JPS6362583B2 - - Google Patents

Info

Publication number
JPS6362583B2
JPS6362583B2 JP59202914A JP20291484A JPS6362583B2 JP S6362583 B2 JPS6362583 B2 JP S6362583B2 JP 59202914 A JP59202914 A JP 59202914A JP 20291484 A JP20291484 A JP 20291484A JP S6362583 B2 JPS6362583 B2 JP S6362583B2
Authority
JP
Japan
Prior art keywords
temperature
pseudoelastic
stress
cold working
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59202914A
Other languages
Japanese (ja)
Other versions
JPS6184361A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP59202914A priority Critical patent/JPS6184361A/en
Publication of JPS6184361A publication Critical patent/JPS6184361A/en
Publication of JPS6362583B2 publication Critical patent/JPS6362583B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Springs (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、TiNi合金擬弾性バネの製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a TiNi alloy pseudoelastic spring.

〔従来技術〕[Prior art]

TiNi合金は熱弾性型マルテンサイト変態の逆
変態に付随して顕著な形状記憶効果を示すことが
知られている。また同時に擬弾性効果を併せて示
すことが知られている。
TiNi alloys are known to exhibit a remarkable shape memory effect accompanying the reverse transformation of thermoelastic martensitic transformation. It is also known that it also exhibits a pseudoelastic effect.

擬弾性効果とは、同合金の逆変態完了温度(以
下、Afと略称する。)以上の温度下で応力負荷を
行なうと、見掛け上数%〜10%の塑性変形を起す
が除荷と同時に完全に元に戻る性質のことであ
る。
Pseudo-elastic effect means that when stress is applied to the same alloy at a temperature higher than its reverse transformation completion temperature (hereinafter abbreviated as Af), plastic deformation of several to 10% appears, but at the same time as unloading. It has the property of completely returning to its original state.

この性質は医療用として歯列矯正ワイア、カテ
ーテル等のバネ用材料として注目されている。
This property has attracted attention as a spring material for medical purposes such as orthodontic wires and catheters.

カテーテルとしては、現在、ピアノ線のヘリカ
ルコイルバネが用いられている。要求される機能
はトルク伝達性、しなやかさを体温(35℃)近
傍の温度で示すことである。更にカテーテルは、
血管中に挿入されるために、少なくとも1〜
1.5mの範囲で直線状を示すことが求められる。
Currently, a piano wire helical coil spring is used as a catheter. The required functions are torque transferability and flexibility at temperatures close to body temperature (35°C). Furthermore, the catheter
for insertion into a blood vessel, at least one to
It is required to show a straight line within a range of 1.5m.

TiNi合金擬弾性材は一般に800〜1000℃で均一
化処理を行なうことで得られるが、これによると
見掛け上の塑性変形を受ける応力レベルも低く、
擬弾性効果を示す温度範囲も狭い。
TiNi alloy pseudoelastic materials are generally obtained by homogenization treatment at 800 to 1000°C, but this results in a low stress level for apparent plastic deformation.
The temperature range in which the pseudoelastic effect occurs is also narrow.

冷間加工後、比較的低温で再結晶をさせない処
理を行なう方法としてその指導原理はBuenlerに
よつて示されている(Wire J,Vol2,
June1969 pp41〜49)。
The guiding principles for a method of performing treatment without recrystallization at a relatively low temperature after cold working are presented by Buenler (Wire J, Vol. 2,
June 1969 pp41-49).

またその詳細な研究結果は、特開昭58−161753
に記されている。これらの研究によつても、カテ
ーテル用バネ材として求められる前記特性は満足
されない。
The detailed research results are published in Japanese Patent Publication No. 58-161753.
It is written in Even with these studies, the above characteristics required for a spring material for a catheter are not satisfied.

〔発明の目的〕[Purpose of the invention]

本発明は、体温近傍の温度で高変形応力を示
し、且つ連続直線形状を有する擬弾性バネの提供
を目的とする。
An object of the present invention is to provide a pseudoelastic spring that exhibits high deformation stress at temperatures near body temperature and has a continuous linear shape.

〔発明の構成〕[Structure of the invention]

Ni50.5at%(残部Ti)からなるTiNi合金を
冷間加工(加工率30%)後300〜450℃で張力を
かけながら連続焼鈍を行なうことにより、体温近
傍の温度で高変形応力(60Kg/mm2以上)を示し且
つ直線形状を保有することを特長とするものであ
る。
A TiNi alloy consisting of 50.5at% Ni (remaining Ti) is cold worked (processing rate 30%) and then continuously annealed under tension at 300 to 450°C, resulting in high deformation stress (60Kg/ mm 2 or more) and has a linear shape.

〔発明の作用・効果〕[Action/effect of the invention]

本発明による擬弾性バネは、高トルク伝達性、
高変形応力を体温近傍の温度で示し、且つ直線形
状を示すことからカテーテルとして利用する場
合、従来ピアノ線の如きヘリカルコイルにする必
要がなく、線断面積を小さくすることを可能とす
る利点を持つ。
The pseudoelastic spring according to the present invention has high torque transmission properties,
Since it exhibits high deformation stress at temperatures close to body temperature and exhibits a linear shape, when used as a catheter, it is not necessary to use a helical coil like conventional piano wire, and it has the advantage of being able to reduce the wire cross-sectional area. have

以下、実施例に基き説明する。 The following will explain based on examples.

実施例 1 Ti―51.0at%Ni合金を線引き加工を行ない、
800〜1000℃で均一化処理後冷間加工により0.7mm
φに仕上げた。これを370℃の温度で張力をかけ
ながら1m/10分(炉の均熱帯1m)の速度で焼
鈍を行なつた。
Example 1 Ti-51.0at%Ni alloy was wire-drawn,
0.7mm by cold working after homogenizing at 800-1000℃
Finished in φ. This was annealed at a temperature of 370° C. while applying tension at a speed of 1 m/10 minutes (1 m soaking zone of the furnace).

これについて0〜50℃の温度範囲で応力―歪み
曲線を求めた。その結果を第1図に示す。
Regarding this, stress-strain curves were determined in the temperature range of 0 to 50°C. The results are shown in FIG.

冷間加工率を変えて30℃における変形応力(見
かけ上の塑性変形を示す応力)を測定した結果を
第2図に示す。冷間加工率を一定にし、焼鈍温度
を変えた変形応力、残留歪み量を測定した結果を
第3図に示す。
Figure 2 shows the results of measuring the deformation stress (stress indicating apparent plastic deformation) at 30°C with varying cold working rates. Figure 3 shows the results of measuring the deformation stress and residual strain amount when the cold working rate was kept constant and the annealing temperature was changed.

また比較のために、800℃で均一化処理した素
材、およびその後400℃で焼鈍した素材の変形応
力の測定結果を第4図に示す。
For comparison, Fig. 4 shows the measurement results of the deformation stress of a material homogenized at 800°C and a material subsequently annealed at 400°C.

これらの結果から明らかなように、冷間加工率
が大きい程変形応力は高くなる。焼鈍条件は300
〜450℃が適当であることが言える。しかし実用
上は冷間加工率は30%を越えれば十分であるが好
ましくは40%を越えることが望ましい。
As is clear from these results, the higher the cold working rate, the higher the deformation stress. Annealing conditions are 300
It can be said that ~450°C is appropriate. However, in practice, it is sufficient if the cold working rate exceeds 30%, but preferably it exceeds 40%.

実施例 2 50,50.5,51.5at%NiからそれぞれなるTiNi合
金を線引き加工し、800〜1000℃で均一化処理後
冷間加工により0.7mmφに仕上げた。
Example 2 TiNi alloys made of 50, 50.5, and 51.5 at% Ni were wire-drawn, homogenized at 800 to 1000°C, and then cold worked to a diameter of 0.7 mm.

これらを370℃の温度で張力をかけながら1
m/10分(炉の均熱帯1m)の速度で焼鈍を行な
つた。これらについて30℃における変形応力、残
留ひずみ量を測定した。その結果を第5図に示
す。
1 while applying tension at a temperature of 370℃.
Annealing was carried out at a speed of m/10 min (soaking zone of the furnace 1 m). The deformation stress and residual strain at 30°C were measured for these. The results are shown in FIG.

この結果により50.5at%Niを越えるTiNi合金
線については良好な擬弾性効果が得られることが
判る。またNi濃度の増加と共に変形応力は高く
なる傾向を示すが、加工性(冷間)はNi濃度の
増加と共に悪くなる。このため実用上のNi濃度
の限界は51.5at%である。
This result shows that good pseudoelastic effects can be obtained for TiNi alloy wires with Ni exceeding 50.5 at%. Furthermore, as the Ni concentration increases, the deformation stress tends to increase, but the workability (cold) deteriorates as the Ni concentration increases. Therefore, the practical limit of Ni concentration is 51.5 at%.

焼鈍後のバネの直線形状性は実施例中本発明法
によるものは、1.5m切断サンプルの最大浮き上
り寸法は10mmであつた。
Regarding the linear shape of the spring after annealing, the maximum lifting dimension of the 1.5 m cut sample of the spring according to the method of the present invention among the examples was 10 mm.

本発明によれば、冷間加工率と焼鈍条件(温
度・時間)の組合せにより擬弾性温度範囲、変形
応力を合金成分(Ni濃度)に依らず一定とする
ことが可能である。
According to the present invention, it is possible to make the pseudoelastic temperature range and deformation stress constant regardless of the alloy components (Ni concentration) by combining the cold working rate and annealing conditions (temperature and time).

このように本発明は、直線形状を保ち、且つ変
形応力の高い擬弾性バネ材の提供を可能にするこ
とができる。これは医療用カテーテル等ある程度
長さを必要とする直線状バネ材への適用のみなら
ず、他の工業製品への応用が期待される。
In this way, the present invention can provide a pseudoelastic spring material that maintains a linear shape and has high deformation stress. This is expected to be applied not only to linear spring materials that require a certain length such as medical catheters, but also to other industrial products.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はTi―51.0at%Niよりなる合金を冷間
加工後(冷間加工率51%)370℃で1m/10分
(炉均熱帯1m)の巻取りスピードで焼鈍を行な
つた0.7mm2φの素材を、0〜40℃の温度範囲で測
定した応力―歪み曲線。第2図は見かけ上の塑性
変形をうける応力と冷間加工率の関係を示すグラ
フである((条件は素材線径0.7mmφ、組成:Ti―
51at%Ni、焼鈍:400℃×1m/10分(均熱帯1
m、測定温度:30℃)。第3図は第1図と同じ素
材を焼鈍温度を変えたときの見かけ上の塑性変形
応力、残留ひずみの関係を示すグラフである。測
定条件は30℃。第4図は第1図と同じ素材を800
℃で均一化処理を施し、またその後400℃熱処理
を行なつた時の見かけ上の塑性変形応力と測定温
度の関係を示すグラフである。第5図は370℃×
1m/10分で焼鈍した時の見かけ上の塑性変形応
力および残留歪量のNi濃度依存性を示すグラフ
である。(測定温度30℃)。
Figure 1 shows an alloy consisting of Ti-51.0at%Ni that was annealed after cold working (cold working rate 51%) at 370°C at a winding speed of 1m/10 minutes (furnace soaking zone 1m). Stress-strain curve measured for mm 2 φ material in the temperature range of 0 to 40°C. Figure 2 is a graph showing the relationship between the stress that causes apparent plastic deformation and the cold working rate ((conditions are material wire diameter 0.7 mmφ, composition: Ti-
51at%Ni, annealing: 400℃ x 1m/10 minutes (soaking zone 1
m, measurement temperature: 30℃). FIG. 3 is a graph showing the relationship between apparent plastic deformation stress and residual strain when the same material as in FIG. 1 is annealed at different temperatures. Measurement conditions were 30℃. Figure 4 uses the same material as Figure 1, 800
3 is a graph showing the relationship between apparent plastic deformation stress and measured temperature when homogenization treatment was performed at 400°C and then heat treatment was performed at 400°C. Figure 5 is 370℃×
It is a graph showing the Ni concentration dependence of the apparent plastic deformation stress and the amount of residual strain when annealed at 1 m/10 minutes. (Measurement temperature 30℃).

Claims (1)

【特許請求の範囲】[Claims] 1 Ni50.5at%(残部Ti)からなる熱弾性型
マルテンサイト変態を示すTiNi合金を冷間加工
(加工率30%)後、300℃〜450℃の温度範囲で、
張力をかけながら連続焼鈍を行ない、体温(35
℃)近傍の温度で擬弾性特性を高応力で示す連続
直線状バネを得ることを特長とする擬弾性バネの
製造方法。
1 After cold working (processing rate 30%) a TiNi alloy showing thermoelastic martensitic transformation consisting of 50.5at% Ni (remaining Ti),
Continuous annealing is performed while applying tension, and temperature (35
A method for producing a pseudoelastic spring characterized by obtaining a continuous linear spring exhibiting pseudoelastic properties with high stress at a temperature near ℃).
JP59202914A 1984-09-29 1984-09-29 Manufacture of pseudoelastic spring Granted JPS6184361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59202914A JPS6184361A (en) 1984-09-29 1984-09-29 Manufacture of pseudoelastic spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59202914A JPS6184361A (en) 1984-09-29 1984-09-29 Manufacture of pseudoelastic spring

Publications (2)

Publication Number Publication Date
JPS6184361A JPS6184361A (en) 1986-04-28
JPS6362583B2 true JPS6362583B2 (en) 1988-12-02

Family

ID=16465256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59202914A Granted JPS6184361A (en) 1984-09-29 1984-09-29 Manufacture of pseudoelastic spring

Country Status (1)

Country Link
JP (1) JPS6184361A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4772112A (en) * 1984-11-30 1988-09-20 Cvi/Beta Ventures, Inc. Eyeglass frame including shape-memory elements
US5341818A (en) 1992-12-22 1994-08-30 Advanced Cardiovascular Systems, Inc. Guidewire with superelastic distal portion
US6165292A (en) 1990-12-18 2000-12-26 Advanced Cardiovascular Systems, Inc. Superelastic guiding member
US6682608B2 (en) 1990-12-18 2004-01-27 Advanced Cardiovascular Systems, Inc. Superelastic guiding member
US6068623A (en) 1997-03-06 2000-05-30 Percusurge, Inc. Hollow medical wires and methods of constructing same
US6664702B2 (en) 2000-12-11 2003-12-16 Dpd, Inc. Pseudoelastic springs with concentrated deformations and applications thereof
EP1930480A1 (en) * 2005-08-10 2008-06-11 National Universiy Corporation Tokyo Medical and Dental University Titanium-nickel alloy, method for modifying titanium-nickel alloy surface, biocompatible material
JP4728066B2 (en) * 2005-08-18 2011-07-20 オリンパス株式会社 Method for manufacturing elastic member and information device
JP2015036455A (en) * 2013-08-12 2015-02-23 クリノ株式会社 Ti-Ni ALLOY FOR MEDICAL TREATMENT
JP7352272B2 (en) * 2018-03-08 2023-09-28 公立大学法人北九州市立大学 Vibration isolator

Also Published As

Publication number Publication date
JPS6184361A (en) 1986-04-28

Similar Documents

Publication Publication Date Title
WO2000027462A1 (en) NiTi-TYPE MEDICAL GUIDE WIRE AND METHOD OF PRODUCING THE SAME
JP4562830B2 (en) Manufacturing method of β titanium alloy fine wire
JPS6362583B2 (en)
JP2004197112A (en) Method of producing biological superelastic titanium alloy
JP2541802B2 (en) Shape memory TiNiV alloy and manufacturing method thereof
JPS63235444A (en) Ti-ni-al based shape memory alloy and its production
JPH0460675B2 (en)
JP3141328B2 (en) Manufacturing method of super elastic spring alloy
JP2799992B2 (en) Shape memory alloy wire for clothing
JPS6220274B2 (en)
JP3915543B2 (en) Partly superelastic parts and method of manufacturing the same
US3598578A (en) Electrical resistance alloy and method of producing same
JP3933623B2 (en) Method for producing superelastic titanium alloy for living body and titanium alloy for superelasticity
JPH06212282A (en) Production of heating wire
JPS60155656A (en) Production of ti-ni superelastic alloy
JP4028008B2 (en) NiTiPd-based superelastic alloy material, manufacturing method thereof, and orthodontic wire using the alloy material
JP2004124156A (en) METHOD FOR MANUFACTURING SUPERELASTIC TiNbSn ALLOY FOR ORGANISM
JP2640461B2 (en) Medical guidewire and medical catheter
JPH0288737A (en) Super elastic ni-ti-cu alloy and its manufacture
JPH01268835A (en) Super elastic alloy material and super elastic element
JP2005105404A6 (en) Method for producing superelastic titanium alloy for living body and titanium alloy for superelasticity
JP2781713B2 (en) Method of manufacturing super-elastic NiTi alloy eyeglass frame member
JPS6247445A (en) Pseudoelastic alloy
JP2005105388A6 (en) Method for producing superelastic titanium alloy for living body and titanium alloy for superelasticity
JP2691567B2 (en) Super elastic element

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term