JP4028008B2 - NiTiPd-based superelastic alloy material, manufacturing method thereof, and orthodontic wire using the alloy material - Google Patents

NiTiPd-based superelastic alloy material, manufacturing method thereof, and orthodontic wire using the alloy material Download PDF

Info

Publication number
JP4028008B2
JP4028008B2 JP19550196A JP19550196A JP4028008B2 JP 4028008 B2 JP4028008 B2 JP 4028008B2 JP 19550196 A JP19550196 A JP 19550196A JP 19550196 A JP19550196 A JP 19550196A JP 4028008 B2 JP4028008 B2 JP 4028008B2
Authority
JP
Japan
Prior art keywords
stress
nitipd
wire
alloy material
unloading
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19550196A
Other languages
Japanese (ja)
Other versions
JPH0978165A (en
Inventor
賢悟 水戸瀬
達彦 植木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP19550196A priority Critical patent/JP4028008B2/en
Publication of JPH0978165A publication Critical patent/JPH0978165A/en
Application granted granted Critical
Publication of JP4028008B2 publication Critical patent/JP4028008B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、応力ヒステリシスの小さいNiTiPd系超弾性合金材とその製造方法及びこの合金材による歯列矯正ワイヤーに関するものである。
【0002】
【従来の技術】
一般に、金属材料に弾性限を越える応力を負荷すると、永久変形する。ところがNiTi合金のようなある種の合金は、図1に示すごとくマルテンサイト逆変態終了(Af)点の温度(以下Af点温度という)を越える温度において、応力を負荷して歪みを10%近くまで付与しても、除荷後には完全に元の形状にもどる機能、即ち超弾性の機能を有しており、超弾性合金と呼ばれている。
【0003】
なお、図1は、代表的な超弾性合金の応力負荷及び除荷時の応力−ひずみ曲線の一例を示すものであり、図1において▲1▼は、応力負荷時の平坦部a−bの応力P1 と応力除荷時の平坦部c−dの応力P2 の差で、応力ヒステリシスという。
【0004】
従来よりNiTi合金は、形状記憶特性を利用してアクチュエーター、玩具、パイプ継ぎ手などに応用されているが、超弾性特性を利用した用途も近年拡大してきており、そのゴムのような応力−歪み特性を生かし、様々な分野で利用されている。具体的には眼鏡フレーム、ブラジャーワイヤー、歯列矯正用ワイヤー、携帯電話用アンテナ等への用途が多い。
また、加工性や合金特性を改善するためNiTi合金に、Cr,Fe,Co,V,Mn,Bなどの金属元素を微量添加し、使用目的に適合する組成の合金も製造されている。
【0005】
一般に、超弾性合金材は、応力負荷時には程よい応力で変形し、応力除荷時には大きな力が利用できるため、出来るだけ応力負荷時に近い応力で戻ること、即ち応力ヒステリシスが小さいことが望ましい。また、応力を除荷した時に、残留歪み量が0%、若しくは0%に近いことも要求される。
【0006】
図2は、NiTi超弾性合金の応力−ひずみ曲線の一例を示すが、図から明らかなように、応力ヒステリシス(図2の▲1▼)がおよそ 300〜400MPaと大きいため使用用途に限度があった。
これに対し、応力ヒステリシスの小さい超弾性合金としてNiTiCu系合金が開発された。図3は、NiTiCu系超弾性合金の応力−ひずみ曲線の一例を示す。
【0007】
NiTiCu合金は、Cu添加量の増加とともに応力ヒステリシスが小さくなり、Cuを10at%近く添加した組成において応力ヒステリシスは、研究室レベルでは 100〜200MPaにまで減少することが知られており、さらにCuを20at%近くに増やすと応力ヒステリシスは40MPa まで減少する。(S.Miyazaki, I.Shiota, K.Otsuka and H.tamura, Proc. of MRS Int´l. Mtg on Adv. Mats., Vol.9(1989)153page、Hiroshi Horikawa and Tatsuhiko Ueki, Advanced Materials,´93.V/B:Shape Memory Materials and Hydrides, edited by K. Otsuka et al, Trans. Mat.Res.Soc.Jpn., Volume 18B 1113page、U.S.P.No.5,044,947)。このようなNiTiCu系合金は、主に歯列矯正用ワイヤーなどに利用されている。
【0008】
しかしながら、NiTiCu系超弾性合金は、Cu添加量の増加に伴って熱間加工性が著しく低下する。このため工場レベルではCu添加量の多い合金を製造することができず、現状では工業的には応力ヒステリシス160MPa程度の値までしか減少させることができない。
そこで加工性が優れ、かつ応力ヒステリシスが飛躍的に小さい超弾性合金材の開発が待たれている。なお、超弾性合金材には、前述のごとく荷重を除去した際の残留歪み量が0%、若しくは0%に近いことも要求される。
【0009】
【発明が解決しようとする課題】
本発明の目的は、前記の従来技術の問題点を改善した応力ヒステリシスの小さい超弾性合金材を提供することであり、又本発明の他の目的は、これらの合金材料の製造方法を提供することである。
さらに本発明の他の目的は、応力ヒステリシスの小さい歯列矯正用の超弾性合金ワイヤーを提供することである。
【0010】
【課題を解決するための手段】
前記目的を達成するための本発明は、以下のとおりである。
即ち本発明の第1は、合金組成がNi:34〜49at%、Ti:48〜52at%、Pd:7.5at %以上 14at %以下からなる合金であって、かつAfからAf+5℃の温度範囲での応力負荷及び除荷時の応力−歪み曲線における応力ヒステリシスが50〜150MPaであることを特徴とするNiTiPd系超弾性合金材である。
【0011】
また本発明の第2は、上記のNiTiPd系合金組成において、Ni及び/又はTiの一部をCr,Fe,Co,V,Mn,B,Cu,Al,Nb,W,Zrの1種もしくは2種以上の元素の合計2at%以内で置換した合金であって、かつAfからAf+5℃の温度範囲での応力負荷及び除荷時の応力−歪み曲線における応力ヒステリシスが50〜150MPaであることを特徴とするNiTiPd系超弾性合金材である。
【0012】
また本発明の第3は、前記のいずれかの合金組成のNiTiPd系合金鋳塊を、熱間加工で直径1〜5mmまでの線材に加工し、次に必要に応じて冷間伸線と焼鈍を繰り返して所定の線材寸法とした後焼鈍し、続いてこれを冷間で減面加工率20%以上の加工を施して最終の線材寸法とし、これを更に 400〜 700℃で最終熱処理してAfからAf+5℃の温度範囲での応力負荷及び除荷時の応力−歪み曲線における応力ヒステリシスを50〜150MPaとすることを特徴とするNiTiPd系超弾性合金材の製造方法である。
【0013】
また本発明の第4は、前記いずれか合金組成のNiTiPd系合金鋳塊を、700 900 ℃の熱間加工で厚さ1〜5mmの条材に加工し、続いて該条材を冷間圧延率20%以上の圧延加工を施して最終の条材寸法とし、これを更に400〜700 ℃で最終熱処理してAfからAf+5℃の温度範囲での応力負荷及び除荷時の応力−歪み曲線における応力ヒステリシスを50〜150MPaとすることを特徴とするNiTiPd系超弾性合金材の製造方法である。
【0014】
更に、本発明の第5は、前記第1発明、第2発明のいずれかに記載のNiTiPd系超弾性合金材からなる歯列矯正用ワイヤーである。
【0015】
以下に本発明について、更に詳細に説明する。
本発明による前記のNiTiPd系超弾性合金材は、従来のNiTiCu系合金材よりもさらに応力ヒステリシスが小さく、なおかつ熱間加工性が良好な超弾性合金材を提供することができる。この合金材のAf点を越える温度での応力負荷及び除荷時の応力−歪み曲線における応力ヒステリシスの値は50〜150MPaであり、NiTi系及びNiTiCu系合金材と比較して著しく小さい値であり、応力除荷・負荷に際して可逆的な挙動をとる。
【0016】
なお、図2,図3,図4に、それぞれ代表的なNiTi,NiTiCu,NiTiPd超弾性合金材のAf点を越える温度での応力負荷及び除荷時の応力−歪み曲線の一例を示す。
【0017】
本発明の第1のNiTiPd系超弾性合金材において、Pd量を7.5at %以上 14at %以下としたのは、Pd量が7.5%未満では応力ヒステリシスを小さくする効果がなく、Pd量が14%を越えると冷間加工性が悪くなってくるため実用に適さないからである。
【0018】
また、Ni:34〜49at%、Ti:48〜52at%としたのは、この範囲外の組成になると加工性が低下するとともに荷重を除去した後に歪みが残留するようになるからである。
【0019】
本発明のNiTiPd系超弾性合金において、応力ヒステリシスを小さくすることと、良好な熱間加工性を得るための最も望ましい合金組成は、Ti:50at%、Ni:41〜45at%、Pd: 7.5at %以上 14at %以下の範囲である。
【0020】
また、本発明の第2の超弾性合金材において、前記のNiTiPd系合金組成のNi及び/又はTiの一部をCr,Fe,Co,V,Mn,B,Cu,Al,Nb,W,Zrの1種もしくは2種以上の元素で、且つこれらの合計を2at%以内で置換するのは、合金材の加工性やAf点温度等の合金特性を改善するためであり、また使用目的に適合するように合金特性を変更するためである。
【0021】
前記第1,第2発明において、AfからAf+5℃の温度範囲での応力負荷及び除荷時の応力−歪み曲線における応力ヒステリシスが50〜150MPaとしたのは、いうまでもなく、これが本合金材で得らえる範囲であり、このように小さい方が使用上好ましいからである。なお、本発明合金材で歪み8%まで応力を負荷し、次いでこれを除荷した時の残留歪量は、 0.5%以下となる。
【0022】
本発明の第3及び第4は、NiTiPd系超弾性合金材の製造方法に関するものである。この合金材の製造は、まず前記合金組成の鋳塊を熱間加工により、線径1〜5mmの線材とするか、又は板厚1〜5mmの条材とする。本発明によるNiTiPd系超弾性合金材は、熱間加工性が良好であるため、前記のごとく細径又は薄くまで熱間で加工することができ、製造コストを大きく下げることができる。
なお、ここでいう線径1〜5mmの線材の断面形状は、円形が製造し易く一般的であるが、楕円形、多角形でもよく、この場合の線径1〜5mmは、楕円形、多角形の最大径を指している。
【0023】
以下線材の製造工程について説明するが、条材についても同様である。
このように熱間加工した線材は、必要に応じて冷間伸線と焼鈍を繰り返して所定の線材寸法とした後焼鈍し、続いてこれに冷間で減面加工率20%以上の加工を施して最終の線材寸法とし、これを更に 400〜 700℃で最終熱処理する。
なお、これに限定されるものではないが、本合金材の熱間加工は、 700〜 900℃で行うのが望ましく、また焼鈍は 600 〜 800℃で行うのが望ましい。
【0024】
前記のごとく熱間加工で線径1〜5mmの線材とするのは、途中の冷間伸線と焼鈍をできるだけ無くすか、少なくするためであり、最終の仕上げ寸法近くまで熱間加工することが望ましい。
【0025】
以上のことから、例えば、最終の仕上げ寸法のワイヤーが線径1mmで、熱間加工材が線径 1.2mmの場合は、途中の冷間伸線と焼鈍は不要となり、熱間加工材線径 1.2mmから、冷間伸線により線径1mmまで加工することになる(冷間減面率、約30%)。また、最終の仕上げ寸法のワイヤーが線径1mmで、熱間加工材が線径 3.0mmの場合は、熱間加工の後、冷間伸線と焼鈍を繰り返して、線径 1.2mmとした後焼鈍し、これを冷間伸線により線径1mmまで加工することになる(最終冷間減面率、約30%)。
【0026】
以上のようにして冷間で減面加工率20%以上の加工を行った線材は、最後に400〜 700℃の温度範囲で熱処理するが、このような加工率の冷間加工と熱処理を行うのは、この加工率の範囲と熱処理温度の範囲において、除荷後に歪みが残留せず良好な超弾性特性が得られるからである。
【0027】
なお、線材の最終の断面形状は、円形、楕円形、多角形あるいは平行四辺形のコーナー部のみ円弧としたもののいずれでもよい。また、冷間での減面加工率は20%以上であるが、上限は約60%程度である。これ以上の加工率では材料が破断してしまうからである。
【0028】
本発明の第5は、合金組成が前記第1発明、第2発明のいずれかに記載のNiTiPd系合金で、かつAfからAf+5℃の温度範囲での応力負荷及び除荷時の応力−歪み曲線における応力ヒステリシスが50〜150MPaの超弾性合金材からなる歯列矯正用ワイヤーである。
超弾性合金材を歯列矯正ワイヤーに使用する場合、ワイヤーを歯に装着する作業(応力負荷時)では適度な力で引張り、装着した後に歯を移動せしめるための応力除荷時の張力はできるだけ大きいこと、即ち応力ヒステリシスが小さいことが望まれている。従って、本発明のNiTiPd系超弾性合金材は、応力ヒステリシスが50〜150MPaで小さいため、歯列矯正ワイヤーとしてこれまでにない良好な特性を備えているということができる。
【0029】
【実施例】
実施例1
表1に示す組成の本発明例及び比較例の超弾性合金材を試作した。即ち、表1に示す組成からなる合金を溶解鋳造して鋳塊とし、これを 750〜 850℃の熱間で圧延加工して、直径3mmの線材とし、次にこれを冷間伸線と焼鈍を繰り返して所定の細径の線材(直径約 1.2mm)として焼鈍( 700℃)した。これを冷間で30%の減面加工率で伸線し、線径1mmのワイヤーとした。その後これを 400℃で60分の最終熱処理をして試験材を製作した。なお、熱間加工において、NiTiPd系合金材(表1の No.1〜10)は、線材表面に割れもなく良好であったが、NiTiCu合金材(表1の No.11〜12)は、線材表面に割れが発生した。従ってNiTiCu合金材は、熱間加工材の良好な部分について線材加工を実施して線径1mmの試験材を製作し、さらに熱処理を行った。これらの線材について応力負荷時及び除荷時の応力−歪み曲線を求めた。
【0030】
試験温度は各合金のAfからAf+5℃の範囲とし、歪み4%まで応力を負荷した後除荷する試験を実施した。応力−歪み曲線から、応力負荷時と除荷時の応力差(応力ヒシテリシス)を求めて表1に示した。
また、各合金のAf点(マルテンサイト逆変態終了点)は、熱分析により測定し表1に記した。また、参考までに応力除荷時の歪み2%での応力(MPa) も表1に併記した。
【0031】
【表1】

Figure 0004028008
【0032】
表1から明らかなごとく、No.11 及びNo.12 のNiTiCu合金は、熱間加工の際に割れが生じ歩留まりが著しく低下した。No.12 は応力ヒステリシスが 172MPa で比較的良好な特性を示したが熱間加工性を考慮すると工場レベルでの製造は難しく、またNiTiCu合金ではこれ以上の応力ヒステリシスの低下は望めない。
一方、 No.1〜10のNiTiPd系合金は、熱間加工性が良好ですなわち熱間圧延性においては、NiTiCu合金のように線材の表面に割れは発生せず。線径3mmまで熱間による加工が可能であった。
【0033】
比較例の No.9及び10は、加工性は良好であったが、応力ヒステリシスが大きく従来のNiTiCu系合金と比較して特性上優れる点はない。これに対し本発明例である No.1〜8は、熱間加工性が良好であると共に応力ヒステリシスがおよそ50〜150MPaと小さく、NiTiCu合金と比較して1/2 〜9/10であると同時に優れた熱間加工性を示した。
【0034】
また、 No.5〜8の合金は、NiTiPd合金のNi,Tiの一部をCr,Fe,Co,Vの元素により置換した実施例である。Cr,Fe,Co,Vの添加量が合計で2at%を越えると、加工性が著しく低下するため加工は不可能であった。また、添加元素の種類が2種以上であっても添加量が合計で2at%以下であれば、熱間加工性が良好であり、応力ヒステリシスが80〜150Mpaと小さいNiTiPd系超弾性合金の製造が可能である。
【0035】
実施例2
冷間加工後の最終熱処理温度を変化させた場合の、本発明例及び比較例を次にに示す。具体的には、表1に示した No.2の合金について、前記実施例1と同様にして冷間加工の減面率が30%で線径が1mmのワイヤーを試作し、その後表2に示す条件で最終熱処理した。なお本発明例 No.17は最終の冷間圧延率を30%とすることにより厚さが1mmで幅3mmの条材について、以下と同様な試験を行って結果を表2に併記した。
【0036】
この線材について、歪み8%まで応力を負荷した以外は実施例1と同様に試験して、応力負荷時及び除荷時の応力−歪み曲線を求めた。この場合の応力除荷後の残留歪み量(%)と応力ヒステリシス(MPa) を求め、その結果を表2に併記した。
【0037】
【表2】
Figure 0004028008
【0038】
表2から明らかなごとく、熱処理温度 250℃の材料は、歪み7%で破断した。また、熱処理温度 750℃の材料は、応力除去後の残留歪み量が大きいため不適である。これに対し、熱処理温度400〜 700℃の材料においては、残留歪みがほぼ0%であるとともに、応力ヒステリシスは80〜100MPaと小さい数値をとり、優れた超弾性合金であることがわかる。
【0039】
実施例3
表1の No.3の組成の合金について、実施例1と同様にして直径3mmまで熱間加工を施し、次にこれを冷間伸線と焼鈍を繰り返して所定の細径の線材とし、続いてこれを焼鈍( 700℃)した。次にこれを表3に示す減面加工率で伸線し、線径1mmのワイヤーを試作した。その後 400℃で60分の最終熱処理を施した。
なお本発明例 No.24は板厚3mmまで熱間圧延を施し、その後さらに、焼鈍と圧延を繰り返して最終の圧延加工時の冷間圧延率を40%とし、その後 400℃×60分の最終熱処理をした条材である。
【0040】
この線材について、歪み8%まで応力を負荷した以外は実施例1と同様に試験して、応力負荷時及び削除時の応力−歪み曲線を求めた。この場合の応力除荷後の残留歪み量(%)と応力ヒステリシス(MPa) を求め、その結果を表3に併記した。
【0041】
【表3】
Figure 0004028008
【0042】
表3から明らかなごとく、減面加工率0%、10%のサンプルは、残留歪み量が大きいが、減面加工率20%以上のサンプルでは、いずれも残留歪み量が小さくほぼ0%である。従って、減面加工率20%以上において、残留歪みがほぼ0%で、応力ヒステリシスが約80〜100MPaの優れた超弾性合金を提供することができる。
【0043】
実施例4
歯列矯正ワイヤーとしての使用を想定して、次の実験を行った。
表4の合金組成の鋳塊を熱間加工して、線径3mmの線材とした。これを冷間伸線と焼鈍を繰り返して線径0.56mmの線材にし、これを 700℃で焼鈍した。次にこれを減面加工率35%で最終の冷間伸線し、線径0.45mmの線材とした。その後、この線材を表4の条件で最終の熱処理を行い、歯列矯正ワイヤーとした。
【0044】
このように作製した歯列矯正ワイヤーについて、応力負荷時及び除荷時の応力−歪み曲線を求めた。この場合の試験温度は30℃で、歪み8%まで荷重を負荷し、更に荷重を除荷して、応力ヒステリシス(MPa) を求めた。また応力除荷時の歪み2%での応力(MPa) も表4に併記した。
【0045】
【表4】
Figure 0004028008
【0046】
本発明例、比較例ともに応力除荷後の残留歪み量は、 0.2%以下と小さく、超弾性特性としては良好であった。また、比較例のNi44.5Ti50Cu5.0 Cr0.5 合金材の応力ヒステリシスは175MPaであるのに対して、本発明例のNi42.5Ti50Pd7.5 合金材の応力ヒステリシスは130MPaで、比較例の約 3/4であった。
この実験例から明らかなごとく、本発明の超弾性合金材は、歯列矯正ワイヤーとして使用する場合、ワイヤーを歯に装着する時には、可能な限り小さい力で引張って歯に取り付けられ、また治療時には可能な限り大きい力で歯を移動させることができる。
【0047】
【発明の効果】
以上説明したように、本発明は、組成がNi:34〜49at%、Ti:48〜52at%、Pd:7.5at %以上 14at %以下からなるNiTiPd系超弾性合金材、またはこの合金のNi及び/又はTiの一部をCr,Fe,Co,V,Mn,B,Cu,Al,Nb,W,Zrの1種もしくは2種以上の元素の合計2at%以内で置換したNiTiPd系超弾性合金材であって、応力ヒステリシスが50〜150MPaと非常に小さい超弾性合金材である。上記組成のNiTiPd系超弾性合金材は、熱間加工性に優れるため直径1〜5mmの細径まで熱間加工が可能であり低いコストでの製造が可能である。そして熱間加工後に減面加工率にして20%以上の最終の冷間伸線後、 400〜 700℃で最終熱処理することにより、応力ヒステリシスが50〜150MPaとなり、且つ応力除荷後の残留歪み量も0%、若しくは0%に近い優れた超弾性合金材を提供できる。
また、本発明の超弾性合金材を歯列矯正ワイヤーとして使用する場合も、歯に装着、治療時に優れた特性がえられる。
【図面の簡単な説明】
【図1】代表的な超弾性合金の応力負荷及び除荷時の応力と歪みとの関係の一例を示す応力−歪み曲線図である。
【図2】NiTi超弾性合金の応力負荷及び除荷時の応力と歪みの関係の一例を示す応力−歪み曲線図である。
【図3】NiTiCu系超弾性合金(NiTiCuCr合金)の応力負荷及び除荷時の応力と歪みの関係の一例を示す応力−歪み曲線図である。
【図4】本発明に係わるNiTiPd超弾性合金の応力負荷及び除荷時の応力と歪みの関係の一例を示す応力−歪み曲線図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a NiTiPd-based superelastic alloy material having a small stress hysteresis, a manufacturing method thereof, and an orthodontic wire using the alloy material.
[0002]
[Prior art]
In general, when a stress exceeding the elastic limit is applied to a metal material, it is permanently deformed. However, certain alloys, such as NiTi alloys, have a strain of nearly 10% by applying stress at a temperature exceeding the temperature at the end of the martensite reverse transformation (Af) point (hereinafter referred to as the Af point temperature) as shown in FIG. Even if it is applied, it has a function of completely returning to its original shape after unloading, that is, a function of superelasticity, and is called a superelastic alloy.
[0003]
FIG. 1 shows an example of a stress-strain curve at the time of stress loading and unloading of a typical superelastic alloy. In FIG. 1, (1) indicates the flat portion a-b at the time of stress loading. The difference between the stress P 1 and the stress P 2 of the flat portion cd at the time of stress unloading is called stress hysteresis.
[0004]
Conventionally, NiTi alloys have been applied to actuators, toys, pipe joints, etc. using shape memory characteristics, but the applications using superelastic characteristics have also expanded in recent years, and their stress-strain characteristics like rubber It is used in various fields. Specifically, it has many uses for spectacle frames, brassiere wires, orthodontic wires, mobile phone antennas, and the like.
Further, in order to improve workability and alloy characteristics, a small amount of metal elements such as Cr, Fe, Co, V, Mn, and B are added to a NiTi alloy, and an alloy having a composition suitable for the purpose of use is also manufactured.
[0005]
Generally, a superelastic alloy material is deformed with a moderate stress when stress is applied, and a large force can be used when the stress is unloaded. Therefore, it is desirable that the superelastic alloy material returns with a stress as close as possible to the stress load, that is, has a small stress hysteresis. In addition, when the stress is unloaded, the residual strain is required to be 0% or close to 0%.
[0006]
FIG. 2 shows an example of a stress-strain curve of a NiTi superelastic alloy. As is clear from the figure, the stress hysteresis ((1) in FIG. 2) is as large as about 300 to 400 MPa. It was.
On the other hand, a NiTiCu alloy has been developed as a superelastic alloy having a small stress hysteresis. FIG. 3 shows an example of a stress-strain curve of a NiTiCu superelastic alloy.
[0007]
NiTiCu alloy is known to have a stress hysteresis that decreases with increasing Cu addition, and it is known that stress hysteresis decreases to 100-200 MPa at the laboratory level in a composition in which Cu is added at about 10 at%. When it is increased to near 20at%, the stress hysteresis decreases to 40MPa. (S.Miyazaki, I.Shiota, K.Otsuka and H.tamura, Proc. Of MRS Int´l. Mtg on Adv. Mats., Vol.9 (1989) 153page, Hiroshi Horikawa and Tatsuhiko Ueki, Advanced Materials, ´ 93. V / B: Shape Memory Materials and Hydrides, edited by K. Otsuka et al, Trans. Mat. Res. Soc. Jpn., Volume 18B 1113 page, USP No. 5, 044, 947). Such NiTiCu-based alloys are mainly used for orthodontic wires and the like.
[0008]
However, the hot workability of the NiTiCu superelastic alloy significantly decreases with an increase in the amount of Cu added. For this reason, an alloy with a large amount of Cu addition cannot be produced at the factory level, and at present, it can be reduced only to a value of about 160 MPa of stress hysteresis in the industry.
Accordingly, development of a superelastic alloy material having excellent workability and drastically reduced stress hysteresis is awaited. The superelastic alloy material is also required to have a residual strain amount of 0% or close to 0% when the load is removed as described above.
[0009]
[Problems to be solved by the invention]
An object of the present invention is to provide a superelastic alloy material having a small stress hysteresis, which has improved the problems of the prior art, and another object of the present invention is to provide a method for producing these alloy materials. That is.
Still another object of the present invention is to provide an orthodontic superelastic alloy wire with low stress hysteresis.
[0010]
[Means for Solving the Problems]
To achieve the above object, the present invention is as follows.
That is, the first of the present invention is an alloy having an alloy composition of Ni: 34 to 49 at%, Ti: 48 to 52 at%, Pd: 7.5 at % to 14 at % , and in a temperature range of Af to Af + 5 ° C. This is a NiTiPd-based superelastic alloy material characterized in that the stress hysteresis in the stress-strain curve at the time of stress loading and unloading is 50 to 150 MPa.
[0011]
The second aspect of the present invention is the above-described NiTiPd-based alloy composition, in which Ni and / or part of Ti is one of Cr, Fe, Co, V, Mn, B, Cu, Al, Nb, W, and Zr. It is an alloy that is substituted within a total of 2 at% of two or more elements, and that the stress hysteresis in the stress-strain curve at the time of stress loading and unloading in the temperature range of Af to Af + 5 ° C. is 50 to 150 MPa. It is a featured NiTiPd-based superelastic alloy material.
[0012]
The third aspect of the present invention is that a NiTiPd alloy ingot having any of the above alloy compositions is processed into a wire having a diameter of 1 to 5 mm by hot working, and then cold drawing and annealing are performed as necessary. After repeating the above to obtain the prescribed wire dimensions, annealing is performed, and then this is cold processed to a surface reduction ratio of 20% or more to obtain the final wire dimensions, which are further subjected to a final heat treatment at 400 to 700 ° C. A method for producing a NiTiPd-based superelastic alloy material, characterized in that a stress hysteresis in a stress-strain curve during stress loading and unloading in a temperature range of Af to Af + 5 ° C. is 50 to 150 MPa.
[0013]
According to a fourth aspect of the present invention, a NiTiPd alloy ingot having any one of the above alloy compositions is processed into a strip having a thickness of 1 to 5 mm by hot working at 700 to 900 ° C. , and then the strip is cooled. The final strip dimensions are obtained by rolling at a rolling rate of 20% or more, and this is further subjected to final heat treatment at 400 to 700 ° C., and the stress load and unloading stress-strain curve in the temperature range of Af to Af + 5 ° C. This is a method for producing a NiTiPd-based superelastic alloy material, characterized in that the stress hysteresis is 50 to 150 MPa.
[0014]
Furthermore, a fifth aspect of the present invention is an orthodontic wire made of the NiTiPd-based superelastic alloy material according to any one of the first and second inventions.
[0015]
The present invention is described in detail below.
The NiTiPd-based superelastic alloy material according to the present invention can provide a superelastic alloy material having lower stress hysteresis and better hot workability than conventional NiTiCu-based alloy materials. The stress hysteresis value in the stress-strain curve at the time of stress loading and unloading at temperatures exceeding the Af point of this alloy material is 50 to 150 MPa, which is significantly smaller than NiTi and NiTiCu alloy materials. Reversible behavior during stress unloading and loading.
[0016]
FIGS. 2, 3 and 4 show examples of stress-strain curves during stress loading and unloading at temperatures exceeding the Af point of typical NiTi, NiTiCu and NiTiPd superelastic alloy materials, respectively.
[0017]
In the first NiTiPd based superelastic alloy material of the present invention, had a Pd content less 7.5 at% or more 14 at% is, Pd amount is not effective to reduce the stress hysteresis is less than 7.5%, Pd content 14% This is because the cold workability deteriorates if the value exceeds 1, so that it is not suitable for practical use.
[0018]
The reason why Ni is 34 to 49 at% and Ti is 48 to 52 at% is that if the composition is out of this range, the workability deteriorates and strain remains after the load is removed.
[0019]
In the NiTiPd-based superelastic alloy of the present invention, the most desirable alloy composition for reducing stress hysteresis and obtaining good hot workability is Ti: 50 at%, Ni: 41 to 45 at%, Pd: 7.5 at % Or more and 14 at % or less .
[0020]
Further, in the second superelastic alloy material of the present invention, a part of Ni and / or Ti of the NiTiPd alloy composition is Cr, Fe, Co, V, Mn, B, Cu, Al, Nb, W, The reason why one or two or more elements of Zr are substituted within 2 at% is to improve the alloy properties such as the workability of the alloy material and the Af point temperature. This is to change the alloy characteristics so as to conform.
[0021]
Needless to say, in the first and second inventions, the stress hysteresis in the stress-strain curve at the time of stress loading and unloading in the temperature range of Af to Af + 5 ° C. was set to 50 to 150 MPa. This is because the smaller one is preferable in use. The residual strain amount when the stress is applied to the strain of the present invention material to 8% and then unloaded is 0.5% or less.
[0022]
The third and fourth aspects of the present invention relate to a method for producing a NiTiPd-based superelastic alloy material. In producing the alloy material, first, an ingot of the alloy composition is formed into a wire material having a wire diameter of 1 to 5 mm or a strip material having a thickness of 1 to 5 mm by hot working. Since the NiTiPd-based superelastic alloy material according to the present invention has good hot workability, as described above, it can be hot processed to a small diameter or thin, and the manufacturing cost can be greatly reduced.
The cross-sectional shape of the wire having a wire diameter of 1 to 5 mm here is generally easy to manufacture a circle, but may be an ellipse or a polygon. In this case, the wire diameter of 1 to 5 mm is an ellipse or many. It refers to the maximum diameter of a square.
[0023]
Hereinafter, the manufacturing process of the wire will be described, but the same applies to the strip.
The wire thus hot worked is subjected to cold annealing and annealing as necessary to obtain a predetermined wire size, followed by annealing, followed by cold processing with a surface reduction rate of 20% or more. subjected to the final wire size, further final heat treatment at 400 ~ 700 ° C. it.
Although not limited to this, the hot working of the alloy material is desirably performed at 700 to 900 ° C, and the annealing is desirably performed at 600 to 800 ° C.
[0024]
As described above, a wire rod having a wire diameter of 1 to 5 mm is formed by hot working in order to eliminate or reduce the cold drawing and annealing in the middle as much as possible. desirable.
[0025]
From the above, for example, if the final finished wire has a wire diameter of 1 mm and the hot-worked material has a wire diameter of 1.2 mm, cold drawing and annealing in the middle are not required, and the hot-worked material wire diameter From 1.2mm, the wire diameter is processed to 1mm by cold drawing (cold area reduction, approx. 30%). In addition, when the final finished wire has a wire diameter of 1 mm and the hot-worked material has a wire diameter of 3.0 mm, after hot working, cold drawing and annealing are repeated until the wire diameter is 1.2 mm. It is annealed and processed by cold drawing to a wire diameter of 1 mm (final cold area reduction rate, about 30%).
[0026]
As described above, the wire that has been cold processed with a surface reduction rate of 20% or more is finally heat-treated in a temperature range of 400 to 700 ° C. This is because in this processing rate range and heat treatment temperature range, no strain remains after unloading and good superelastic characteristics can be obtained.
[0027]
The final cross-sectional shape of the wire may be any of a circular shape, an elliptical shape, a polygonal shape, or a parallelogram-shaped corner portion having an arc shape. In addition, the cold reduction rate is 20% or more, but the upper limit is about 60%. This is because the material breaks at a processing rate higher than this.
[0028]
A fifth aspect of the present invention is the stress-strain curve at the time of stress loading and unloading in the NiTiPd-based alloy according to any one of the first and second inventions, and in the temperature range of Af to Af + 5 ° C. An orthodontic wire made of a superelastic alloy material having a stress hysteresis of 50 to 150 MPa.
When superelastic alloy material is used for orthodontic wires, the tension when unloading the wires to move the teeth after mounting is as much as possible during the work of attaching the wires to the teeth (when stress is applied). It is desired to be large, that is, to have low stress hysteresis. Therefore, it can be said that the NiTiPd-based superelastic alloy material of the present invention has excellent characteristics that have never been obtained as an orthodontic wire because the stress hysteresis is as small as 50 to 150 MPa.
[0029]
【Example】
Example 1
Superelastic alloy materials of the present invention and comparative examples having the compositions shown in Table 1 were made as trial products. That is, an alloy having the composition shown in Table 1 is melt-cast to form an ingot, which is rolled at a temperature of 750 to 850 ° C. to obtain a wire having a diameter of 3 mm, which is then cold drawn and annealed. Was repeated and annealed (700 ° C.) as a predetermined thin wire (diameter: about 1.2 mm). This was cold-drawn at a reduction rate of 30% to obtain a wire having a wire diameter of 1 mm. Thereafter, this was subjected to a final heat treatment at 400 ° C. for 60 minutes to produce a test material. In the hot working, the NiTiPd alloy materials (No. 1 to 10 in Table 1) were good without cracks on the wire surface, but the NiTiCu alloy materials (No. 11 to 12 in Table 1) were Cracks occurred on the surface of the wire. Therefore, the NiTiCu alloy material was subjected to wire processing on a good portion of the hot-worked material to produce a test material having a wire diameter of 1 mm, and further subjected to heat treatment. With respect to these wires, stress-strain curves at the time of stress loading and unloading were obtained.
[0030]
The test temperature was set in the range of Af to Af + 5 ° C. of each alloy, and a test was conducted after unloading after applying stress up to 4% strain. The stress difference between stress loading and unloading (stress hysteresis) was determined from the stress-strain curve and shown in Table 1.
The Af point (end point of martensite reverse transformation) of each alloy was measured by thermal analysis and is shown in Table 1. For reference, the stress (MPa) at 2% strain at the time of stress unloading is also shown in Table 1.
[0031]
[Table 1]
Figure 0004028008
[0032]
As is apparent from Table 1, the NiTiCu alloys No. 11 and No. 12 cracked during hot working, and the yield was significantly reduced. No. 12 showed relatively good characteristics with a stress hysteresis of 172 MPa, but considering the hot workability, manufacturing at the factory level is difficult, and NiTiCu alloy cannot be expected to lower the stress hysteresis further.
On the other hand, the NiTiPd-based alloys No. 1 to 10 have good hot workability, that is, no hot cracking occurs on the surface of the wire like NiTiCu alloy. Hot processing was possible up to a wire diameter of 3 mm.
[0033]
Comparative Examples No. 9 and No. 10 had good workability, but had a large stress hysteresis and no characteristics superior to conventional NiTiCu alloys. On the other hand, Nos. 1 to 8, which are examples of the present invention, have good hot workability and a small stress hysteresis of about 50 to 150 MPa, and are 1/2 to 9/10 as compared with NiTiCu alloy. At the same time, it showed excellent hot workability.
[0034]
Further, the alloys Nos. 5 to 8 are examples in which a part of Ni and Ti of the NiTiPd alloy was replaced with elements of Cr, Fe, Co, and V. When the total amount of Cr, Fe, Co, and V exceeds 2 at%, the workability is remarkably deteriorated, so that the processing is impossible. Moreover, even if there are two or more kinds of additive elements, if the total amount added is 2 at% or less, the hot workability is good and the NiTiPd-based superelastic alloy having a low stress hysteresis of 80 to 150 MPa is produced. Is possible.
[0035]
Example 2
Examples of the present invention and comparative examples in the case where the final heat treatment temperature after cold working is changed are shown below. Specifically, for the alloy No. 2 shown in Table 1, a wire having a cold work area reduction rate of 30% and a wire diameter of 1 mm was made in the same manner as in Example 1, and then in Table 2, Final heat treatment was performed under the conditions shown. Inventive sample No. 17 was subjected to the same test as described below for the strips having a thickness of 1 mm and a width of 3 mm by setting the final cold rolling reduction to 30%, and the results are also shown in Table 2.
[0036]
This wire was tested in the same manner as in Example 1 except that stress was applied up to a strain of 8%, and stress-strain curves at the time of stress loading and unloading were obtained. In this case, the amount of residual strain (%) after stress unloading and the stress hysteresis (MPa) were determined, and the results are also shown in Table 2.
[0037]
[Table 2]
Figure 0004028008
[0038]
As is apparent from Table 2, the material having a heat treatment temperature of 250 ° C. was broken at a strain of 7%. Also, a material with a heat treatment temperature of 750 ° C. is not suitable because of a large residual strain after stress removal. On the other hand, in the material having a heat treatment temperature of 400 to 700 ° C., the residual strain is almost 0% and the stress hysteresis is a small value of 80 to 100 MPa, indicating that it is an excellent superelastic alloy.
[0039]
Example 3
The alloy having the composition No. 3 in Table 1 was hot worked to a diameter of 3 mm in the same manner as in Example 1, and then this was repeatedly cold drawn and annealed to obtain a wire with a predetermined small diameter. This was annealed (700 ° C). Next, this was drawn at a surface reduction rate shown in Table 3, and a wire having a wire diameter of 1 mm was made as a prototype. Thereafter, a final heat treatment was performed at 400 ° C. for 60 minutes.
Inventive sample No. 24 was hot-rolled to a thickness of 3 mm, and thereafter, annealing and rolling were repeated until the cold rolling rate during the final rolling process was 40%, and then 400 ° C. × 60 minutes final. It is a strip that has been heat-treated.
[0040]
This wire was tested in the same manner as in Example 1 except that stress was applied up to a strain of 8%, and stress-strain curves at the time of stress loading and deletion were obtained. In this case, the amount of residual strain (%) after stress unloading and the stress hysteresis (MPa) were determined, and the results are also shown in Table 3.
[0041]
[Table 3]
Figure 0004028008
[0042]
As is apparent from Table 3, the samples with a surface reduction rate of 0% and 10% have a large residual strain amount, but the samples with a surface reduction rate of 20% or more have a small residual strain amount of almost 0%. . Therefore, it is possible to provide an excellent superelastic alloy having a residual strain of almost 0% and a stress hysteresis of about 80 to 100 MPa at a surface reduction rate of 20% or more.
[0043]
Example 4
The following experiment was conducted assuming use as an orthodontic wire.
Ingots having the alloy compositions shown in Table 4 were hot-worked to obtain a wire having a wire diameter of 3 mm. This was repeatedly cold drawn and annealed to obtain a wire having a wire diameter of 0.56 mm, which was annealed at 700 ° C. Next, this was finally cold drawn at a surface reduction rate of 35% to obtain a wire having a wire diameter of 0.45 mm. Thereafter, this wire was subjected to a final heat treatment under the conditions shown in Table 4 to obtain an orthodontic wire.
[0044]
About the orthodontic wire produced in this way, the stress-strain curve at the time of stress loading and unloading was calculated | required. In this case, the test temperature was 30 ° C., a load was applied up to a strain of 8%, the load was further removed, and the stress hysteresis (MPa) was obtained. Table 4 also shows the stress (MPa) at 2% strain at the time of stress unloading.
[0045]
[Table 4]
Figure 0004028008
[0046]
In both the inventive example and the comparative example, the residual strain after stress unloading was as small as 0.2% or less, and the superelastic characteristics were good. The stress hysteresis of the Ni 44.5 Ti 50 Cu 5.0 Cr 0.5 alloy material of the comparative example is 175 MPa, whereas the stress hysteresis of the Ni 42.5 Ti 50 Pd 7.5 alloy material of the present invention example is 130 MPa, which is about the same as that of the comparative example. 3/4.
As is clear from this experimental example, the superelastic alloy material of the present invention, when used as an orthodontic wire, is attached to the tooth by pulling it with the smallest possible force when the wire is attached to the tooth, and at the time of treatment. The teeth can be moved with as much force as possible.
[0047]
【The invention's effect】
As described above, the present invention provides a NiTiPd-based superelastic alloy material whose composition is Ni: 34 to 49 at%, Ti: 48 to 52 at%, Pd: 7.5 at % to 14 at % , or Ni and NiTiPd-based superelastic alloy in which a part of Ti is replaced with a total of 2 at% of one or more elements of Cr, Fe, Co, V, Mn, B, Cu, Al, Nb, W, and Zr It is a superelastic alloy material having a very low stress hysteresis of 50 to 150 MPa. Since the NiTiPd-based superelastic alloy material having the above composition is excellent in hot workability, it can be hot-worked to a small diameter of 1 to 5 mm and can be manufactured at a low cost. And in the reduction process rate after 20% or more of the final cold drawing after hot working, by final heat treatment at 400 ~ 700 ° C., next stress hysteresis 50~150MPa, and residual strain after stress unloading An excellent superelastic alloy material whose amount is also 0% or close to 0% can be provided.
In addition, when the superelastic alloy material of the present invention is used as an orthodontic wire, excellent characteristics can be obtained when it is attached to a tooth and treated.
[Brief description of the drawings]
FIG. 1 is a stress-strain curve diagram showing an example of the relationship between stress and strain during stress loading and unloading of a typical superelastic alloy.
FIG. 2 is a stress-strain curve diagram showing an example of the relationship between stress and strain during stress loading and unloading of a NiTi superelastic alloy.
FIG. 3 is a stress-strain curve diagram showing an example of the relationship between stress and strain during stress loading and unloading of a NiTiCu superelastic alloy (NiTiCuCr alloy).
FIG. 4 is a stress-strain curve diagram showing an example of the relationship between stress and strain during stress loading and unloading of a NiTiPd superelastic alloy according to the present invention.

Claims (5)

合金組成がNi:34〜49at%、Ti:48〜52at%、Pd:7.5at %以上 14at %以下からなる合金であって、かつAfからAf+5℃の温度範囲での応力負荷及び除荷時の応力−歪み曲線における応力ヒステリシスが50〜150MPaであることを特徴とするNiTiPd系超弾性合金材。The alloy composition is Ni: 34 to 49 at%, Ti: 48 to 52 at%, Pd: 7.5 at % or more and 14 at % or less , and stress loading and unloading in the temperature range of Af to Af + 5 ° C. A NiTiPd-based superelastic alloy material having a stress hysteresis in a stress-strain curve of 50 to 150 MPa. 請求項1に記載のNiTiPd系合金組成のNi及び/又はTiの一部をCr,Fe,Co,V,Mn,B,Cu,Al,Nb,W,Zrの1種もしくは2種以上の元素の合計2at%以内で置換した合金であって、かつAfからAf+5℃の温度範囲での応力負荷及び除荷時の応力−歪み曲線における応力ヒステリシスが50〜150MPaであることを特徴とするNiTiPd系超弾性合金材。  A part of Ni and / or Ti of the NiTiPd-based alloy composition according to claim 1 is one or more elements of Cr, Fe, Co, V, Mn, B, Cu, Al, Nb, W, and Zr. NiTiPd system characterized by having a stress hysteresis in the stress-strain curve at the time of stress loading and unloading in the temperature range of Af to Af + 5 ° C. Super elastic alloy material. 請求項1又は請求項2のいずれかに記載の合金組成の鋳塊を、700〜900℃の熱間加工で直径1〜5mmまでの線材に加工し、次に必要に応じて冷間伸線と焼鈍を繰り返して所定の線材寸法とした後焼鈍し、続いてこれを冷間で減面加工率20%以上の加工を施して最終の線材寸法とし、これを更に 400〜 700℃で最終熱処理してAfからAf+5℃の温度範囲での応力負荷及び除荷時の応力−歪み曲線における応力ヒステリシスを50〜150MPaとすることを特徴とするNiTiPd系超弾性合金材の製造方法。  The ingot of the alloy composition according to claim 1 or 2 is processed into a wire having a diameter of 1 to 5 mm by hot working at 700 to 900 ° C, and then cold-drawn as necessary. And annealing to the prescribed wire dimensions, then annealed, then cold processed to a surface reduction ratio of 20% or more to obtain the final wire dimensions, which are further heat treated at 400-700 ° C And a stress hysteresis in a stress-strain curve at the time of stress loading and unloading in a temperature range of Af to Af + 5 ° C. is set to 50 to 150 MPa. 請求項1又は請求項2のいずれかに記載の合金組成の鋳塊を、700〜900℃の熱間加工で厚さ1〜5mmの条材に加工し、続いて該条材を冷間圧延率20%以上の圧延加工を施して最終の条材寸法とし、これを更に 400〜700 ℃で最終熱処理してAfからAf+5℃の温度範囲での応力負荷及び除荷時の応力−歪み曲線における応力ヒステリシスを50〜150MPaとすることを特徴とするNiTiPd系超弾性合金材の製造方法。  The ingot of the alloy composition according to claim 1 or 2 is processed into a strip having a thickness of 1 to 5 mm by hot working at 700 to 900 ° C, and then the strip is cold-rolled. In the stress-strain curve at the time of stress loading and unloading in the temperature range of Af to Af + 5 ° C. by subjecting to a rolling process at a rate of 20% or more to obtain the final strip size, which is further heat-treated at 400 to 700 ° C. A method for producing a NiTiPd-based superelastic alloy material, wherein the stress hysteresis is 50 to 150 MPa. 請求項1又は請求項2のいずれかに記載のNiTiPd系超弾性合金材からなる歯列矯正用のワイヤー。  An orthodontic wire made of the NiTiPd-based superelastic alloy material according to claim 1.
JP19550196A 1995-07-12 1996-07-05 NiTiPd-based superelastic alloy material, manufacturing method thereof, and orthodontic wire using the alloy material Expired - Fee Related JP4028008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19550196A JP4028008B2 (en) 1995-07-12 1996-07-05 NiTiPd-based superelastic alloy material, manufacturing method thereof, and orthodontic wire using the alloy material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-199129 1995-07-12
JP19912995 1995-07-12
JP19550196A JP4028008B2 (en) 1995-07-12 1996-07-05 NiTiPd-based superelastic alloy material, manufacturing method thereof, and orthodontic wire using the alloy material

Publications (2)

Publication Number Publication Date
JPH0978165A JPH0978165A (en) 1997-03-25
JP4028008B2 true JP4028008B2 (en) 2007-12-26

Family

ID=26509157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19550196A Expired - Fee Related JP4028008B2 (en) 1995-07-12 1996-07-05 NiTiPd-based superelastic alloy material, manufacturing method thereof, and orthodontic wire using the alloy material

Country Status (1)

Country Link
JP (1) JP4028008B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4034686A1 (en) * 2019-09-27 2022-08-03 W.L. Gore & Associates, Inc. Wires of nickel-titanium alloy and methods of forming the same

Also Published As

Publication number Publication date
JPH0978165A (en) 1997-03-25

Similar Documents

Publication Publication Date Title
US5951793A (en) Ni-Ti-Pd superelastic alloy material, its manufacturing method, and orthodontic archwire made of this alloy material
KR102237789B1 (en) Expanded member comprising cu-al-mn alloy material and exhibiting superior anti-stress corrosion properties, and use therefor
EP0709482B1 (en) Method of manufacturing high-temperature shape memory alloys
JP5912094B2 (en) Cu-Al-Mn bar and plate manufacturing method exhibiting stable superelasticity
CN106460098A (en) Cu-Al-Mn-based alloy material, method for producing same, and rod-like or sheet-like material using same
WO2007055155A1 (en) Iron-based alloy having shape-memory property and superelasticity and method for manufacture thereof
JP7103588B2 (en) Cu—Al—Mn-based shape memory alloy molded product having a threaded portion and its manufacturing method
JP4028008B2 (en) NiTiPd-based superelastic alloy material, manufacturing method thereof, and orthodontic wire using the alloy material
JP5278987B2 (en) Manufacturing method for eyeglass frames
JPS58193319A (en) Production of hot coil from ferrite-containing austenite stainless steel
JP3603726B2 (en) Austenitic stainless steel sheet for electronic components
JP3379767B2 (en) Method for producing NiTi-based superelastic material
JP2706273B2 (en) Superelastic Ni-Ti-Cu alloy and method for producing the same
WO1999049091A1 (en) Ti-V-Al BASED SUPERELASTICITY ALLOY
WO2022249665A1 (en) Aluminum alloy, aluminum alloy wire, and method for manufacturing aluminum alloy wire
JPH0860277A (en) Nickel-titanium alloy
Sakuma et al. Effect of cyclic deformation on thermo-mechanical characteristics in Ti-Ni-Cu alloy wires with various copper contents
Otsuka et al. Superelastic behavior of Fe–Mn–Si–Cr shape memory alloy coil
JPS622027B2 (en)
JP3141328B2 (en) Manufacturing method of super elastic spring alloy
JPH07207390A (en) Super elastic spring
JPS622026B2 (en)
JP2920840B2 (en) Ti-Ni alloy processing method
JP2870156B2 (en) Coil spring and manufacturing method thereof
JP2003089834A (en) Ni-Ti ALLOY WITH HIGH RIGIDITY TYPE REVERSIBLE DEFORMATION

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071011

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees