JP3141328B2 - Manufacturing method of super elastic spring alloy - Google Patents

Manufacturing method of super elastic spring alloy

Info

Publication number
JP3141328B2
JP3141328B2 JP02147325A JP14732590A JP3141328B2 JP 3141328 B2 JP3141328 B2 JP 3141328B2 JP 02147325 A JP02147325 A JP 02147325A JP 14732590 A JP14732590 A JP 14732590A JP 3141328 B2 JP3141328 B2 JP 3141328B2
Authority
JP
Japan
Prior art keywords
alloy
superelastic
manufacturing
superelastic spring
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02147325A
Other languages
Japanese (ja)
Other versions
JPH0441639A (en
Inventor
清 山内
正一 佐藤
秀男 高荒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP02147325A priority Critical patent/JP3141328B2/en
Priority to DE1991623084 priority patent/DE69123084T2/en
Priority to EP19910109349 priority patent/EP0460695B1/en
Publication of JPH0441639A publication Critical patent/JPH0441639A/en
Application granted granted Critical
Publication of JP3141328B2 publication Critical patent/JP3141328B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/006Resulting in heat recoverable alloys with a memory effect

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
  • Materials For Medical Uses (AREA)
  • Springs (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、超弾性機能を有するTiNi系合金に関し、詳
しくは、超弾性バネ合金の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a TiNi-based alloy having a superelastic function, and more particularly, to a method for producing a superelastic spring alloy.

[従来の技術] TiNi合金,TiNiX合金(但し、X=Fe,Cu,Cr,V…等)合
金が、熱弾性マルテンサイト変態の逆変態に付随して顕
著な形状記憶効果を示すことは良く知られている(「金
属」1966年2月13日号,44,「日本金属学会会報」第12
巻,第3号(1973)157,「日本金属学会誌」第30巻,第
2号(1975)175)。
[Prior Art] TiNi alloys, TiNiX alloys (where X = Fe, Cu, Cr, V ... etc.) alloys often show a remarkable shape memory effect accompanying the reverse transformation of thermoelastic martensitic transformation. Known ("Metal", February 13, 1966, 44, "Journal of the Japan Institute of Metals"
Vol. 3, No. 3 (1973) 157, Journal of the Japan Institute of Metals, Vol. 30, No. 2 (1975) 175).

これと同時にTiNi合金にゴムのようなしなやかさを示
す超弾性機能があることも知られている(「J.Appl.phy
s.,34(1963)1475,東北大学選研彙報27(1971)24
5)。
At the same time, it is also known that TiNi alloys have a superelastic function that exhibits the suppleness of rubber (see “J. Appl.phy
s., 34 (1963) 1475, Tohoku University Selected Research Bulletin 27 (1971) 24
Five).

更に、TiNi合金にCを添加したTiNiC合金について、
本発明者はC添加によって、本質的なTiNi合金のもつ形
状記憶特性は損なわれないこと、及び形状記憶、特に可
逆形状記憶特性に役立つことを示している(東北大学選
研彙報,昭和57年6月,第38巻,特開昭63−11636号公
報) 前述したTiNi合金の超弾性機能は、約7%の伸び変形
を与えても、荷重を解放すると同時に殆ど元に戻る。ま
た、変形に必要な応力が殆ど一定で、且つ変形除荷の回
復応力もほぼ一定となるため、これまでにブラジャー用
芯金、、歯列矯正器具、カテーテルガイドワイヤー等主
として人体に関するバネ材とに使用されている。
Furthermore, about TiNiC alloy which added C to TiNi alloy,
The present inventor has shown that the addition of C does not impair the intrinsic shape memory properties of the TiNi alloy and that it is useful for shape memory, especially reversible shape memory properties. (June, Vol. 38, JP-A-63-11636) The superelastic function of the above-mentioned TiNi alloy almost returns to its original state as soon as the load is released even when the elongation deformation of about 7% is given. Also, since the stress required for deformation is almost constant and the recovery stress of deformation unloading is also almost constant, so far, the core material for brassieres, orthodontic appliances, catheter guide wires, etc. Used in

[発明が解決しようとする課題] しかし、従来のステンレス、あるいはピアノ線等のバ
ネ材に比べ、バネの剛性に欠ける難点があった。
[Problems to be Solved by the Invention] However, compared with conventional spring materials such as stainless steel and piano wire, there is a problem that the rigidity of the spring is lacking.

これに対し、通常TiNi合金の超弾性機能は、冷間加工
後、400〜550℃の時効処理によって付与されるが、この
方法では、優れた変形・回復挙動を示すもののバネとし
ての剛性感に欠ける。
On the other hand, the superelastic function of TiNi alloy is usually given by aging treatment at 400 to 550 ° C after cold working, but this method shows excellent deformation / recovery behavior but has a rigidity as a spring. Chip.

これを解決する手段として冷間加工状態でバネ材とし
て使用する方法が挙げられるが、剛性感の改善には弱酸
の効果は認められるものの、本来的に求められる超弾性
機能は損なわれる。
As a means for solving this problem, a method of using as a spring material in a cold-worked state can be mentioned. However, although the effect of a weak acid is recognized for improving the rigidity, the superelastic function originally required is impaired.

このように、従来のバネ材の剛性を保持できなため、
人体に係るガイドワイヤー,ブラジャー芯金,歯列矯正
器具に形状記憶合金を用いる場合において、従来の同等
の機能を持たせるためには、用いる線は太くなり、外見
上、スペース上の問題を生じていた。
As described above, since the rigidity of the conventional spring material cannot be maintained,
When using shape memory alloys for guide wires, brass cores, and orthodontic appliances related to the human body, in order to have the same function as in the past, the wires used become thicker, causing problems in appearance and space. I was

そこで、本発明の技術的課題は、上記難点を解決し、
断面積が小なる場合においても、本質的な超弾性機能を
損なわず高い剛性を有する超弾性バネ合金の製造方法を
提供することにある。
Therefore, a technical problem of the present invention is to solve the above-mentioned difficulties,
An object of the present invention is to provide a method for manufacturing a superelastic spring alloy having high rigidity without impairing the essential superelastic function even when the cross-sectional area is small.

[課題を解決するための手段] 本発明によれば、Cを0.20〜5.0at%含み、Ni及びC
の含有量が、少なくとも50at%以上であるTiNiCからな
る超弾性バネ合金を製造する方法において、前記合金の
断面積を冷間加工によって減少させる工程と、前記合金
を制御された400〜600℃の温度で時効処理(所望の形状
に機械的に拘束して行う場合を除く)する工程とを備
え、前記合金は、37℃(体温近傍)において、超弾性と
TiNi合金に比較してより大きな降伏点とを備えているこ
とを特徴とする超弾性バネ合金の製造方法が得られる。
[Means for Solving the Problems] According to the present invention, 0.20 to 5.0 at% of C is contained, and Ni and C are contained.
In a method for producing a superelastic spring alloy made of TiNiC having a content of at least 50 at% or more, a step of reducing the cross-sectional area of the alloy by cold working, and controlling the alloy at 400 to 600 ° C. Aging treatment at a temperature (excluding the case of mechanically restraining to a desired shape), the alloy has a superelasticity at 37 ° C. (near body temperature).
A method for producing a superelastic spring alloy characterized by having a higher yield point than a TiNi alloy is obtained.

また、本発明によれば、前記超弾性バネ合金の製造方
法において,前記合金は、熱間加工及び冷間加工と、そ
れに続く、断面積を減少させる加工前の950℃、10分間
の溶体化処理によって直径1.3mmのワイヤーに加工され
ることを特徴とする超弾性バネ合金の製造方法が得られ
る。
According to the invention, in the method for producing a superelastic spring alloy, the alloy may be subjected to hot working and cold working, followed by solution treatment at 950 ° C. for 10 minutes before working to reduce the cross-sectional area. A process for producing a superelastic spring alloy characterized by being processed into a wire having a diameter of 1.3 mm by the treatment is obtained.

また、本発明によれば、前記いずれか一つの超弾性バ
ネ合金の製造方法において、前記断面積減少加工は、前
記合金を直径1.0mmのワイヤーに加工する工程であり、
前記合金の時効処理は500℃で、30分間行われることを
特徴とする超弾性バネ合金の製造方法が得られる。
According to the invention, in any one of the methods for manufacturing a superelastic spring alloy, the cross-sectional area reduction processing is a step of processing the alloy into a wire having a diameter of 1.0 mm,
An aging treatment of the alloy is performed at 500 ° C. for 30 minutes to obtain a method of manufacturing a superelastic spring alloy.

また、本発明によれば、前記いずれかの超弾性バネ合
金の製造方法において、Ni及びCの総量は、50〜52at%
であることを特徴とする超弾性バネ合金の製造方法が得
られる。
According to the invention, in any one of the above-described methods for producing a superelastic spring alloy, the total amount of Ni and C is 50 to 52 at%.
Thus, a method for manufacturing a superelastic spring alloy is obtained.

ここで、TiNi合金で少なくとも37℃における超弾性特
性を得るためには、600℃以下の温度での時効処理によ
って中間相変態が現れる必要がある。溶体化処理後の60
0℃以下の温度で時効処理がおこなわれる場合は、中間
相変態が現れるためには、Ni濃度は少なくとも50.5at%
が必要である。
Here, in order to obtain a superelastic property at least at 37 ° C. with a TiNi alloy, it is necessary to show an intermediate phase transformation by aging treatment at a temperature of 600 ° C. or less. 60 after solution treatment
When aging is performed at a temperature of 0 ° C or less, the Ni concentration must be at least 50.5 at% in order for mesophase transformation to appear.
is necessary.

また、冷間加工後に600℃以下の温度での時効処理が
行われる場合には、合金のNi濃度は49.0at%以上であ
る。
When aging treatment is performed at a temperature of 600 ° C. or less after cold working, the Ni concentration of the alloy is 49.0 at% or more.

特に、超弾性の良好なカーブを得る最適熱処理温度の
500℃前後の時効処理では、合金のNi濃度は少なくとも5
0.2at%が必要とされる。本発明によるTiNiC合金につい
ても少なくとも同様の時効で中間相変態が出現されるこ
とが必要とされる。
In particular, the optimal heat treatment temperature to obtain a superelastic good curve
In the aging treatment around 500 ° C, the Ni concentration of the alloy is at least 5
0.2 at% is required. For the TiNiC alloy according to the present invention, it is necessary that at least the same aging causes the appearance of the intermediate phase transformation.

しかし、Cの添加により剛性アップの効果と同時に変
態温度低下の効果を奏するためには合金中のNi濃度は、
TiNi合金に比べ少ない領域で可能であり、具体的には、
Ni+Cの含量が50.0at%以上であれば良い。
However, in order to achieve the effect of increasing the rigidity and the effect of lowering the transformation temperature by adding C, the Ni concentration in the alloy must be
It is possible in a smaller area compared to TiNi alloy, specifically,
The content of Ni + C may be 50.0 at% or more.

本発明において、Cの添加効果の範囲を0.20〜5.0at
%としたのは、0.20at%未満では、変態温度を低下させ
剛性アップの効果が認め難いためであり、5.0at%を越
えると剛性の上昇効果は認められるものの、冷間加工性
を極度に悪くするためである。
In the present invention, the range of the effect of adding C is 0.20 to 5.0 at.
The reason for this is that if it is less than 0.20 at%, it is difficult to reduce the transformation temperature and increase the rigidity. If it exceeds 5.0 at%, the effect of increasing the rigidity is recognized, but the cold workability is extremely low. This is to make it worse.

尚、以下に述べる実施例においては、TiNi合金につい
て述べるているが、本発明はTiNi合金の一部を第3の元
素X(XはCr,V,Al,Nb,Ta,W等の元素)で置換したTiNiX
合金についても、C添加効果は十分に認められるもので
ある。
In the examples described below, a TiNi alloy is described. However, in the present invention, a part of the TiNi alloy is replaced with a third element X (X is an element such as Cr, V, Al, Nb, Ta, W). Replaced with TiNiX
Also for the alloy, the effect of adding C is sufficiently recognized.

[実施例] 次に、本発明の実施例を図面を参照して説明する。Example Next, an example of the present invention will be described with reference to the drawings.

溶解法によって得たTiNi合金及びTiNiC合金及びTiNiC
合金を熱間加工、冷間加工によって、直径1.3mmφまで
加工し、950℃×10分の溶体化処理後、直径1.0mmφまで
加工し、冷間加工率40%の試験片を得た。
TiNi alloy and TiNiC alloy and TiNiC obtained by melting method
The alloy was worked to a diameter of 1.3 mm by hot working and cold working. After solution treatment at 950 ° C for 10 minutes, the alloy was worked to a diameter of 1.0 mm to obtain a test specimen with a cold working rate of 40%.

その後、500℃で30分間の時効処理を行い、37℃での
引張り試験により、荷重及び除荷重サイクルによる超弾
性特性の測定を行った。
Thereafter, aging treatment was performed at 500 ° C. for 30 minutes, and the superelastic properties were measured by a load and unloading cycles by a tensile test at 37 ° C.

第1図(a),(b)は本発明の実施例による合金と
して、Ti50−X/2Ni50−X/2CX合金(但し、X=1,2,
3,)、Ti49.75−X/2・Ni50.25−X/2CX合金(但し、X=
1,2,3,)の式で表わされるTiNi合金線の5%引張りによ
る荷重・除荷重サイクル結果を示している。
Figure 1 (a), (b) is an alloy according to an embodiment of the present invention, Ti 50-X / 2Ni50- X / 2 C X alloy (where, X = 1, 2,
3,), Ti 49.75-X / 2 Ni 50.25-X / 2 C X alloy (where X =
It shows the load / unload cycle results by 5% tension of the TiNi alloy wire represented by the formula (1,2,3,).

また、比較例として、上記合金のX=0の場合の合金
も夫々併せて示した。
Further, as comparative examples, alloys in the case where X = 0 of the above alloys are also shown.

第1図(a),(b)において、Cを添加しない(X
=0)の比較例に係るTi50Ni50合金線は、37℃では超弾
性を示さないが、CをX=1,2,3の割合で添加した実施
例による合金はそれぞれ良好な超弾性特性を示し、その
応力レベルもほぼ直線的に高くなっている。即ち、超弾
性の開始する点である降伏点が次第に高くなっている。
また、同様なことが(Ti49.5−X/2Ni50.5−X/2CX(X=
1,2,3)合金について言えることが判明した。
In FIGS. 1 (a) and 1 (b), C was not added (X
= 0), the Ti 50 Ni 50 alloy wire according to the comparative example does not exhibit superelasticity at 37 ° C. The characteristic shows that the stress level increases almost linearly. That is, the yield point at which superelasticity starts is gradually increased.
The same is true (Ti 49.5−X / 2 Ni 50.5−X / 2 C X (X =
1,2,3) It turned out that it can be said about the alloy.

一般的に、TiNi合金にCを添加すると、TiNi合金がマ
トリックス中のCと反応して、主としてTiCを生成さ
せ、この合金の変態温度を低下させることが知られてい
る。しかし、本発明の実施例において単にCが合金の変
態温度を低下させるだけではなく、加工によって、ファ
イバー化されたTiCが、Cの添加量に共に増加し、合金
の超弾性の応力アップを導き母相でのバネの剛性アップ
をさせる効果を導くものであることが判明した。
In general, it is known that when C is added to a TiNi alloy, the TiNi alloy reacts with C in the matrix to mainly generate TiC and lower the transformation temperature of the alloy. However, in the embodiment of the present invention, not only does C lower the transformation temperature of the alloy, but also the TiC fiberized by the processing increases with the addition amount of C, leading to an increase in the superelastic stress of the alloy. It has been found that this leads to the effect of increasing the rigidity of the spring in the parent phase.

[発明の効果] 以上説明したように、本発明によれば、少なくとも体
温(37℃)でバネ剛性の高い超弾性を得ることができる
ため、従来のTiNi合金で使われていた歯列矯正器具,ブ
ラジャー用芯金,カテーテルガイドワイヤー等人体に供
される断面の小さなバネ材等に幅広く使われることが期
待される。
[Effects of the Invention] As described above, according to the present invention, it is possible to obtain superelasticity with high spring stiffness at least at body temperature (37 ° C), and therefore, an orthodontic appliance used in a conventional TiNi alloy , Brass cores, catheter guide wires, etc. are expected to be widely used for spring materials with a small cross section to be provided to the human body.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a),(b)は本発明の実施例に係るTi
50−X/2Ni50−X/2CX合金(但し、X=1,2,3,)、及びTi
49.75−X/2Ni50.25−X/2CX合金(但し、X=1,2,3,)の
式で表されるTiNi合金線の5%引張りによる荷重・除荷
重サイクル結果を夫々示す図で、比較の為にTi50Ni50
金(即ち、X=0)、及びTi49.75Ni50.25合金(即ち、
X=0)の式で表されるTiNi合金線の特性も併せて示し
た。
FIGS. 1A and 1B show Ti according to an embodiment of the present invention.
50-X / 2 Ni 50-X / 2 C X alloy (where X = 1,2,3,) and Ti
49.75-X / 2 Ni 50.25-X / 2 C Figure showing the load / unload cycle results by 5% tension of the TiNi alloy wire expressed by the formula of X alloy (X = 1,2,3,). For comparison, Ti 50 Ni 50 alloy (ie, X = 0) and Ti 49.75 Ni 50.25 alloy (ie, X
The characteristics of the TiNi alloy wire represented by the formula (X = 0) are also shown.

フロントページの続き (72)発明者 高荒 秀男 宮城県仙台市太白区郡山6丁目7番1号 株式会社トーキン内 (56)参考文献 特開 平2−38547(JP,A) 特開 昭59−150047(JP,A) 特開 昭63−11637(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22F 19/03 C22F 1/10,1/18 Continuation of front page (72) Inventor Hideo Takaara 6-7-1, Koriyama, Taishiro-ku, Sendai-shi, Miyagi Prefecture Tokinnai Co., Ltd. (56) References JP-A-2-38547 (JP, A) JP-A-59- 150047 (JP, A) JP-A-63-11637 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C22F 19/03 C22F 1/10, 1/18

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Cを0.20〜5.0at%含み、Ni及びCの含有
量が、少なくとも50at%以上であるTiNiCからなる超弾
性バネ合金を製造する方法において、 前記合金の断面積を冷間加工によって減少させる工程
と、前記合金を制御された400〜600℃の温度で時効処理
(所望の形状に機械的に拘束して行う場合を除く)する
工程とを備え、前記合金は、37℃(体温近傍)におい
て、超弾性とTiNi合金に比較してより大きな降伏点とを
備えていることを特徴とする超弾性バネ合金の製造方
法。
1. A method for producing a superelastic spring alloy comprising TiNiC containing 0.20 to 5.0 at% of C and containing at least 50 at% of Ni and C, wherein a cross-sectional area of the alloy is cold-worked. And aging the alloy at a controlled temperature of 400-600 ° C. (except when mechanically constrained to a desired shape). A method for producing a superelastic spring alloy characterized by having superelasticity and a higher yield point in comparison with a TiNi alloy at (near body temperature).
【請求項2】請求項1記載の超弾性バネ合金の製造方法
において, 前記合金は、熱間加工及び冷間加工と、それに続く、断
面積を減少させる加工前の950℃、10分間の溶体化処理
によって直径1.3mmのワイヤーに加工されることを特徴
とする超弾性バネ合金の製造方法。
2. The method for manufacturing a superelastic spring alloy according to claim 1, wherein the alloy is a solution at 950 ° C. for 10 minutes before hot working and cold working and subsequent working to reduce the cross-sectional area. A method for producing a superelastic spring alloy, wherein the superelastic spring alloy is processed into a wire having a diameter of 1.3 mm.
【請求項3】請求項1又は2記載の超弾性バネ合金の製
造方法において、 前記断面積減少加工は、前記合金を直径1.0mmのワイヤ
ーに加工する工程であり、前記合金の時効処理は500℃
で、30分間行われることを特徴とする超弾性バネ合金の
製造方法。
3. The method for manufacturing a superelastic spring alloy according to claim 1, wherein the cross-sectional area reduction processing is a step of processing the alloy into a wire having a diameter of 1.0 mm, and the aging processing of the alloy is performed by 500 ° C
, For 30 minutes.
【請求項4】請求項1乃至3の内のいずれかに記載の超
弾性バネ合金の製造方法において、Ni及びCの総量は、
50〜52at%であることを特徴とする超弾性バネ合金の製
造方法。
4. The method of manufacturing a superelastic spring alloy according to claim 1, wherein the total amount of Ni and C is:
A method for producing a superelastic spring alloy, which is 50 to 52 at%.
JP02147325A 1990-06-07 1990-06-07 Manufacturing method of super elastic spring alloy Expired - Fee Related JP3141328B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP02147325A JP3141328B2 (en) 1990-06-07 1990-06-07 Manufacturing method of super elastic spring alloy
DE1991623084 DE69123084T2 (en) 1990-06-07 1991-06-07 Pseudoelastic Ti-Ni-C shape memory alloy with a higher elastic limit
EP19910109349 EP0460695B1 (en) 1990-06-07 1991-06-07 Ti-Ni-C shape memory alloy with a pseudoelasticity and a wide elasticity range

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02147325A JP3141328B2 (en) 1990-06-07 1990-06-07 Manufacturing method of super elastic spring alloy

Publications (2)

Publication Number Publication Date
JPH0441639A JPH0441639A (en) 1992-02-12
JP3141328B2 true JP3141328B2 (en) 2001-03-05

Family

ID=15427633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02147325A Expired - Fee Related JP3141328B2 (en) 1990-06-07 1990-06-07 Manufacturing method of super elastic spring alloy

Country Status (3)

Country Link
EP (1) EP0460695B1 (en)
JP (1) JP3141328B2 (en)
DE (1) DE69123084T2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3782289B2 (en) * 2000-07-06 2006-06-07 トキコーポレーション株式会社 Method of processing shape memory alloy and shape memory alloy
JP2007147549A (en) * 2005-11-30 2007-06-14 Hugle Electronics Inc Method and device for displaying measured data

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4533411A (en) * 1983-11-15 1985-08-06 Raychem Corporation Method of processing nickel-titanium-base shape-memory alloys and structure
JPH0665742B2 (en) * 1987-01-08 1994-08-24 株式会社ト−キン Shape memory TiNiV alloy manufacturing method

Also Published As

Publication number Publication date
EP0460695B1 (en) 1996-11-13
JPH0441639A (en) 1992-02-12
DE69123084D1 (en) 1996-12-19
DE69123084T2 (en) 1997-04-03
EP0460695A1 (en) 1991-12-11

Similar Documents

Publication Publication Date Title
US5885381A (en) Ni-Ti-Pd superelastic alloy material, its manufacturing method, and orthodontic archwire made of this alloy material
US5958159A (en) Process for the production of a superelastic material out of a nickel and titanium alloy
US7988281B2 (en) Structural member for eyeglass, eyeglass frame comprising the structural member, and processes for production of the structural member and the eyeglass frame
JP2007520630A (en) Beta titanium composition and method for producing the same
JP4302604B2 (en) Superelastic titanium alloy for living body
JP3141328B2 (en) Manufacturing method of super elastic spring alloy
JP5107661B2 (en) Ti-based alloy
JPS6362583B2 (en)
JP2004197112A (en) Method of producing biological superelastic titanium alloy
JP2541802B2 (en) Shape memory TiNiV alloy and manufacturing method thereof
JP3379767B2 (en) Method for producing NiTi-based superelastic material
WO1999049091A1 (en) Ti-V-Al BASED SUPERELASTICITY ALLOY
JP2007016313A (en) Structural member for eyeglass, eyeglass frame comprising the structural member, and processes for production of the structural member and the eyeglass frame
JPS63235444A (en) Ti-ni-al based shape memory alloy and its production
JPH07207390A (en) Super elastic spring
JP3239382B2 (en) Superelastic material and method of manufacturing the same
JP3915543B2 (en) Partly superelastic parts and method of manufacturing the same
JPH0860277A (en) Nickel-titanium alloy
JP2706273B2 (en) Superelastic Ni-Ti-Cu alloy and method for producing the same
JP3933623B2 (en) Method for producing superelastic titanium alloy for living body and titanium alloy for superelasticity
JP2691567B2 (en) Super elastic element
JP2602652B2 (en) Super-elastic TiNiA Cr Cr alloy
JP2799992B2 (en) Shape memory alloy wire for clothing
JP4028008B2 (en) NiTiPd-based superelastic alloy material, manufacturing method thereof, and orthodontic wire using the alloy material
JPS60155657A (en) Production of ti-ni superelastic alloy

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees