% or less, Mo: 0.01 to 1.0%, and the balance Fe and unavoidable impurities. Further, the amount of austenite in the structure is Three
High-strength Fe with excellent corrosion resistance and cyclic bending characteristics characterized by 0-90% and grain size control of No. 8 or more
Ni-Co alloy thin plate.

【0011】 前記の成分に加え、B,Nb,Ti,Z
r,Ta,VおよびWの1種または2種以上を合計で0.0
1〜0.50%含有し、かつ請求項1の組織を有すること
を特徴とした耐食性、繰返し曲げ特性に優れた高強度Fe
−Ni−Co合金薄板。
In addition to the above components, B, Nb, Ti, Z
One or two or more of r, Ta, V and W in total of 0.0
High strength Fe excellent in corrosion resistance and cyclic bending characteristics, characterized by containing 1 to 0.50% and having the structure of claim 1.
-Ni-Co alloy thin plate.

【0012】 30〜400℃の平均熱膨脹係数が
(4〜8)×10-6/℃、硬さがビッカース硬度
(HV ) で280以上、引張強さが85kgf/mm2 以上で
あることを特徴とする前記またはに記載の耐食性、
繰返し曲げ特性に優れた高強度Fe−Ni−Co合金薄板。
The average thermal expansion coefficient at 30 to 400 ° C. is (4 to 8) × 10 −6 / ° C., the hardness is 280 or more in Vickers hardness (H V ), and the tensile strength is 85 kgf / mm 2 or more. Corrosion resistance according to the above or characterized by
A high-strength Fe-Ni-Co alloy sheet with excellent cyclic bending properties.

【0013】 前記の組成を有する合金の冷延素材
を1次冷延−1次焼鈍−2次冷延−2次焼鈍−3次冷延
−低温熱処理の工程で薄板を製造するに際し、1次冷延
率(CR1)を、60〜80%,1次焼鈍温度(T1)を、
700〜740℃,2次冷延率(CR2)を、75〜85
%,2次焼鈍温度(T2)を、700〜740℃,3次冷
延率(CR3)を、20〜70%,低温熱処理温度(T3)
を、400〜540℃,低温熱処理時間(t)を、0.5
〜60min.とすることを特徴とする耐食性, 繰返し曲げ
特性に優れた高強度Fe−Ni−Co合金薄板の製造方法。
The cold-rolled material of the alloy having the above composition is used in the steps of primary cold-rolling-primary annealing-secondary cold-rolling-secondary annealing-third cold-rolling-low temperature heat treatment. Cold rolling rate (CR 1 ) is 60 to 80%, primary annealing temperature (T 1 ) is
700 to 740 ° C., secondary cold rolling rate (CR 2 ) of 75 to 85
%, Secondary annealing temperature (T 2 ), 700 to 740 ° C., tertiary cold rolling rate (CR 3 ) 20 to 70%, low temperature heat treatment temperature (T 3 ).
400 to 540 ° C., low temperature heat treatment time (t), 0.5
A method for producing a high-strength Fe-Ni-Co alloy sheet having excellent corrosion resistance and repeated bending characteristics, which is characterized by setting the time to -60 min.

【0014】 前記の組成を有する合金の冷延素材
を1次冷延−1次焼鈍−2次冷延−2次焼鈍−3次冷延
−低温熱処理の工程で薄板を製造するに際し、1次冷延
率(CR1)を、60〜80%,1次焼鈍温度(T1)を、
700〜740℃,2次冷延率(CR2)を、75〜85
%,2次焼鈍温度(T2)を、700〜740℃,3次冷
延率(CR3)を、20〜70%,低温熱処理温度(T3)
を、400〜540℃,低温熱処理時間(t)を、0.5
〜60min.とすることを特徴とする耐食性、繰返し曲げ
特性に優れた高強度Fe−Ni−Co合金薄板の製造方法。
The cold-rolled material of the alloy having the above composition is used in the following steps: primary cold-rolling-primary annealing-secondary cold rolling-secondary annealing-tertiary cold rolling-low temperature heat treatment. Cold rolling rate (CR 1 ) is 60 to 80%, primary annealing temperature (T 1 ) is
700 to 740 ° C., secondary cold rolling rate (CR 2 ) of 75 to 85
%, Secondary annealing temperature (T 2 ), 700 to 740 ° C., tertiary cold rolling rate (CR 3 ) 20 to 70%, low temperature heat treatment temperature (T 3 ).
400 to 540 ° C., low temperature heat treatment time (t), 0.5
A method for producing a high-strength Fe-Ni-Co alloy sheet having excellent corrosion resistance and repeated bending properties, which is characterized by setting the time to -60 min.

【0015】[0015]

【作用】上記したような本発明について、その合金の化
学成分限定理由をwt%(以下単に%という)により説明
すると、本発明で意図する低熱膨脹特性、高強度で優れ
た繰返し曲げ特性および耐食性を得るには組織中のオー
ステナイト量、特に残留オーステナイト量を適正に制御
することが必要であって、このためにはCo,Ni,Mn,S
i,C,N量の適正化が必要であって以下の如くであ
る。
In the present invention as described above, the reason for limiting the chemical composition of the alloy will be explained by wt% (hereinafter simply referred to as "%"). The low thermal expansion characteristics, high strength and excellent repeated bending characteristics and corrosion resistance intended by the present invention will be explained. It is necessary to properly control the amount of austenite in the structure, especially the amount of retained austenite, in order to obtain Co, Ni, Mn, S
It is necessary to optimize the amounts of i, C, and N as follows.

【0016】Siは、0.10%超では、マルテンサイト開
始温度が高く、オーステナイトが不安定となり、溶体化
処理時の冷却過程でマルテンサイト変態を起こし、以下
に述べるようなCo、Ni、Mn量の適正化が図られても、本
発明で意図する残留オーステナイト量が得られず、メッ
キ性も本発明のレベルが得られないため、0.10%を上
限とした。ハンダ性向上のためのより好ましいSi量は0.
05%以下である。
If Si exceeds 0.10%, the starting temperature of martensite becomes high, austenite becomes unstable, and martensite transformation occurs in the cooling process during solution treatment, and Co, Ni, and Mn as described below are generated. Even if the amount is optimized, the amount of retained austenite intended in the present invention cannot be obtained, and the plating property cannot be the level of the present invention, so 0.10% was made the upper limit. A more preferable Si amount for improving the solderability is 0.
It is 05% or less.

【0017】Coは、5%未満または18%超では、熱膨
張係数が大きくなり、シリコンチップとの熱膨張整合性
を劣化させる。このためCo含有量は5〜18%の範囲に
定めた。
If Co is less than 5% or more than 18%, the coefficient of thermal expansion becomes large and the thermal expansion matching with the silicon chip deteriorates. Therefore, the Co content is set in the range of 5 to 18%.

【0018】Niは、27%未満または、30%超では、
熱膨張係数が大きくなり、シリコンチップとの熱膨張整
合性を劣化させる。このためNi含有量は27〜30%の
範囲とした。
When Ni is less than 27% or more than 30%,
The coefficient of thermal expansion increases, and the thermal expansion matching with the silicon chip deteriorates. Therefore, the Ni content is set to the range of 27 to 30%.

【0019】Mnは、3.0%超では、オーステナイトが安
定となり、加工誘起変態が生じ難くなる。また、0.1%
未満では、マルテンサイト開始温度が高く、オーステナ
イトが不安定となり、冷間加工時に加工誘起のマルテン
サイト変態が生じやすく、結果的に十分な残留オーステ
ナイト量が得られない。これらのことより、Mn量の上限
を3.0%、下限を0.1%とそれぞれ定めた。
If Mn exceeds 3.0%, austenite becomes stable, and it becomes difficult for work-induced transformation to occur. Also, 0.1%
When it is less than 1, the martensite start temperature is high, austenite becomes unstable, and the work-induced martensite transformation is likely to occur during cold working, and as a result, a sufficient retained austenite amount cannot be obtained. From these facts, the upper limit and the lower limit of the amount of Mn were set to 3.0% and 0.1%, respectively.

【0020】なお、本発明で意図する特性を得るには、
上記の単独の添加量の規定のみでなく、Ni,Co,Mnの総
量をCo量に応じて、制御しなければならない。すなわ
ち、Coが10%未満では、(2Ni+Co+Mn)が63.5%
より少ない場合に、またCoが10%以上では(2Ni+Co
+Mn)が69.5%より少ないと、マルテンサイト開始温
度が高く、オーステナイトが不安定となり、加工誘起の
マルテンサイト変態が生じやすく、結果的に十分な残留
オーステナイト量が得られない。また、Coが10%未満
で、(2Ni+Co+Mn)が65.0%を超えるか、Coが10
%以上で、(2Ni+Co+Mn)が72.5%を超えると、オ
ーステナイトが安定となり、加工誘起のマルテンサイト
変態が生じにくくなる。このため、Coが10%未満では
63.5%≦2Ni+Co+Mn≦65.0%、Coが10%以上で
は69.5%≦2Ni+Co+Mn≦72.5%となるよう、Ni,
Co,Mnを限定した。
In order to obtain the characteristics intended by the present invention,
The total amount of Ni, Co, and Mn must be controlled according to the Co amount, in addition to the above-mentioned regulation of the individual addition amount. That is, when Co is less than 10%, (2Ni + Co + Mn) is 63.5%
In the case of less, and when Co is 10% or more, (2Ni + Co
When + Mn) is less than 69.5%, the martensite start temperature is high, austenite becomes unstable, work-induced martensite transformation is likely to occur, and as a result, a sufficient retained austenite amount cannot be obtained. Also, if Co is less than 10%, (2Ni + Co + Mn) exceeds 65.0%, or Co is 10%.
%, When (2Ni + Co + Mn) exceeds 72.5%, the austenite becomes stable and the work-induced martensite transformation hardly occurs. Therefore, when Co is less than 10%, 63.5% ≦ 2Ni + Co + Mn ≦ 65.0%, and when Co is 10% or more, 69.5% ≦ 2Ni + Co + Mn ≦ 72.5%.
Co and Mn are limited.

【0021】また、C、N、は本発明においては、加工
誘起のマルテンサイト変態を適正に制御し、かつ最終の
時効処理時で一層の高強度化を達成させるために必須な
元素である。即ち、まずCは、0.020%未満ではオー
ステナイトが不安定となり、加工誘起のマルテンサイト
変態が生じやすく、結果的に十分な残留オーステナイト
が得られないし、また、時効硬化による強度上昇も期待
できない。更に0.070%を超えると、逆にオーステナ
イトが安定となり、加工誘起のマルテンサイト変態が生
じ難くなると共にメッキ性が劣化する。このため、Cは
0.020%を下限とし、0.070%を上限として夫々定
めた。
In the present invention, C and N are essential elements for properly controlling the work-induced martensitic transformation and achieving higher strength during the final aging treatment. That is, first, when C is less than 0.020%, austenite becomes unstable, work-induced martensitic transformation is likely to occur, and as a result, sufficient retained austenite cannot be obtained, and strength increase due to age hardening cannot be expected. .. On the other hand, if it exceeds 0.070%, austenite becomes stable on the contrary, work-induced martensitic transformation becomes difficult to occur, and the plating property deteriorates. Therefore, C is
The lower limit was 0.020% and the upper limit was 0.070%.

【0022】Nは、0.010%超では、オーステナイト
が安定となり、加工誘起のマルテンサイト変態が生じに
くくなり、更にメッキ性が劣化する。このため、Nは0.
010%を上限とする。なお、0.01%以下の範囲での
Nの添加は、時効硬化により強度を上昇させる効果があ
る。なお、Nが0.010%以下の範囲であれば、本発明
で意図する低熱膨張特性、高強度で優れた繰返し曲げ特
性、耐食性およびメッキ性を何れも得ることができる。
If N exceeds 0.010%, austenite becomes stable, work-induced martensite transformation is less likely to occur, and the plating property is further deteriorated. Therefore, N is 0.
The upper limit is 010%. The addition of N in the range of 0.01% or less has the effect of increasing the strength by age hardening. If N is in the range of 0.010% or less, all of the low thermal expansion characteristics intended in the present invention, high strength and excellent repeated bending characteristics, corrosion resistance, and plating property can be obtained.

【0023】更に本発明においては、上記した、成分規
定に加えて、繰返し曲げ特性の向上のためには、S量、
O量の低減が必要である。また、本合金で本発明で意図
するメッキ性の更なる向上のためには、H,S,P,O
およびCrの低減が必須である。
Further, in the present invention, in addition to the above-mentioned compositional regulation, in order to improve the cyclic bending property, the S content,
It is necessary to reduce the amount of O. In order to further improve the plating property of the present alloy, which is intended in the present invention, H, S, P, O
And Cr reduction is essential.

【0024】すなわち、S、Oは非金属介在物の形成を
通じて、本合金では繰返し曲げ特性やメッキ性に悪影響
を及ぼす元素である。Sが0.0030%を超えると、繰
返し曲げ特性が劣化し、メッキ性も本発明で意図するレ
ベルが得られないため、0.0030%を上限とした。な
おハンダ性のためのより好ましいS量は0.0010%以
下である。
That is, S and O are elements that adversely affect the repetitive bending properties and plating properties of the present alloy through the formation of non-metallic inclusions. If S exceeds 0.0030%, the cyclic bending property deteriorates and the plating property does not attain the level intended by the present invention, so 0.0030% was made the upper limit. A more preferable S content for soldering is 0.0010% or less.

【0025】Oは、0.0040%を超えると、本合金で
は繰返し曲げ特性が劣化し、またメッキ性も本願で意図
するレベルが得られないため、0.0040%を上限とし
た。ハンダ性のためのより好ましいO量は0.0020%
以下である。
If the O content exceeds 0.0040%, the present alloy deteriorates the repeated bending property and the plating property does not reach the level intended by the present invention, so 0.0040% was made the upper limit. More preferable O content for soldering is 0.0020%
It is below.

【0026】S、Oの存在による繰返し曲げ特性の劣化
する機構は、本合金の場合、曲げ破断した界面に、多数
のSあるいはOが検出される非金属介在物が見られてい
たことから、これらの介在物を起点とした割れの促進が
考えられる。
The mechanism by which the presence of S and O deteriorates the cyclic bending property is that, in the case of the present alloy, a large number of non-metallic inclusions in which S or O is detected are found at the interface where bending and fracture occur. It is conceivable to promote cracking starting from these inclusions.

【0027】さらに、本発明合金において、メッキ性を
本発明で意図するレベルにするためには、上記したO、
Sの低減に加えて、H、P、およびCrの低減が必須であ
る。即ち、先ずPは、本合金鋼帯の熱処理時に表面に偏
析し、メッキ性を劣化させる。このPが0.003%を超
えると本発明で意図するメッキ性が得られなくなるの
で、0.003%を上限とした。ハンダ性のためのより好
ましいP量は0.001%以下である。
Further, in the alloy of the present invention, in order to bring the plating property to the level intended in the present invention, the above-mentioned O,
In addition to the reduction of S, the reduction of H, P and Cr is essential. That is, first, P segregates on the surface during the heat treatment of the alloy steel strip and deteriorates the plating property. If this P exceeds 0.003%, the plating property intended in the present invention cannot be obtained, so 0.003% was made the upper limit. A more preferable P amount for soldering property is 0.001% or less.

【0028】Crは、本合金の鋼帯の熱処理時に表面に強
固な酸化膜を形成し、メッキ性を劣化させる。Crが0.0
5%を超えると、本発明で意図するメッキ性が得られな
くなるので、0.05%を上限とした。ハンダ性のための
より好ましいCr量は0.02%以下である。
[0028] Cr forms a strong oxide film on the surface during heat treatment of the steel strip of the present alloy and deteriorates the plating property. Cr is 0.0
If it exceeds 5%, the plating property intended in the present invention cannot be obtained, so 0.05% was made the upper limit. A more preferable amount of Cr for solderability is 0.02% or less.

【0029】Hは、本発明合金のメッキ性に対して大き
な影響を及ぼす元素である。即ちHは、本合金の溶製時
において不可避的に混入し、その量は従来技術で、1.0
ppmを超え、場合によっては4〜5ppm 程度も残存して
いたもので、このガスがIC製造過程でのAgスポットメ
ッキ後のダイボンデングの加熱時に、放出され、メッキ
層と下地合金(リードフレーム材料)の界面に移動し、
“フクレ”と呼ばれるメッキ不良となってしまう。この
現象はAgのメッキ層が比較的厚い従来の3μm程度の場
合には、メッキ層の強度の点から、問題とはなっていな
かったが、最近のAg薄メッキ化の傾向により、2μm以
下といったメッキ厚も一般的となりつつあり、このよう
なAgメッキ厚では、Agメッキ層の強度が、Hのガス圧力
よりも小さくなってしまい、上記した“フクレ”の問題
が顕在化してきた。また前記従来レベルのHを含有した
この種合金にハンダ付けする場合でもハンダのぬれ性が
劣っているという問題点があった。
H is an element having a great influence on the plating property of the alloy of the present invention. That is, H is inevitably mixed during the melting of this alloy, and its amount is 1.0
It is more than 4 ppm, and in some cases remains about 4 to 5 ppm. This gas is released during the heating of the die bonding after Ag spot plating in the IC manufacturing process, and the plating layer and the base alloy (lead frame material). Move to the interface of
It causes plating failure called “blister”. This phenomenon was not a problem from the viewpoint of the strength of the plating layer when the thickness of the Ag plating layer was comparatively thick, about 3 μm, but due to the recent tendency of Ag thinning, it is 2 μm or less. The plating thickness is becoming common, and with such an Ag plating thickness, the strength of the Ag plating layer becomes smaller than the gas pressure of H, and the above-mentioned "blister" problem has become apparent. Further, there is a problem that the wettability of solder is inferior even when soldering to this kind of alloy containing the conventional level of H.

【0030】上記したようなHの極く微量存在によるメ
ッキ性への悪影響は従来の42アロイやコバールといっ
たオーステナイト単相のものに比較して本発明合金のよ
うにマルテンサイト(α′)を含むものにおいては特に
明確化する。
As described above, the adverse effect on the plating property due to the presence of an extremely small amount of H includes martensite (α ') as in the alloy of the present invention as compared with the conventional austenite single phase alloy such as 42 alloy or Kovar. In particular, it will be clarified.

【0031】上記したHが1.0ppm を超えると、斯かる
合金において本発明の意図するようなメッキ性が得られ
なくなるためこれを上限とした。なお本発明で規定する
このようなレベルのH量を得るには溶製時の真空脱ガス
方法最適化が必要である。即ち見掛けの水素分圧を低下
させるため本発明合金では脱ガス時の圧力を0.1Torr以
下の高真空度を達成することや、底吹き希釈Arガス量を
増加させるなどの方法を採ることが好ましい。
When the above-mentioned H exceeds 1.0 ppm, the plating property intended by the present invention cannot be obtained in such an alloy, so this was made the upper limit. It is necessary to optimize the vacuum degassing method at the time of melting in order to obtain such a level of H amount defined in the present invention. That is, in order to reduce the apparent hydrogen partial pressure, in the alloy of the present invention, it is possible to achieve a high vacuum degree of 0.1 Torr or less at the time of degassing and to adopt a method of increasing the amount of bottom-blown diluted Ar gas. preferable.

【0032】本発明で意図する低熱膨張特性、高強度で
優れた繰返し曲げ特性およびメッキ性を確保しつつ、耐
食性を向上させるためには、Moの適量添加が必須であ
る。Mo量が0.01%未満であると耐食性の向上が図れ
ず、一方1.0%を超えると、本発明で意図する熱膨張特
性およびメッキ性が損なわれる。以上よりMoの添加量
は、0.01〜1.0%と定めた。
In order to improve corrosion resistance while ensuring low thermal expansion characteristics, high strength and excellent repeated bending characteristics and plating properties intended by the present invention, addition of an appropriate amount of Mo is essential. If the amount of Mo is less than 0.01%, the corrosion resistance cannot be improved, while if it exceeds 1.0%, the thermal expansion characteristics and plating properties intended by the present invention are impaired. From the above, the addition amount of Mo was determined to be 0.01 to 1.0%.

【0033】本発明合金においては、組織制御のため、
C量が従来合金に比べて高いため、このCが結晶粒界や
相境界に存在すると耐食性は劣化しやすい。Moは耐食性
が極部的に劣化する結晶粒界や、オーステナイトとマル
テンサイトの相境界に粒界偏析や濃化を通じて、耐食性
を改善していると考えられる。
In the alloy of the present invention, in order to control the structure,
Since the amount of C is higher than that of the conventional alloy, if this C is present at the grain boundaries or phase boundaries, the corrosion resistance is likely to deteriorate. It is considered that Mo improves the corrosion resistance by grain boundary segregation or concentration at the grain boundaries where the corrosion resistance deteriorates locally or at the phase boundaries between austenite and martensite.

【0034】本発明においては上記したMoに加えて、
B,Nb,Ti,Zr,Ta,VおよびWの1種または2種以上
を合計で0.01〜0.50%含有することにより、本合金
の耐食性を本発明で意図する他の特性を劣化させること
なく、更に向上せしめる。この場合の添加量が0.01%
未満だと耐食性の更なる向上がみられず、一方0.5%を
超えると、本発明で意図する熱膨張特性およびメッキ性
が得られなくなる。これらのことから、耐食性をより高
める添加量として、0.01〜0.50%を定めた。
In the present invention, in addition to the above Mo,
By containing one or two or more of B, Nb, Ti, Zr, Ta, V and W in a total amount of 0.01 to 0.50%, the corrosion resistance of the present alloy can be changed to other characteristics intended by the present invention. It can be further improved without deterioration. In this case, the added amount is 0.01%
If it is less than 0.5%, the corrosion resistance is not further improved, while if it exceeds 0.5%, the thermal expansion characteristics and plating properties intended by the present invention cannot be obtained. From these facts, 0.01 to 0.50% was set as the addition amount for further enhancing the corrosion resistance.

【0035】また、最終の組織は、オーステナイト相
(残留オーステナイト相および逆変態オーステナイト相
を意味する。以下同じ)、加工誘起マルテンサイト相で
あるが、このオーステナイトが30%未満であると、本
発明で意図する熱膨張特性が得られない。また、このオ
ーステナイト相が90%を超え、または逆変態オーステ
ナイトが20%を超えると本発明で意図する合金の強度
が得られないため、オーステナイト相は30%以上、9
0%以下とし、かつ逆変態オーステナイトは20%以下
とした。
The final structure is an austenite phase (which means a retained austenite phase and a reverse transformation austenite phase. The same applies hereinafter) and a work-induced martensite phase. If the austenite content is less than 30%, the present invention Therefore, the intended thermal expansion characteristics cannot be obtained. Further, if the austenite phase exceeds 90% or the reverse transformation austenite exceeds 20%, the strength of the alloy intended in the present invention cannot be obtained, so the austenite phase is 30% or more,
The reverse transformation austenite content was set to 0% or less and 20% or less.

【0036】なお、本発明でいう残留オーステナイトと
は、次のとおりである。本発明においては、焼鈍後のオ
ーステナイト相は冷間圧延により、その一部が加工誘起
変態して、マルテンサイトとなり、他の部分が未変態の
ままオーステナイトとして残留する。このオーステナイ
トのことを残留オーステナイトという。また、逆変態オ
ーステナイトとは、前記の加工誘起変態したマルテンサ
イトが、最終の熱処理時に、オーステナイトに逆変態し
たものを意味する。然して、本発明におけるオーステナ
イト量とは、前記の残留オーステナイトと逆変態オース
テナイトの総和のことである。
The retained austenite used in the present invention is as follows. In the present invention, the austenite phase after annealing undergoes work-induced transformation to martensite by cold rolling, and the other portion remains untransformed as austenite. This austenite is called retained austenite. Further, the reverse transformation austenite means that the above-mentioned work-induced transformation martensite is reverse transformed to austenite during the final heat treatment. However, the amount of austenite in the present invention is the sum of the above-mentioned retained austenite and reverse transformed austenite.

【0037】なお、本発明でのオーステナイト相の量
(%)は、以下に示すようなX線回折強度から求めた。
残留オーステナイト相の量(%)は、低温熱処理前の値
であり、逆変態オーステナイト量(%)は低温熱処理後
のオーステナイト量と残留オーステナイト量の差であ
る。
The amount (%) of the austenite phase in the present invention was obtained from the X-ray diffraction intensity as shown below.
The amount (%) of the retained austenite phase is the value before the low temperature heat treatment, and the reverse transformation austenite amount (%) is the difference between the amount of the austenite after the low temperature heat treatment and the retained austenite amount.

【0038】[0038]

【数1】 [Equation 1]

【0039】さて、本合金の繰返し曲げ特性を更に向上
するためには、上記した成分規定に加えて、最終の組織
結晶粒径の制御が重要である。本発明者らは成分および
最終の組織のオーステナイト相の量が本発明規定内の合
金で、結晶粒度と繰返し曲げ特性の関係を調べた。その
結果、結晶粒度がNo.8以上の整粒で繰返し曲げ特性が4
回以上と優れたレベルを示すことを見い出した。このこ
とから、本発明においては、優れた繰返し曲げ特性が得
られる結晶粒度の範囲としてNo.8以上を定めた。なお、
整粒組織とは結晶粒度No.7以下の粗粒を含まない組織を
意味する。
In order to further improve the cyclic bending property of the present alloy, it is important to control the final texture crystal grain size in addition to the above-mentioned compositional regulation. The present inventors have investigated the relationship between the grain size and the cyclic bending property in alloys in which the amount of the austenite phase of the composition and final structure is within the scope of the present invention. As a result, when the grain size was adjusted to No. 8 or more, the cyclic bending property was 4
It has been found to show excellent levels over and over. From this, in the present invention, No. 8 or more was set as the range of the crystal grain size at which excellent repeated bending properties were obtained. In addition,
The grain size controlled structure means a structure that does not include coarse particles having a grain size of No. 7 or less.

【0040】次に、本発明の合金の製造方法において、
上記した組織(オーステナイト量,結晶粒度)を得るた
めには、冷延素材を溶体化処理することなく、冷延と焼
鈍を2回繰返し、次に冷延を行ない、低温熱処理を施す
という工程を採り、かつ、各工程での条件の最適化が必
要である。なお、本発明における冷延素材は、熱延鋼帯
または溶鋼から直接に冷延素材を鋳造するストリップキ
ャスティング、またはストリップキャスト法により製造
された鋼帯を熱間にて軽圧下することにより得た鋼帯を
意味する。
Next, in the method for producing the alloy of the present invention,
In order to obtain the above-described structure (austenite amount, grain size), cold rolling and annealing are repeated twice without solution treatment of the cold rolled material, then cold rolling is performed, and low temperature heat treatment is performed. It is necessary to optimize the conditions in each process. The cold-rolled material in the present invention was obtained by stripping a hot-rolled steel strip or molten steel directly by casting a cold-rolled material, or by lightly rolling a steel strip manufactured by a strip casting method in a hot state. Means steel strip.

【0041】つまり、1次冷延率(CR1)、2次冷延率
(CR2)、1次冷延後および2次冷延率の焼鈍温度(T
1)、3次冷延率(CR3)、低温熱処理温度(T3)および
熱処理時間(t)を各々以下の数2のようにすることに
より本発明の目的とする組織を的確に得ることができ
る。
That is, the primary cold rolling rate (CR 1 ), the secondary cold rolling rate (CR 2 ), the annealing temperature (T after the primary cold rolling and the secondary cold rolling rate (T
1 ) To properly obtain the target structure of the present invention by setting the third cold rolling rate (CR 3 ), the low temperature heat treatment temperature (T 3 ) and the heat treatment time (t) as shown in the following mathematical expressions 2. You can

【0042】[0042]

【数2】 CR1 :60〜80% T1 :700〜740℃ CR2 :75〜85% T2 :700〜740℃ CR3 :20〜70% T3 :400〜540℃ t:0.5〜60min## EQU00002 ## CR 1 : 60 to 80% T 1 : 700 to 740 ° C. CR 2 : 75 to 85% T 2 : 700 to 740 ° C. CR 3 : 20 to 70% T 3 : 400 to 540 ° C. t: 0. 5-60min

【0043】すなわち、CR1 が60%未満かつ/また
はCR2 が75%未満であると、最終の組織が結晶粒度
No.8未満の粗粒組織となり、本発明で意図する繰返し曲
げ特性が得られない。一方CR1 が80%超かつ/また
はCR2 が85%超となると最終の組織が結晶粒度No.7
以下の粗粒を含む混粒組織となり、本発明で意図する繰
返し曲げ特性が得られない。これらのことからCR1
よびCR2 はそれぞれ、CR1 :60〜80%、C
2 :75〜85%と定めた。
That is, when the CR 1 is less than 60% and / or the CR 2 is less than 75%, the final structure has a grain size.
The coarse grain structure is less than No. 8, and the repeated bending properties intended by the present invention cannot be obtained. On the other hand, when CR 1 exceeds 80% and / or CR 2 exceeds 85%, the final structure has a grain size No. 7
The mixed grain structure contains the following coarse grains, and the repeated bending properties intended in the present invention cannot be obtained. Each CR 1 and CR 2 from these things, CR 1: 60~80%, C
R 2: was defined as 75% to 85%.

【0044】1次冷延および2次冷延後の焼鈍温度は7
00〜740℃とすることが必要である。即ち、この焼
鈍温度が700℃未満であると、焼鈍後で完全な再結晶
組織が得られず、焼鈍温度以外の製造条件が本発明の規
定値内であっても、最終の組織が結晶粒度No.7以下の粗
粒を含む混粒組織となり、本発明で意図するような繰返
し曲げ特性が得られない。また、焼鈍温度が740℃を
超えると、焼鈍後の結晶粒度がNo.7以下の粗粒組織とな
り、焼鈍温度以外の製造条件が本発明の規定範囲内であ
っても最終の組織が結晶粒度No.7以下の粗粒でかつ混粒
組織となり、本発明で意図する如き、繰返し曲げ特性が
得られない。
The annealing temperature after primary cold rolling and secondary cold rolling is 7
It is necessary to set the temperature to 00 to 740 ° C. That is, when this annealing temperature is less than 700 ° C., a complete recrystallized structure cannot be obtained after annealing, and the final structure has a grain size even if the manufacturing conditions other than the annealing temperature are within the specified values of the present invention. It has a mixed grain structure containing coarse grains of No. 7 or less, and the repeated bending property intended in the present invention cannot be obtained. Further, when the annealing temperature exceeds 740 ° C., the grain size after annealing becomes a coarse grain structure of No. 7 or less, and even if the manufacturing conditions other than the annealing temperature are within the specified range of the present invention, the final structure has the grain size. Coarse-grained and mixed-grained structure of No. 7 or less cannot be obtained, and the repeated bending property as intended in the present invention cannot be obtained.

【0045】以上より、本合金において、最終の組織が
結晶粒度No.8以上の整粒組織が得られる焼鈍条件とし
て、焼鈍温度を700〜740℃と定めた。
From the above, in the present alloy, the annealing temperature was set to 700 to 740 ° C. as an annealing condition for obtaining a grain size controlled structure having a final grain size of No. 8 or more.

【0046】以上のような工程を経た材料の組織、機械
的性質および熱膨張特性の制御は、最終冷間圧延(3次
冷延)で圧下率の適正化および適切な低温熱処理により
付与される。即ち、図1には後述する発明合金No.1でC
1 、CR2 、T1 、T2 が本発明規定内の材料の最終
冷延まま、および低温焼鈍後の機械的性質(引張性質、
繰返し曲げ特性、硬度)、オーステナイト量、熱膨張係
数と最終冷間圧延率の関係を示すが、この図1から、低
温熱処理前の冷延率が20%未満では、本発明で意図す
る強度、および硬度が得られない。一方、冷延率で70
%超では、本発明で意図する強度および硬度は得られて
いるものの繰返し曲げ特性および熱膨張係数に関して本
発明で意図するレベルが得られていない。なお、冷延率
が20%以上では、残留オーステナイト量は90%以下
であり、70%以上では30%以下になる。低温処理後
の逆変態オーステナイト量は冷延率70%で5%であ
り、また冷延率80%では7%である。
Control of the structure, mechanical properties and thermal expansion characteristics of the material that has undergone the above-mentioned steps is imparted by optimizing the reduction ratio in final cold rolling (third cold rolling) and appropriate low temperature heat treatment. .. That is, in FIG. 1, the invention alloy No. 1 described later is C
R 1, CR 2, T 1 , T 2 is still the final cold rolling of the material in the prescribed present invention, and mechanical properties (tensile properties after low-temperature annealing,
The relationship between the cyclic bending property, the hardness), the amount of austenite, the coefficient of thermal expansion and the final cold rolling rate is shown. From FIG. 1, when the cold rolling rate before the low temperature heat treatment is less than 20%, the strength intended by the present invention, And hardness cannot be obtained. On the other hand, the cold rolling rate is 70
%, The strength and hardness intended by the present invention are obtained, but the levels intended by the present invention regarding the cyclic bending property and the thermal expansion coefficient are not obtained. When the cold rolling rate is 20% or more, the amount of retained austenite is 90% or less, and when it is 70% or more, it is 30% or less. The amount of reverse transformed austenite after the low temperature treatment was 5% at a cold rolling rate of 70% and 7% at a cold rolling rate of 80%.

【0047】以上のような技術的関係からして、本発明
で意図する強度、硬度、繰返し曲げ特性、および熱膨張
係数が得られるオーステナイト量は30〜90%であ
り、このオーステナイト量が得られる冷延率として20
〜70%をそれぞれ定めた。
From the above technical relationships, the amount of austenite that can obtain the strength, hardness, cyclic bending property, and coefficient of thermal expansion intended in the present invention is 30 to 90%, and this amount of austenite is obtained. Cold rolling rate is 20
.About.70% was set for each.

【0048】なお、本発明において、図1に示すように
上記した最終冷延の後の適切な低温焼鈍は、強度を変化
させることなく、熱膨張特性を向上させ、かつ繰返し曲
げ特性を向上させる。
In the present invention, as shown in FIG. 1, the appropriate low temperature annealing after the above-mentioned final cold rolling improves the thermal expansion characteristics and the repeated bending characteristics without changing the strength. ..

【0049】この熱処理は、400℃未満かつ/または
0.5分未満であると、十分な特性の向上が得られず、一
方、540℃超かつ/または60min 超の場合では合金
内に逆変態オーステナイトが20%を超えて生成し、本
発明で意図する強度が得られない。この逆変態オーステ
ナイトは、他の金属相(残留オーステナイトおよび加工
誘起マルテンサイト)に比べて、転位密度が低く、この
相の存在により、繰返し曲げ特性、耐食性が劣化してし
まう。これらのことより、優れた繰返し曲げ特性および
耐食性を示す低温熱処理条件として次式のように定め
た。
This heat treatment is performed below 400 ° C. and / or
If it is less than 0.5 minutes, sufficient improvement in properties cannot be obtained, while if it exceeds 540 ° C. and / or more than 60 minutes, more than 20% of reverse transformed austenite is formed in the alloy. The intended strength cannot be obtained. This reverse transformation austenite has a lower dislocation density than other metal phases (residual austenite and work-induced martensite), and the presence of this phase deteriorates cyclic bending characteristics and corrosion resistance. From these facts, the low temperature heat treatment condition showing excellent cyclic bending property and corrosion resistance was defined as the following formula.

【0050】[0050]

【数3】T3 :400〜540℃ t:0.5〜30min[Equation 3] T 3 : 400 to 540 ° C t: 0.5 to 30 min

【0051】然して本発明においては逆変態によるオー
ステナイトが20%以下の範囲で含有されてもよいが、
この場合において該逆変態オーステナイトは強度、繰り
返し曲げ加工性および耐食性を劣化させないように、均
一且つ微細に分散させる必要がある。
In the present invention, however, austenite due to reverse transformation may be contained in the range of 20% or less.
In this case, the reverse transformed austenite must be dispersed uniformly and finely so as not to deteriorate the strength, the repeated bending workability and the corrosion resistance.

【0052】上記したような合金の製造方法において
は、合金の組成に応じて、本発明規定値内で、適切に条
件が選択されることにより、より優れた特性(強度、繰
返し曲げ特性、熱膨張特性等)が付与される。
In the method for producing an alloy as described above, more excellent characteristics (strength, repeated bending characteristics, heat resistance, etc.) can be obtained by appropriately selecting the conditions within the specified values of the present invention according to the composition of the alloy. Expansion characteristics).

【0053】なお、α30-400 C (30℃〜400℃の
平均熱膨張係数)、硬度、引張り強さについては、パッ
ケージ組立工程、および使用条件を検討した結果、α
30-400 C は(4〜8)×10-6/℃、硬度HV ≧28
0、引張り強さ85kgf/mm2 以上で十分に使用に耐えら
れるものであることより、前記のような特性値を本発明
範囲に定めた。
It should be noted that α 30-400 . Regarding C (average coefficient of thermal expansion between 30 ° C and 400 ° C ), hardness, and tensile strength, as a result of examining the package assembling process and usage conditions, α
30-400 . C is (4 to 8) × 10 −6 / ° C., hardness H V ≧ 28
The above characteristic values were defined in the range of the present invention, since it has a tensile strength of 85 kgf / mm 2 or more and can be sufficiently used.

【0054】[0054]

【実施例】本発明によるものの具体的な実施例について
より仔細を説明すると、以下の如くである。
EXAMPLES The details of specific examples according to the present invention will be described below.

【0055】実施例1 その表1に示す化学成分を有する本発明合金および比較
合金について真空溶解炉にて溶解、鋳造を経た鋼塊を分
塊圧延、熱間圧延、脱スケール・表面疵取りを行ない、
板厚2.5mmの冷延素材を得た。
Example 1 The ingots of the present invention and comparative alloys having the chemical components shown in Table 1 were melted and cast in a vacuum melting furnace, and the ingots were subjected to slab rolling, hot rolling, descaling, and surface flaw removal. Do
A cold rolled material having a plate thickness of 2.5 mm was obtained.

【0056】[0056]

【表1】 [Table 1]

【0057】上記のようにして得られた冷延素材は、以
降、1次冷延(圧下率60%)→焼鈍(730℃×2mi
n)→2次冷延(圧下率75%)→焼鈍(720℃×2mi
n)→3次冷延(圧下率60%)→低温熱処理(500℃
×10min)の一連の処理を施し板厚0.10mmの合金薄板
を得た。又このようにして得られた各合金板について、
次の表2,表3に示すような各特性値について調査し
た。
The cold-rolled material obtained as described above is subsequently subjected to primary cold-rolling (reduction of 60%) → annealing (730 ° C. × 2 mi
n) → Secondary cold rolling (75% reduction) → annealing (720 ℃ × 2mi
n) → tertiary cold rolling (60% reduction) → low temperature heat treatment (500 ℃
A series of treatments (× 10 min) were performed to obtain an alloy thin plate having a plate thickness of 0.10 mm. For each alloy plate obtained in this way,
Each characteristic value as shown in the following Tables 2 and 3 was investigated.

【0058】[0058]

【表2】 [Table 2]

【0059】[0059]

【表3】 [Table 3]

【0060】なお前記表2において、そのオーステナイ
ト量は前記したようなX線回折の手法で求めた。また表
3のAgメッキ性は、前記合金薄板を溶剤脱脂−電解脱脂
−酸処理後、厚さ0.5μmのCuストライクメッキを行な
い、その上に厚さ2μmのAgメッキを施し、450℃×
5min 、大気中で加熱し、メッキ層のフクレの発生の有
無を50倍に拡大して調べた。
In Table 2, the amount of austenite was obtained by the X-ray diffraction method described above. As for the Ag plating property in Table 3, the alloy thin plate was subjected to solvent degreasing-electrolytic degreasing-acid treatment, followed by Cu strike plating having a thickness of 0.5 µm, and Ag plating having a thickness of 2 µm, which was 450 ° C x
After heating in the atmosphere for 5 minutes, the presence or absence of blisters on the plating layer was examined 50 times more.

【0061】表3のハンダ性は前記合金薄板上に1.5μ
m厚さのスズメッキを施した素材を用いメニスコグラフ
法により、ハンダ組成Sn60%、Pb40%、ハンダ浴温
度235℃±5℃、ハンダ浴浸漬深さ2mm、ハンダ浴浸
漬時間5秒の条件でハンダ浴中に浸漬し、評価は、ハン
ダ濡れ時間t2 で行なった。また耐食性は前記合金薄板
について、JIS Z 2371による塩水噴霧試験を100時間
実施し、その後の点錆発生頻度を調べた。
The solderability of Table 3 is 1.5μ on the alloy thin plate.
Solder composition Sn 60%, Pb 40%, solder bath temperature 235 ° C ± 5 ° C, solder bath immersion depth 2mm, solder bath immersion time 5 seconds by meniscograph method using m-thick tin-plated material. It was dipped in and evaluated at a solder wetting time t 2 . Regarding the corrosion resistance, a salt spray test according to JIS Z 2371 was carried out for 100 hours on the alloy thin plate, and the frequency of rust formation after that was examined.

【0062】前記表2,表3の結果から、試料No.1〜N
o.7の各材は、本発明の成分規定を満たすものであり、
本発明で意図する組織、機械的性質、熱膨張特性、メッ
キ性および耐食性を示している。特に試料No.1〜No.3お
よびNo.7は試料No.4〜No.6に比べて、Si、P、S、O、
Crがより好ましいレベルまで低減されたものであり、ハ
ンダ性がより優れたレベルを示している。また、試料N
o.1、No.3〜No.7はMoに加えて、本発明規定内で、更な
る耐食性向上元素が添加されたものであり、それらの元
素が添加されていない試料No.2に比較して点錆発生頻度
が低く、耐食性がより優れていることが明らかである。
From the results of Tables 2 and 3 above, sample Nos. 1 to N
Each material of o.7 satisfies the compositional regulations of the present invention,
It shows the structure, mechanical properties, thermal expansion properties, plating properties and corrosion resistance intended in the present invention. In particular, sample No.1 to No.3 and No.7 have Si, P, S, O, compared with sample No.4 to No.6.
Cr is reduced to a more preferable level, and the solderability shows a more excellent level. Also, sample N
o.1 and No.3 to No.7 are those in which, in addition to Mo, within the rules of the present invention, further corrosion resistance improving elements are added, and compared with Sample No.2 in which those elements are not added. It is clear that the frequency of spot rusting is low and the corrosion resistance is better.

【0063】これらの発明例に比べて、試料No.8は、そ
れぞれC量が本発明規定の上限を超えるものでありオー
ステナイト量が本発明規定上限を超えており、所要の強
度が得られておらず、メッキ性も劣っている。また試料
No.9はC量および2Ni+Co+Mn量が本発明下限未満の場
合でありオーステナイト量が本発明規定未満となってお
り所要の熱膨張特性が得られていない。
Compared with these invention examples, Sample No. 8 had a C content exceeding the upper limit specified in the present invention, and the austenite amount exceeded the upper limit specified in the present invention, and the required strength was obtained. The plating property is also poor. Also sample
No. 9 is a case where the amount of C and the amount of 2Ni + Co + Mn are less than the lower limit of the present invention, and the amount of austenite is less than the regulation of the present invention, and the required thermal expansion characteristics are not obtained.

【0064】更に、試料No.10 はSi量が本発明規定の上
限を超えており、また2Ni+Co+Mn量が本発明規定下限
未満であり、オーステナイトは本発明規定の下限未満と
なっておりα30-400 C は8×10-6/℃を超え、熱膨
張特性は劣っており、メッキ性も劣っている。また、試
料No.11 はMn量が本発明規定の上限を超えるものであ
り、オーステナイト量は本発明規定の上限を超えてお
り、所要の強度が得られていない。一方、試料No.12 は
Mn量が本発明規定の下限未満のものであり、オーステナ
イトは本発明規定の下限未満となっており、所要の熱膨
張特性が得られていない。
Further, in Sample No. 10, the amount of Si exceeds the upper limit of the present invention, the amount of 2Ni + Co + Mn is less than the lower limit of the present invention, and austenite is less than the lower limit of the present invention α 30- 400 . C exceeds 8 × 10 −6 / ° C., the thermal expansion property is poor, and the plating property is also poor. Further, in sample No. 11, the amount of Mn exceeds the upper limit specified in the present invention, and the amount of austenite exceeds the upper limit specified in the present invention, and the required strength is not obtained. On the other hand, sample No. 12
The amount of Mn is less than the lower limit specified in the present invention, and the amount of austenite is less than the lower limit specified in the present invention, and the required thermal expansion characteristics are not obtained.

【0065】試料No.13 、No.14 、No.15 、No.16 およ
びNo.17 はそれぞれ、P量、S量、N量、O量、Cr量が
本発明規定の上限を超えるものであり、いずれもメッキ
性が本発明例に比べて劣っている。特に試料No.14 およ
びNo.16 では繰返し曲げ特性が他の比較例に比べて、更
に劣っている。
Samples No. 13, No. 14, No. 15, No. 16 and No. 17 are those in which the amounts of P, S, N, O and Cr exceed the upper limits specified in the present invention. However, the plating properties are inferior to those of the examples of the present invention. In particular, Samples No. 14 and No. 16 have further inferior cyclic bending properties as compared with other comparative examples.

【0066】試料No.19 は、H量が本発明規定上限を超
えるものであり、メッキ性が本発明例に比べて劣ってい
る。また試料No.20 、No.21 は2Ni+Co+Mn量が本発明
規定の上限を超えるものであり、いずれの場合もオース
テナイト量は本発明規定の上限を超えており、所要の強
度が得られていない。また、Si量も本発明規定の上限を
超えておりメッキ性が劣っている。
Sample No. 19 had an H content exceeding the upper limit specified in the present invention, and was inferior in plating property to the examples of the present invention. Further, in samples No. 20 and No. 21, the amount of 2Ni + Co + Mn exceeds the upper limit specified in the present invention, and in any case, the amount of austenite exceeds the upper limit specified in the present invention, and the required strength is not obtained. In addition, the amount of Si exceeds the upper limit specified in the present invention, and the plating property is poor.

【0067】とくに、試料No.20 、No.21 は特開平3-16
6340に見られる合金を調べたものであるが、いずれの材
料も本発明で意図するAgメッキ性、ハンダ性、耐食性が
得られておらず、従来技術のみでは、本発明で意図する
効果は達成されていないことは明らかである。また、試
料No.18 はMoが本発明規定未満の場合であり、錆発生頻
度は本発明例に比べて著しく高く、耐食性が劣ってお
り、本発明においては、Moの適量添加が必須であること
が理解される。
Especially, the samples No. 20 and No. 21 are described in JP-A-3-16
It is an examination of the alloy found in 6340, but none of the materials has the Ag plating property, solderability, and corrosion resistance intended by the present invention, and the conventional technique alone achieves the intended effect of the present invention. Obviously not. Further, Sample No. 18 is the case where Mo is less than the regulation of the present invention, the rust occurrence frequency is significantly higher than that of the present invention example, the corrosion resistance is inferior, and in the present invention, it is essential to add an appropriate amount of Mo. Be understood.

【0068】以上のように、本発明で意図する組織、機
械的性質、熱膨張特性、メッキ性および耐食性を得るに
は、本発明の成分規定を満たした時のみに達成されるこ
とが、この実施例で明かとなった。
As described above, in order to obtain the structure, mechanical properties, thermal expansion characteristics, plating properties and corrosion resistance intended by the present invention, it is achieved that the composition of the present invention is only satisfied. It became clear in the examples.

【0069】実施例2 表1の試料No.1の成分を有する発明合金について、真空
溶解炉にて、溶解、鋳造を経た鋼塊を分塊圧延、熱間圧
延、脱スケール・表面疵取りを行ない、冷延素材を得
た。以降次の表4に示す一連の処理を施し、板厚0.10
mmの合金薄板を得て、表5,表6に示すような特性値に
ついて、実施例1と同じ手法にて調査した。
Example 2 With respect to the invention alloy having the components of sample No. 1 in Table 1, the steel ingot that had been melted and cast in a vacuum melting furnace was subjected to slab rolling, hot rolling, descaling and surface flaw removal. Conducted and obtained cold rolled material. After that, a series of treatments shown in the following Table 4 was performed and the plate thickness was 0.10
An alloy thin plate of mm was obtained, and the characteristic values shown in Tables 5 and 6 were investigated by the same method as in Example 1.

【0070】[0070]

【表4】 [Table 4]

【0071】[0071]

【表5】 [Table 5]

【0072】[0072]

【表6】 [Table 6]

【0073】前記表4〜表6から、試料No.22 〜No.29
は本発明で規定した製造条件をすべて満たしており、本
発明で意図する組織、機械的性質、熱膨張特性、メッキ
性および耐食性を示している。これに対して試料No.30
、No.34 はそれぞれCR1 、CR2 が本発明規定の上
限を超える場合であり、組織は混粒となっており、所要
の繰返し曲げ特性が得られていない。また、試料No.31
、No.35 はそれぞれCR1 、CR2 が本発明規定の下
限未満の場合であり、組織は結晶粒度No. が本発明規定
の下限を下まわるものであり、所要の繰返し曲げ特性が
得られていない。
From Tables 4 to 6 above, Samples No. 22 to No. 29
Satisfies all the manufacturing conditions specified in the present invention, and exhibits the structure, mechanical properties, thermal expansion characteristics, plating properties and corrosion resistance intended in the present invention. On the other hand, sample No. 30
, No. 34 are cases in which CR 1 and CR 2 exceed the upper limits specified in the present invention, respectively, and the structure is a mixed grain, and the required repeated bending properties are not obtained. In addition, sample No. 31
, No. 35 are cases where CR 1 and CR 2 are less than the lower limit specified in the present invention, respectively, and the microstructure is such that the grain size No. is below the lower limit specified in the present invention, and the required repeated bending properties are obtained. Not not.

【0074】更に、試料No.32 、No.36 はそれぞれ
1 、T2 が本発明規定の上限を超えるものであり、組
織は混粒であり、結晶粒度No. が本発明規定の下限を下
まわるものであり、所要の繰返し曲げ特性が得られてい
ない。また、試料No.33 、No.37はそれぞれT1 、T2
が本発明規定の下限未満の場合であり、組織は混粒とな
っており、所要の繰返し曲げ特性が得られていない。
Further, in Samples No. 32 and No. 36, T 1 and T 2 respectively exceed the upper limit specified in the present invention, the structure is mixed grain, and the grain size No. falls below the lower limit specified in the present invention. However, the required repeated bending properties have not been obtained. Samples No. 33 and No. 37 are T 1 and T 2 respectively.
Is less than the lower limit of the present invention, the structure is a mixed grain, and the required repeated bending properties are not obtained.

【0075】以上のように、1次および2次の冷延率お
よび焼鈍温度の制御が組織の結晶粒度、整粒度のために
極めて重要であり、この制御により繰返し曲げ特性を向
上し得ることが理解される。
As described above, the control of the primary and secondary cold rolling rates and the annealing temperature is extremely important for the grain size and grain size control of the structure, and it is possible to improve the cyclic bending property by this control. To be understood.

【0076】更に、試料No.38 、No.39 はそれぞれ、C
3 が本発明規定の上限を超えるもの、下限未満のもの
である。前者は、オーステナイト量が本発明規定の下限
未満であり、所要の熱膨張特性、繰返し曲げ特性が得ら
れていない。また後者は、オーステナイト量が本発明規
定の上限を超えるものであり、所要の強度が得られてい
ない。
Further, the samples No. 38 and No. 39 are C
R 3 is above the upper limit or below the lower limit of the present invention. In the former, the amount of austenite is less than the lower limit specified in the present invention, and the required thermal expansion characteristics and repeated bending characteristics are not obtained. In the latter case, the amount of austenite exceeds the upper limit specified in the present invention, and the required strength is not obtained.

【0077】試料No.40 は最終の熱処理が施されていな
いものであり、所要の繰返し曲げ特性が得られていな
い。また試料No.41 、No.43 は、それぞれT3 、tが本
発明規定の上限を超えるものであり、最終熱処理前の残
留オーステナイト量はいずれも40%であったが、No.4
1 は逆変態によるオーステナイトが20%生成されてお
り、またNo.43 では逆変態によるオーステナイトが11
%生成されていた。これらの材料では所要の強度、繰返
し曲げ特性が得られておらず、メッキ性および耐食性も
本発明例に比べて劣っている。更に試料No.42 、No.44
は、それぞれT3、tが本発明規定の下限未満のもので
あり、所要の繰返し曲げ特性を有していない。
The sample No. 40 was not subjected to the final heat treatment, and the required repeated bending properties were not obtained. Samples No. 41 and No. 43 had T 3 and t exceeding the upper limits specified in the present invention, and the residual austenite amount before the final heat treatment was 40%, but No. 4
No. 1 produced 20% austenite by reverse transformation, and No. 43 produced 11% austenite by reverse transformation.
% Was generated. These materials do not have the required strength and cyclic bending properties, and are inferior in plating property and corrosion resistance to the examples of the present invention. Sample No.42, No.44
Have T 3 and t respectively less than the lower limit specified in the present invention, and do not have the required repeated bending properties.

【0078】以上の試料No.40 〜No.44 に見られるよう
に適切な最終熱処理の付与が本発明で意図する組織、機
械的性質、熱膨張特性、メッキ性および耐食性を得るの
に必要であることが理解される。
Appropriate final heat treatment, as seen in the above Samples No. 40 to No. 44, is necessary for obtaining the structure, mechanical properties, thermal expansion characteristics, platability and corrosion resistance intended in the present invention. It is understood that there is.

【0079】また、試料No.45 は、特開平3-166340で特
徴とする製造方法を採った場合であるが、オーステナイ
ト量は本発明規定の上限を超え、組織は混粒で、結晶粒
度No. は本発明規定の上限を超えている。なお、オース
テナイト量は2次焼鈍前で29%であり、2次焼鈍で逆
変態オーステナイトが63%生成されていた。この材料
は、所要の強度、繰返し曲げ特性、メッキ性、耐食性は
本発明例に比べて劣っており、従来技術によっては、本
発明で意図する効果は達成されていないことは明らかで
ある。
Further, Sample No. 45 is a case where the manufacturing method characterized by Japanese Patent Laid-Open No. 3-166340 is adopted, but the amount of austenite exceeds the upper limit specified in the present invention, the structure is mixed grain, and the grain size is No. Exceeds the upper limit of the present invention. The amount of austenite was 29% before the secondary annealing, and 63% of reverse transformed austenite was generated by the secondary annealing. This material is inferior to the examples of the present invention in required strength, repeated bending properties, plating properties, and corrosion resistance, and it is clear that the effects intended by the present invention have not been achieved by the prior art.

【0080】即ち、本発明によるものは、冷延素材にお
いて1000℃×1hrというような溶体化処理は施さな
いもので、この溶体化処理を省略することにより最終組
織の結晶粒度および整粒度の調整が可能となるものであ
る。
That is, according to the present invention, the solution treatment such as 1000 ° C. × 1 hr is not applied to the cold rolled material, and by omitting the solution treatment, the grain size and grain size of the final structure are adjusted. Is possible.

【0081】以上のように、本発明において目的とする
組織、機械的性質、熱膨脹特性、メッキ性および耐食性
を的確に得るには、本発明における製造条件の規定も重
要な要件である。
As described above, in order to properly obtain the desired structure, mechanical properties, thermal expansion characteristics, plating properties and corrosion resistance in the present invention, the definition of manufacturing conditions in the present invention is also an important requirement.

【0082】[0082]

【発明の効果】以上説明したような本発明によるとき
は、Fe−Ni−Co系の特定組成において多ピン薄板リード
フレームに必要な高強度を具備すると共に優れた繰返し
曲げ特性、所要の熱膨脹特性、メッキ性、耐食性などを
兼備した合金薄板を提供し、又前記組成の合金を熱延以
降の冷延、焼鈍条件や最終冷間加工および熱処理の最適
化によって最終組織およびオーステナイト量を制御して
適切に前記合金薄板を製造し得るものであって、工業的
にその効果の大きい発明である。
According to the present invention as described above, the Fe-Ni-Co-based specific composition has a high strength required for a multi-pin thin lead frame, and has excellent cyclic bending characteristics and required thermal expansion characteristics. We provide alloy thin plates that combine plating, corrosion resistance, etc., and control the final structure and the amount of austenite by optimizing cold rolling, annealing conditions and final cold working and heat treatment of alloys of the above composition. It is an invention that can appropriately produce the alloy thin plate and has a great effect industrially.

【図面の簡単な説明】[Brief description of drawings]

【図1】Fe−Ni−Co系合金の引張強さ、硬度、繰返し曲
げ特性、α30-400 C およびオーステナイト量と最終冷
延率の関係を示した図表である。
FIG. 1 Tensile strength, hardness, cyclic bending property of an Fe-Ni-Co alloy, α 30-400 . It is a chart showing the relationship between C and the amount of austenite and the final cold rolling rate.

【符号の説明】[Explanation of symbols]

前記図表において、ソリッドは低温熱処理後(500℃
×10min)、オープンは低温熱処理を示すものである。
In the above chart, solids are after low temperature heat treatment (500 ℃
× 10 min), open means low temperature heat treatment.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 wt%で、Ni:27〜30%,Co:5〜1
8%,Mn:0.10〜3.0%,Si:0.10%以下であっ
て、Ni,CoおよびMnの含有量はCo:10%未満では、 63.5%≦2Ni+Co+Mn≦65.0% であり、Co:10%以上では、 69.5%≦2Ni+Co+Mn≦72.5% の関係を満足し、 C:0.020〜0.070%,N:0.010%以下,H:
1.0ppm 以下, S:0.0030%以下,P:0.003%以下,O:0.0
040%以下, Cr:0.05%以下,Mo:0.01〜1.0% を含有し、残部Feおよび不可避的不純物から成り、更に
組織中のオーステナイト量が30〜90%、結晶粒度が
No. 8以上の整粒であることを特徴とした耐食性、繰返
し曲げ特性に優れた高強度Fe−Ni−Co合金薄板。
1. Wt%, Ni: 27-30%, Co: 5-1
8%, Mn: 0.10 to 3.0%, Si: 0.10% or less, and the content of Ni, Co and Mn is less than Co: 10%, 63.5% ≦ 2Ni + Co + Mn ≦ 65. 0%, and when Co: 10% or more, the relationship of 69.5% ≦ 2Ni + Co + Mn ≦ 72.5% is satisfied, C: 0.020 to 0.070%, N: 0.010% or less, H:
1.0ppm or less, S: 0.0003% or less, P: 0.003% or less, O: 0.0
040% or less, Cr: 0.05% or less, Mo: 0.01 to 1.0%, the balance Fe and inevitable impurities, and the austenite amount in the structure is 30 to 90%, and the grain size is
A high-strength Fe-Ni-Co alloy thin plate with excellent corrosion resistance and cyclic bending characteristics, characterized by having a grain size of No. 8 or more.
【請求項2】 請求項1の成分に加え、B,Nb,Ti,Z
r,Ta,VおよびWの1種または2種以上を合計で0.0
1〜0.50%含有し、かつ請求項1の組織を有すること
を特徴とした耐食性、繰返し曲げ特性に優れた高強度Fe
−Ni−Co合金薄板。
2. In addition to the components of claim 1, B, Nb, Ti, Z
One or two or more of r, Ta, V and W in total of 0.0
High strength Fe excellent in corrosion resistance and cyclic bending characteristics, characterized by containing 1 to 0.50% and having the structure of claim 1.
-Ni-Co alloy thin plate.
【請求項3】 30〜400℃の平均熱膨脹係数が(4
〜8)×10-6/℃、硬さがビッカース硬度(HV ) で
280以上、引張強さが85kgf/mm2 以上であることを
特徴とする請求項1または2に記載の耐食性、繰返し曲
げ特性に優れた高強度Fe−Ni−Co合金薄板。
3. The average thermal expansion coefficient of 30 to 400 ° C. is (4
8) × 10 −6 / ° C., hardness of 280 or more in Vickers hardness (H V ), and tensile strength of 85 kgf / mm 2 or more, corrosion resistance, repeatability according to claim 1 or 2. High-strength Fe-Ni-Co alloy sheet with excellent bending properties.
【請求項4】 請求項1の組成を有する合金の冷延素材
を1次冷延−1次焼鈍−2次冷延−2次焼鈍−3次冷延
−低温熱処理の工程で薄板を製造するに際し、 1次冷延率(CR1)を、60〜80%、 1次焼鈍温度(T1)を、700〜740℃、 2次冷延率(CR2)を、75〜85%、 2次焼鈍温度(T2)を、700〜740℃、 3次冷延率(CR3)を、20〜70%、 低温熱処理温度(T3)を、400〜540℃ 低温熱処理時間(t)を、0.5〜60min . とすることを特徴とする耐食性、繰返し曲げ特性に優れ
た高強度Fe−Ni−Co合金薄板の製造方法。
4. A thin plate is manufactured from a cold-rolled material of an alloy having the composition of claim 1 by the steps of primary cold rolling, primary annealing, secondary cold rolling, secondary annealing, tertiary cold rolling, and low temperature heat treatment. At that time, the primary cold rolling rate (CR 1 ) is 60 to 80%, the primary annealing temperature (T 1 ) is 700 to 740 ° C., the secondary cold rolling rate (CR 2 ) is 75 to 85%, 2 Next annealing temperature (T 2 ) is 700 to 740 ° C., third cold rolling rate (CR 3 ) is 20 to 70%, low temperature heat treatment temperature (T 3 ) is 400 to 540 ° C. low temperature heat treatment time (t). , 0.5 to 60 min. A method for producing a high-strength Fe-Ni-Co alloy sheet excellent in corrosion resistance and cyclic bending characteristics.
【請求項5】 請求項2の組成を有する合金の冷延素材
を1次冷延−1次焼鈍−2次冷延−2次焼鈍−3次冷延
−低温熱処理の工程で薄板を製造するに際し、 1次冷延率(CR1)を、60〜80%、 1次焼鈍温度(T1)を、700〜740℃、 2次冷延率(CR2)を、75〜85%、 2次焼鈍温度(T2)を、700〜740℃、 3次冷延率(CR3)を、20〜70%、 低温熱処理温度(T3)を、400〜540℃、 低温熱処理時間(t)を、0.5〜60min . とすることを特徴とする耐食性、繰返し曲げ特性に優れ
た高強度Fe−Ni−Co合金薄板の製造方法。
5. A cold-rolled material of an alloy having the composition of claim 2 is manufactured into a thin plate by the steps of primary cold rolling, primary annealing, secondary cold rolling, secondary annealing, tertiary cold rolling, and low temperature heat treatment. At that time, the primary cold rolling rate (CR 1 ) is 60 to 80%, the primary annealing temperature (T 1 ) is 700 to 740 ° C., the secondary cold rolling rate (CR 2 ) is 75 to 85%, 2 Next annealing temperature (T 2 ) is 700 to 740 ° C., third cold rolling rate (CR 3 ) is 20 to 70%, low temperature heat treatment temperature (T 3 ) is 400 to 540 ° C., low temperature heat treatment time (t) For 0.5 to 60 min. A method for producing a high-strength Fe-Ni-Co alloy sheet excellent in corrosion resistance and cyclic bending characteristics.
JP4137589A 1992-05-01 1992-05-01 High-strength Fe-Ni-Co alloy thin plate excellent in corrosion resistance and repeated bending characteristics, and method for producing the same Expired - Fee Related JP2797835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4137589A JP2797835B2 (en) 1992-05-01 1992-05-01 High-strength Fe-Ni-Co alloy thin plate excellent in corrosion resistance and repeated bending characteristics, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4137589A JP2797835B2 (en) 1992-05-01 1992-05-01 High-strength Fe-Ni-Co alloy thin plate excellent in corrosion resistance and repeated bending characteristics, and method for producing the same

Publications (2)

Publication Number Publication Date
JPH05306436A true JPH05306436A (en) 1993-11-19
JP2797835B2 JP2797835B2 (en) 1998-09-17

Family

ID=15202244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4137589A Expired - Fee Related JP2797835B2 (en) 1992-05-01 1992-05-01 High-strength Fe-Ni-Co alloy thin plate excellent in corrosion resistance and repeated bending characteristics, and method for producing the same

Country Status (1)

Country Link
JP (1) JP2797835B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0991122A2 (en) * 1995-04-27 2000-04-05 Imphy Ugine Precision Connecting legs for electronic device
WO2003106720A1 (en) * 2002-06-18 2003-12-24 Jfeスチール株式会社 Low-thermal expansion alloy thin sheet and its manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04176844A (en) * 1990-07-23 1992-06-24 Hitachi Metals Ltd High strength lead frame material and its manufacture
JPH0565602A (en) * 1991-09-03 1993-03-19 Hitachi Metals Ltd High strength lead frame material and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04176844A (en) * 1990-07-23 1992-06-24 Hitachi Metals Ltd High strength lead frame material and its manufacture
JPH0565602A (en) * 1991-09-03 1993-03-19 Hitachi Metals Ltd High strength lead frame material and its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0991122A2 (en) * 1995-04-27 2000-04-05 Imphy Ugine Precision Connecting legs for electronic device
EP0991122A3 (en) * 1995-04-27 2000-07-26 Imphy Ugine Precision Connecting legs for electronic device
WO2003106720A1 (en) * 2002-06-18 2003-12-24 Jfeスチール株式会社 Low-thermal expansion alloy thin sheet and its manufacturing method

Also Published As

Publication number Publication date
JP2797835B2 (en) 1998-09-17

Similar Documents

Publication Publication Date Title
US5624504A (en) Duplex structure stainless steel having high strength and elongation and a process for producing the steel
JPH0647694B2 (en) Method for producing high-strength stainless steel with excellent workability and no welding softening
TWI789871B (en) Manufacturing method of Wostian iron-based stainless steel strip
JP2536685B2 (en) Fe-Ni alloy for lead frame material having excellent Ag plating property and method for producing the same
US5792286A (en) High-strength thin plate of iron-nickel-cobalt alloy excellent in corrosion resisitance, repeated bending behavior and etchability, and production thereof
EP0572666B1 (en) Cold-rolled steel sheet and galvanized cold-rolled steel sheet which are excellent in formability and baking hardenability, and production thereof
US6692992B1 (en) Hardened Fe-Ni alloy for the manufacture of integrated circuit leaderframes and manufacturing process
JPH073403A (en) High strength fe-ni-co alloy sheet and production thereof
JP2797835B2 (en) High-strength Fe-Ni-Co alloy thin plate excellent in corrosion resistance and repeated bending characteristics, and method for producing the same
US5246511A (en) High-strength lead frame material and method of producing same
JP3410125B2 (en) Manufacturing method of high strength copper base alloy
JP3510445B2 (en) Fe-Ni alloy thin plate for electronic parts with excellent softening and annealing properties
KR970009092B1 (en) Stainless steel sheet and method for producing thereof
JP2929891B2 (en) High strength Fe-Ni-Co alloy sheet having excellent corrosion resistance and repeated bending properties
JP2830472B2 (en) High-strength Fe-Ni-Co alloy thin plate excellent in corrosion resistance, repeated bending characteristics, and etching properties, and method for producing the same
JPH0826429B2 (en) High strength and low thermal expansion Fe-Ni alloy excellent in plating property, soldering property and cyclic bending property and method for producing the same
JPH0424420B2 (en)
JP2501157B2 (en) High strength and low thermal expansion Fe-Ni alloy with excellent hot workability
JP2550784B2 (en) High strength and low thermal expansion Fe-Ni-Co alloy excellent in plating property, soldering property and cyclic bending property, and method for producing the same
JP2663777B2 (en) Fe-Ni alloy excellent in plating property and method for producing the same
JP3042273B2 (en) Method for producing Fe-Ni-based alloy thin plate for IC lead frame with excellent rust resistance
JPH09268348A (en) Fe-ni alloy sheet for electronic parts and its production
JP3383549B2 (en) Method for producing Fe-Ni alloy thin plate
JP2613522B2 (en) Aluminum alloy plate for stay tub
JPS6342360A (en) Production of copper-base lead material for semiconductor apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees