JP5278987B2 - Manufacturing method for eyeglass frames - Google Patents

Manufacturing method for eyeglass frames Download PDF

Info

Publication number
JP5278987B2
JP5278987B2 JP2007175907A JP2007175907A JP5278987B2 JP 5278987 B2 JP5278987 B2 JP 5278987B2 JP 2007175907 A JP2007175907 A JP 2007175907A JP 2007175907 A JP2007175907 A JP 2007175907A JP 5278987 B2 JP5278987 B2 JP 5278987B2
Authority
JP
Japan
Prior art keywords
alloy
manufacturing
heat treatment
spectacle frame
superelasticity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007175907A
Other languages
Japanese (ja)
Other versions
JP2009013461A (en
Inventor
倫秀 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2007175907A priority Critical patent/JP5278987B2/en
Publication of JP2009013461A publication Critical patent/JP2009013461A/en
Application granted granted Critical
Publication of JP5278987B2 publication Critical patent/JP5278987B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low cost method where, upon the production of a spectacles frame exhibiting superelasticity, the process of shape memorizable heat treatment can be reduced, and to provide a spectacles frame exhibiting flexibility and excellent superelasticity. <P>SOLUTION: A spectacles frame composed of a superelastic wire of an Ni-Ti alloy based shape memory alloy having &ge;3% elasticity in the temperature range of -20 to +50&deg;C is subjected to single swaging working where a final cold working ratio exceeds 50% without performing shape memorizable heat treatment, so as to produce a spectacles frame 1 exhibiting superelasticity. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、Ni−Ti系合金を用いたメガネフレームとその製造方法に関し、特に最終冷間加工後に形状記憶熱処理を実施しなくても応力誘起マルテンサイト変態を伴いプラトー領域が現れる超弾性を示すメガネフレームの製造方法に関する。 The present invention relates to a spectacle frame using a Ni-Ti alloy and a manufacturing method thereof, and in particular, exhibits superelasticity in which a plateau region appears with stress-induced martensitic transformation without performing shape memory heat treatment after final cold working. a method of manufacturing a glasses frame.

従来のNi−Ti系合金を用いた超弾性を示すメガネフレームは最終冷間加工後、所定の形状に成形し保持した状態で再結晶温度以下のおよそ300〜550℃の温度範囲で形状記憶熱処理を実施することで、応力誘起マルテンサイト変態を発現する超弾性メガネフレームを得る製造方法が一般的であった。   A conventional spectacle frame using Ni-Ti alloy that exhibits superelasticity is shape memory heat-treated in a temperature range of about 300 to 550 ° C. below the recrystallization temperature in a state of being formed into a predetermined shape and held after the final cold working. In general, a manufacturing method for obtaining a super-elastic eyeglass frame that expresses stress-induced martensitic transformation has been common.

これにより安定してしなやかな超弾性を利用したメガネフレームを供給することが提案されている(例えば、特許文献1〜4)。   Thus, it has been proposed to supply a spectacle frame that uses stable and supple superelasticity (for example, Patent Documents 1 to 4).

しかし、従来の工程では最終冷間加工後に形状記憶熱処理を実施しないと、応力誘起マルテンサイト変態を伴いプラトー領域が現れる超弾性メガネフレームを得ることはできず、超弾性メガネフレームを製造する上で形状記憶熱処理の工程に労力、時間、エネルギーを費やす必要があった。   However, in the conventional process, if shape memory heat treatment is not performed after the final cold working, it is not possible to obtain a super elastic glasses frame in which a plateau region appears with stress-induced martensitic transformation. It was necessary to spend labor, time, and energy in the process of shape memory heat treatment.

一方、最終冷間加工後に形状記憶熱処理を実施しないメガネフレームの製造方法も提案されている(例えば、特許文献5、6)。しかし、この方法では最終的な冷間加工が特殊であり、一回目に冷間伸線による加工率が約30%、次いでその後二回目にロータリースェージ加工または鍛造加工または曲げ加工によって総冷間加工率が最高35〜45%を得るまでに二段階の冷間加工を施す労力が必要となる。   On the other hand, a method for manufacturing an eyeglass frame in which shape memory heat treatment is not performed after final cold working has also been proposed (for example, Patent Documents 5 and 6). However, in this method, the final cold working is special, the working rate by cold drawing is about 30% at the first time, and then the second time is the total cold working by rotary swaging or forging or bending. Efforts to perform two-stage cold working are required before the working rate reaches 35 to 45% at the maximum.

この場合の弾性的特徴は、形状記憶熱処理を施した時にみられる、応力誘起マルテンサイト変態に伴うプラトー領域が現れる形態とは異なり、応力−歪み曲線は線形超弾性と呼ばれる変形挙動の特性を示す。さらにこのような線形超弾性では2%以上の変形歪みを加えた場合でも応力が上昇し続けて、応力誘起マルテンサイト変態が発現する超弾性(いわゆる疑弾性)のように、しなやかさの優れた超弾性メガネフレームが得られることが無い。   The elastic characteristic in this case is different from the form in which the plateau region accompanying the stress-induced martensitic transformation appears when shape memory heat treatment is applied, and the stress-strain curve shows a characteristic of deformation behavior called linear superelasticity. . Furthermore, in such a linear superelasticity, even when a deformation strain of 2% or more is applied, the stress continues to rise, and the superelasticity (so-called pseudoelasticity) in which the stress-induced martensitic transformation appears is excellent in flexibility. A super-elastic eyeglass frame is never obtained.

特開昭56−95214号公報JP-A-56-95214 特許第2593088号Japanese Patent No. 2593088 特許第2574833号Japanese Patent No. 2574833 特開2002−182162号公報JP 2002-182162 A 米国特許第6557993号US Pat. No. 6,557,993 米国特許第6565207号US Pat. No. 6,565,207

従って、本発明の課題は、上記の課題を解決し、Ni−Ti系合金への最終冷間加工後、再結晶温度以下のおよそ300〜550℃の温度で形状記憶熱処理を行わなくとも、又は多段階の特殊な最終冷間加工を行わなくても、3%以上の弾性と応力誘起マルテンサイト変態を伴うプラトー領域が現れる超弾性を示す、しなやかさの優れたメガネフレームを提供し、併せて簡便な工程の採用により低コストでメガネフレームを得る製造方法を提供することである。   Therefore, the object of the present invention is to solve the above-mentioned problem, without performing shape memory heat treatment at a temperature of about 300 to 550 ° C. below the recrystallization temperature after the final cold working to the Ni—Ti alloy, or Providing a supple and supple eyeglass frame that exhibits 3% elasticity and superelasticity with a plateau region with stress-induced martensitic transformation, without any special multi-stage cold working. An object of the present invention is to provide a manufacturing method for obtaining a spectacle frame at a low cost by employing a simple process.

本発明は、−20〜+50℃までの温度範囲において3%以上の弾性を有するNi−Ti二元合金からなり、Ti含有率が48〜51at%、残部がNiの組成を有する超弾性ワイヤーからなるメガネフレームの製造方法であって、前記合金に、最終冷間加工率50%を超えるスェージング加工を施すと同時に、前記スェージング加工により発生した熱により形状記憶熱処理を施し、超弾性を付与することを特徴とするメガネフレームの製造方法である。 The present invention is made of a Ni-Ti binary alloy having an elasticity of 3% or more in a temperature range from -20 to + 50 ° C. , from a super elastic wire having a Ti content of 48 to 51 at% and the balance of Ni. a method of manufacturing a spectacle frame comprising, in the alloy, and simultaneously subjected to swaging processing in excess of 50% rolling ratio final cold, subjected to shape memory heat treatment by heat generated by the swaging process, to grant superelastic it is a manufacturing method of a spectacle frame, wherein the this.

また、本発明は、−20〜+50℃までの温度範囲において3%以上の弾性を有するNi−Ti−X合金(XはCu,Fe,V,Co,Cr,Nb,Ta,MoMnのうちの少なくとも一種)からなり、Ti含有率が48〜51at%、X含有率が0.25〜10at%、残部がNiの組成を有する超弾性ワイヤーからなるメガネフレームの製造方法であって、前記合金に、最終冷間加工率50%を超えるスェージング加工を施すと同時に、前記スェージング加工により発生した熱により形状記憶熱処理を施し、超弾性を付与することを特徴とするメガネフレームの製造方法である。 Further, the present invention, Ni-Ti- X alloy (X having 3% or more elastic in the temperature range up to -20 to + 50 ° C. The Cu, Fe, V, Co, Cr, Nb, Ta, Mo, Mn At least one of the above, Ti content is 48 to 51 at%, X content is 0.25 to 10 at%, the balance is a manufacturing method of a spectacle frame made of super elastic wire having a composition of Ni, A spectacle frame manufacturing method characterized in that the alloy is subjected to a swaging process exceeding a final cold work rate of 50%, and at the same time a shape memory heat treatment is applied by heat generated by the swaging process to impart superelasticity. is there.

また、本発明は、前記合金が5%の変形率に到達可能であることを特徴とする上記のメガネフレームである。   Further, the present invention is the glasses frame described above, wherein the alloy can reach a deformation rate of 5%.

また、本発明は、ブリッジ、ワタリ、テンプルの少なくとも一つ以上が前記合金からなることを特徴とする上記のメガネフレームである。   Further, the present invention is the above spectacle frame, wherein at least one of a bridge, a wading, and a temple is made of the alloy.

本発明のメガネフレームは、Ni−Ti二元合金又は、Ni−Ti−X合金の超弾性ワイヤーに、目的の栓寸法と形状が得られるように50%以上の冷間加工率のCNCスェージングを一回の加工で実施することで応力誘導マルテンサイト変態に伴うプラトー領域が現れる超弾性を示し、しなやかさに優れたメガネフレームである。 Spectacle frame of the present invention, Ni-Ti binary alloy or, Ni-Ti- X in alloy superelastic wire, CNC swaging cold working ratio as 50% or more plug size and shape can be obtained the desired Is a spectacle frame that exhibits superelasticity in which a plateau region associated with stress-induced martensitic transformation appears and is excellent in flexibility.

これまで、Ni−Ti二元合金又は、Ni−Ti−X合金(XはCu,Fe,V,Co,Cr,Nb,Ta,Mo及びMn、Xの含有量は0.25〜10at%)の形状記憶合金では冷間加工率が50%以下で実施されることが一般的であり、Ni−Ti系合金へ50%以上の冷間加工率を加えることは材料の割れや亀裂を生じさせ製品製造面で困難であった。 Previously, Ni-Ti binary alloy or, Ni-Ti- X alloy (X is Cu, Fe, V, Co, Cr, Nb, Ta, Mo and Mn, the content of X is 0 .25~10at% ) Is generally performed at a cold work rate of 50% or less. Adding a cold work rate of 50% or more to a Ni-Ti alloy causes cracking or cracking of the material. It was difficult to manufacture the product.

しかし、最近ではスェージングマシンによる冷間加工に限って言えば、Ni−Ti系合金へ50%以上、さらには80%以上の冷間加工率を加えることが可能なスェージングマシンが登場している。これはスェージングマシン、ダイス、潤滑剤、速度等、それぞれの因子の精度を高めたものである。このような高精度のスェージングマシンを使用してNi−Ti系合金へ50%以上の冷間加工率を加えると、ダイスで加工されているNi−Ti系合金の加工部分には従来以上に加工熱が発生する。この加工熱は現在まで測定不可能であるが、およそ300〜550℃で数十秒間、Ni−Ti系合金の加工部分に熱影響を与えていると推測される。この熱影響は従来の製造方法による最終冷間加工を行った後に行う形状記憶熱処理を実施したときと同等の熱処理効果が得られる。   However, recently, a swaging machine that can add a cold working rate of 50% or more, and further 80% or more to Ni-Ti alloys has been introduced. Yes. This increases the accuracy of each factor such as swaging machine, dice, lubricant and speed. When such a high-precision swaging machine is used and a cold work rate of 50% or more is added to the Ni—Ti alloy, the Ni—Ti alloy processed by the die is processed more than before. Processing heat is generated. Although this processing heat cannot be measured until now, it is presumed that the processing portion of the Ni—Ti alloy is affected by heat at approximately 300 to 550 ° C. for several tens of seconds. This thermal effect can provide the same heat treatment effect as when shape memory heat treatment is performed after the final cold working by the conventional manufacturing method.

従って、本発明の一回のスェージング加工による50%以上の冷間加工率を加えるだけで、従来法の形状記憶熱処理を施すことなく応力誘起マルテンサイト変態に伴うプラトー領域が現れる超弾性を示すメガネフレームを得ることが可能となった。   Therefore, the glasses exhibiting superelasticity in which the plateau region accompanying the stress-induced martensitic transformation appears without applying the shape memory heat treatment of the conventional method only by adding a cold working rate of 50% or more by one swaging process of the present invention. It became possible to obtain a frame.

以下、図を参照しながら、本発明の実施の形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施の形態による形状記憶合金線の超弾性メガネフレームの斜視図である。図1において、11はリム、12はブリッジ、13はワタリ、14はヒンジ、15はテンプルである。   FIG. 1 is a perspective view of a shape memory alloy wire superelastic glasses frame according to an embodiment of the present invention. In FIG. 1, 11 is a rim, 12 is a bridge, 13 is a wading, 14 is a hinge, and 15 is a temple.

表1に示す化学組成のNi−Ti合金を高周波真空溶解によって鋳造インゴットを得て、900℃で均質化熱処理後、熱間鍛造、熱間圧延、および冷間伸線により線径φ3.1mmまでワイヤー加工を行った。このワイヤーは800℃で均質化熱処理をおこなってセンタレス研磨機で表面酸化皮膜除去の研磨を行い線径φ3.0mmのワイヤーを得た。これをCNCスェージング加工機によりφ1.3mmまで冷間加工率81%のメガネフレーム1のテンプル15を得た。このテンプルの一部を切断し発明品の引張試験用試料とした。   A casting ingot is obtained by high-frequency vacuum melting of a Ni—Ti alloy having the chemical composition shown in Table 1, and after homogenization heat treatment at 900 ° C., the wire diameter is φ3.1 mm by hot forging, hot rolling, and cold drawing. Wire processing was performed. The wire was subjected to a homogenization heat treatment at 800 ° C., and the surface oxide film was removed by a centerless polishing machine to obtain a wire having a wire diameter of φ3.0 mm. By using a CNC swaging machine, a temple 15 of the eyeglass frame 1 having a cold working rate of 81% up to φ1.3 mm was obtained. A part of this temple was cut to obtain a sample for an inventive tensile test.

Figure 0005278987
Figure 0005278987

図2は、発明品を50℃、30℃、0℃、−10℃において引張試験を行って得られた、5%の応力−歪み曲線である。   FIG. 2 is a 5% stress-strain curve obtained by subjecting the inventive product to a tensile test at 50 ° C., 30 ° C., 0 ° C., and −10 ° C.

比較のため、同様に鋳造インゴットを得て、900℃で均質化熱処理後、熱間鍛造、熱間圧延、および冷間伸線により線径φ2.1mmまでワイヤー加工を行った。このワイヤーは800℃で均質化熱処理をおこなってセンタレス研磨機で表面酸化皮膜除去の研磨を行い線径φ2.0mmのワイヤーを得た。これをCNCスェージング加工機によりφ1.5mmまで冷間加工率44%のメガネフレーム1のテンプル1−5を得た。このテンプルの一部を切断して比較品とし、引張試験用試料とした。   For comparison, a cast ingot was obtained in the same manner, and after the homogenization heat treatment at 900 ° C., wire processing was performed to a wire diameter of φ2.1 mm by hot forging, hot rolling, and cold drawing. This wire was subjected to a homogenization heat treatment at 800 ° C., and the surface oxide film was removed by a centerless polishing machine to obtain a wire having a wire diameter of φ2.0 mm. By using a CNC swaging machine, a temple 1-5 of an eyeglass frame 1 having a cold working rate of 44% up to φ1.5 mm was obtained. A part of this temple was cut to be a comparative product, which was used as a tensile test sample.

図3は、比較品の50℃、30℃、0℃、−10℃における引張試験結果による5%の応力−歪み曲線である。   FIG. 3 is a 5% stress-strain curve of the comparative test results at 50 ° C., 30 ° C., 0 ° C., and −10 ° C.

冷間加工率81%の発明品の図2では−10℃〜50℃まで歪みが2%を越えた付近から荷重が一定となる応力誘起マルテンサイト変態を伴うプラトーの領域が現れる超弾性を示していることが分かる。一方、冷間加工率44%の比較品の図3では−10℃〜50℃まで歪みが2%を越えた付近でもプラトーの領域が明確に見られないことが分かる。   Fig. 2 of the invention with a cold work rate of 81% shows superelasticity in which a plateau region with a stress-induced martensitic transformation where the load becomes constant from around -10 ° C to 50 ° C where the strain exceeds 2% is shown. I understand that On the other hand, in FIG. 3 which is a comparative product with a cold working rate of 44%, it can be seen that the plateau region is not clearly seen even in the vicinity where the strain exceeds 2% from −10 ° C. to 50 ° C.

表2は、上述の発明品の試料と比較品の試料を50℃、30℃、0℃、−10℃において引張試験を行って得られた歪み5%での応力を示したものである。   Table 2 shows the stress at a strain of 5% obtained by conducting a tensile test at 50 ° C., 30 ° C., 0 ° C., and −10 ° C. for the above-described inventive samples and comparative samples.

Figure 0005278987
Figure 0005278987

表2から−10℃〜50℃まで発明品は歪みが2%を越えた付近でもプラトーの領域が明確に現れているため、比較品よりも5%時の応力が低い値を示している。   From Table 2, the product of the invention from −10 ° C. to 50 ° C. has a plateau region clearly even in the vicinity where the strain exceeds 2%, and therefore the stress at 5% is lower than that of the comparative product.

表3は、上述の発明品の試料と比較品の試料を50℃、30℃、0℃、−10℃において引張試験を行って得られた5%歪み時の残量歪み量を示したものである。   Table 3 shows the amount of residual strain at 5% strain obtained by conducting a tensile test at 50 ° C., 30 ° C., 0 ° C., and −10 ° C. for the above-described inventive samples and comparative samples. It is.

Figure 0005278987
Figure 0005278987

表3から、−10℃〜50℃まで発明品は、残留歪み量が0.8%以下を示している。   From Table 3, the product of the invention from −10 ° C. to 50 ° C. shows a residual strain amount of 0.8% or less.

したがって、これらの実施の形態からスェージングによる冷間加工率81%の発明品は応力誘起マルテンサイト変態を伴うプラトーの領域が見られ、残留歪み量が小さいことから、しなやかさの優れた超弾性を示していることが分かる。このようにして50%以上のスェージングによる冷間加工率を加えて応力誘起マルテンサイト変態に伴うプラトー領域が現れる超弾性メガネフレームを得ることができた。   Therefore, from these embodiments, the invention with a cold working rate of 81% by swaging has a plateau region accompanied by stress-induced martensitic transformation, and since the residual strain is small, super-elasticity with excellent flexibility is obtained. You can see that In this way, a superelastic eyeglass frame in which a plateau region accompanying the stress-induced martensitic transformation appears by adding a cold working rate by swaging of 50% or more was obtained.

本発明の実施の形態による形状記憶合金線の超弾性メガネフレームの斜視図。1 is a perspective view of a shape memory alloy wire super-elastic eyeglass frame according to an embodiment of the present invention. 発明品を50℃、30℃、0℃、−10℃において引張試験を行って得られた、5%の応力−歪み曲線。A 5% stress-strain curve obtained by subjecting the product of the invention to a tensile test at 50 ° C, 30 ° C, 0 ° C and -10 ° C. 比較品を50℃、30℃、0℃、−10℃において引張試験結果による5%の応力−歪み曲線。5% stress-strain curve of the comparative product at 50 ° C., 30 ° C., 0 ° C., and −10 ° C. according to the tensile test results.

符号の説明Explanation of symbols

1 メガネフレーム
11 リム
12 ブリッジ
13 ワタリ
14 ヒンジ
15 テンプル
1 glasses frame 11 rim 12 bridge 13 wading 14 hinge 15 temple

Claims (4)

−20〜+50℃までの温度範囲において3%以上の弾性を有するNi−Ti二元合金からなり、Ti含有率が48〜51at%、残部がNiの組成を有する超弾性ワイヤーからなるメガネフレームの製造方法であって、前記合金に、最終冷間加工率50%を超えるスェージング加工を施すと同時に、前記スェージング加工により発生した熱により形状記憶熱処理を施し、超弾性を付与することを特徴とするメガネフレームの製造方法。 An eyeglass frame comprising a Ni-Ti binary alloy having an elasticity of 3% or more in a temperature range from -20 to + 50 ° C., comprising a superelastic wire having a Ti content of 48 to 51 at% and the balance of Ni . a manufacturing method, in the alloy, and simultaneously subjected to swaging processing in excess of 50% rolling ratio final cold, subjected to shape memory heat treatment by heat generated by the swaging process, wherein the benzalkonium to impart superelastic A method for manufacturing a spectacle frame. −20〜+50℃までの温度範囲において3%以上の弾性を有するNi−Ti−X合金(XはCu,Fe,V,Co,Cr,Nb,Ta,MoMnのうちの少なくとも一種)からなり、Ti含有率が48〜51at%、X含有率が0.25〜10at%、残部がNiの組成を有する超弾性ワイヤーからなるメガネフレームの製造方法であって、前記合金に、最終冷間加工率50%を超えるスェージング加工を施すと同時に、前記スェージング加工により発生した熱により形状記憶熱処理を施し、超弾性を付与することを特徴とするメガネフレームの製造方法。 Ni-Ti- X alloy with 3% or more elastic in the temperature range up to -20 to + 50 ° C. (at least one of X is Cu, Fe, V, Co, Cr, Nb, Ta, Mo, Mn) A spectacle frame comprising a superelastic wire having a Ti content of 48 to 51 at%, an X content of 0.25 to 10 at%, and the balance being Ni. A method for producing a spectacle frame, comprising performing a swaging process exceeding a 50% inter-working rate and simultaneously applying a shape memory heat treatment with heat generated by the swaging process to impart superelasticity. 前記合金が5%の変形率に到達可能であることを特徴とする請求項1又は2に記載のメガネフレームの製造方法 3. The method of manufacturing a spectacle frame according to claim 1, wherein the alloy can reach a deformation rate of 5%. ブリッジ、ワタリ、テンプルの少なくても一つ以上が前記合金からなることを特徴とする請求項1乃至のいずれかに記載のメガネフレームの製造方法The method for manufacturing a spectacle frame according to any one of claims 1 to 3 , wherein at least one of a bridge, a wading, and a temple is made of the alloy.
JP2007175907A 2007-07-04 2007-07-04 Manufacturing method for eyeglass frames Active JP5278987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007175907A JP5278987B2 (en) 2007-07-04 2007-07-04 Manufacturing method for eyeglass frames

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007175907A JP5278987B2 (en) 2007-07-04 2007-07-04 Manufacturing method for eyeglass frames

Publications (2)

Publication Number Publication Date
JP2009013461A JP2009013461A (en) 2009-01-22
JP5278987B2 true JP5278987B2 (en) 2013-09-04

Family

ID=40354726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007175907A Active JP5278987B2 (en) 2007-07-04 2007-07-04 Manufacturing method for eyeglass frames

Country Status (1)

Country Link
JP (1) JP5278987B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8152941B2 (en) * 2009-11-02 2012-04-10 Saes Smart Materials Ni-Ti semi-finished products and related methods
US8475711B2 (en) 2010-08-12 2013-07-02 Ati Properties, Inc. Processing of nickel-titanium alloys
US9279171B2 (en) 2013-03-15 2016-03-08 Ati Properties, Inc. Thermo-mechanical processing of nickel-titanium alloys
CN104480349A (en) * 2014-12-24 2015-04-01 西安思维金属材料有限公司 Biomedical Ti-Ni-Cu-Co four-element shape memory alloy

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3085099B2 (en) * 1994-08-19 2000-09-04 関東特殊製鋼株式会社 NiTi-based alloy eyeglass member and method of manufacturing the same
JP2003043427A (en) * 2001-08-03 2003-02-13 Nec Tokin Corp Spectacles frame and producing method thereof
JP3915543B2 (en) * 2002-02-25 2007-05-16 大同特殊鋼株式会社 Partly superelastic parts and method of manufacturing the same

Also Published As

Publication number Publication date
JP2009013461A (en) 2009-01-22

Similar Documents

Publication Publication Date Title
JP5567093B2 (en) Cu-Al-Mn alloy material showing stable superelasticity and method for producing the same
JP5795030B2 (en) Expanded material made of Cu-Al-Mn alloy material with excellent stress corrosion resistance
JP2017064763A (en) PRODUCTION METHOD OF Fe-Ni-BASED ALLOY THIN SHEET
JP4478123B2 (en) Α + β-type titanium alloy member having a tensile strength of 1000 MPa class or more and method for producing the same
JP5278987B2 (en) Manufacturing method for eyeglass frames
JP2019094569A (en) Process for improving formability of wrought copper-nickel-tin alloys
JP2010100943A (en) METHOD FOR PRODUCING alpha+beta TYPE TITANIUM ALLOY MEMBER HAVING TENSILE STRENGTH OF 1,000 MPA CLASS OR ABOVE
JP2010082688A (en) METHOD FOR MANUFACTURING beta-TYPE TITANIUM ALLOY PLATE, AND beta-TYPE TITANIUM ALLOY PLATE
US6419358B1 (en) Pseudoelastic β titanium eyeglass components
JP5224569B2 (en) Spectacle member, spectacle frame including the same, and manufacturing method thereof
JP3085099B2 (en) NiTi-based alloy eyeglass member and method of manufacturing the same
JP3915543B2 (en) Partly superelastic parts and method of manufacturing the same
JP3379767B2 (en) Method for producing NiTi-based superelastic material
JP3452335B2 (en) NiTi-based alloy
JP2003089834A (en) Ni-Ti ALLOY WITH HIGH RIGIDITY TYPE REVERSIBLE DEFORMATION
WO1999049091A1 (en) Ti-V-Al BASED SUPERELASTICITY ALLOY
JP2002182162A (en) Method of manufacturing spectacles frame using ultraelastic material
JP2781713B2 (en) Method of manufacturing super-elastic NiTi alloy eyeglass frame member
JP2005301167A (en) Spectacle frame material and spectacle frame using the same
JP2013170271A (en) Titanium alloy member deformed into same direction as working direction with heat treatment, and method for manufacturing the same
JP2002328340A (en) Method of manufacturing super-elasticity parts
JPH0762506A (en) Production of superelastic spring
JP5889698B2 (en) Cu-Zn alloy plate excellent in stress relaxation resistance and method for producing the same
JP4028008B2 (en) NiTiPd-based superelastic alloy material, manufacturing method thereof, and orthodontic wire using the alloy material
JP3239382B2 (en) Superelastic material and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130516

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5278987

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250