JP2003089834A - Ni-Ti ALLOY WITH HIGH RIGIDITY TYPE REVERSIBLE DEFORMATION - Google Patents

Ni-Ti ALLOY WITH HIGH RIGIDITY TYPE REVERSIBLE DEFORMATION

Info

Publication number
JP2003089834A
JP2003089834A JP2001284885A JP2001284885A JP2003089834A JP 2003089834 A JP2003089834 A JP 2003089834A JP 2001284885 A JP2001284885 A JP 2001284885A JP 2001284885 A JP2001284885 A JP 2001284885A JP 2003089834 A JP2003089834 A JP 2003089834A
Authority
JP
Japan
Prior art keywords
temperature
alloy
phase
volume ratio
high rigidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001284885A
Other languages
Japanese (ja)
Inventor
Kengo Mitose
賢悟 水戸瀬
Masato Asai
真人 浅井
Hiroshi Horikawa
宏 堀川
Toyonobu Tanaka
豊延 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Furukawa Techno Material Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Furukawa Techno Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Furukawa Techno Material Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2001284885A priority Critical patent/JP2003089834A/en
Publication of JP2003089834A publication Critical patent/JP2003089834A/en
Pending legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an Ni-Ti alloy having high rigidity type reversible deformation. SOLUTION: The Ni-Ti alloy has a composition consisting of, by atom, 50.4-52.0% Ni and the balance Ti and also has high rigidity type reversible deformation within the range enclosed with straight lines connecting points A (60, 50), B (60, 70), C (-75, 95) and D (-75, 55) in the order in the coordinate plane in which the Af temperature at cooling after solution heat treatment and the volume fraction of matrix in the alloy at room temperature are used as coordinate axes, respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高剛性型の可逆変
形を有するNi−Ti系合金に係り、具体的には、医療
用、装身具用、アンテナ用として使用される高剛性型の
可逆変形を有するNi−Ti合金材に関するものであ
る。さらに詳細には、医療用では主にカテーテルガイド
ワイヤ、ステント等であり、装身具用では主にブレスレ
ット、メガネテンプレート等であり、アンテナとしては
主に携帯電話用アンテナに使用される高剛性型の可逆変
形を有するNi−Ti系合金に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Ni-Ti alloy having a high rigidity and reversible deformation, and more specifically, a high rigidity reversible deformation used for medical purposes, accessories, and antennas. The present invention relates to a Ni-Ti alloy material having More specifically, it is mainly a catheter guide wire, a stent, etc. for medical use, a bracelet, a spectacles template etc. for accessories, and a high-rigidity reversible type antenna mainly used for mobile phone antennas. The present invention relates to a Ni-Ti alloy having deformation.

【0002】[0002]

【従来の技術】従来、Ni−Ti系合金は剛性を出すた
めに冷間加工を施したままの材料や低温熱処理を実施し
た材料が使用されていたが、使用時に変形させると歪み
が残留し、完全に元の形状に戻らないことがある。一
方、歪みの残留を低減させるために、熱処理を施すと応
力誘起変態もしくは双晶変形により極めて剛性が低くな
ってしまう。歪みの残留が少なく、かつ剛性の高いNi
Ti系合金材を得るには、加工後に低温の熱処理を施す
手法を用いるのが良いとする文献が散見されるが,上記
理由から,適度な加工,および熱処理の範囲を決めるこ
とは困難であった。
2. Description of the Related Art Conventionally, Ni—Ti alloys have been used as cold-worked materials or low-temperature heat-treated materials in order to provide rigidity. However, when they are deformed during use, strain remains. , It may not return to the original shape completely. On the other hand, if heat treatment is applied to reduce the residual strain, the rigidity becomes extremely low due to stress-induced transformation or twinning deformation. Highly rigid Ni with little residual strain
There are some documents that suggest that a method of performing a low temperature heat treatment after processing is preferable for obtaining a Ti-based alloy material, but for the above reason, it is difficult to determine an appropriate range of processing and heat treatment. It was

【0003】[0003]

【発明が解決しようとする課題】上述したように、従来
のNi−Ti系合金では変形させると歪みが残留して完
全に元の形状に戻らないことがあり、また歪みの残留を
低減させるために熱処理を施すと応力誘起変態もしくは
双晶変形により極めて剛性が低くなってしまうという課
題があったので、本発明は使用時にほぼ完全な可逆変形
挙動を示し、かつ、比較的大きい歪み領域(変形領域)
においても高い剛性を示す高剛性型の可逆変形を有する
Ni−Ti系合金を提供するものである。
As described above, when the conventional Ni-Ti alloy is deformed, the strain may remain and the shape may not be completely returned to the original shape. Further, in order to reduce the residual strain. However, the present invention has a problem that the rigidity becomes extremely low due to stress-induced transformation or twinning deformation. Therefore, the present invention exhibits almost perfect reversible deformation behavior during use and has a relatively large strain region (deformation). region)
Also provides a high-rigidity Ni-Ti based alloy having high rigidity and reversible deformation.

【0004】[0004]

【課題を解決するための手段】本発明者は、上記課題に
鑑み鋭意研究した結果、溶体化処理後のA温度とNi
−Ti系合金中の母相の体積率を規定することにより上
記課題を解決しうることを見出し、この知見に基づき本
発明をなすに至ったものである。すなわち、本発明(請
求項1記載の発明)は、組成がNiを50.4〜52.
0at%含有し、残部がTiであるNi−Ti合金であ
って、溶体化処理後に冷却した時のA温度と、室温に
おける合金内の母相の体積率とをそれぞれ座標軸とした
座標平面において、(A温度(℃),母相体積率
(%))で示される座標が、(60,50)、(60,
70)、(−75,95)および(−75,55)の4
点をこの順に直線でつないだ領域内に前記A温度及び
前記母相の体積率があることを特徴とする高剛性型の可
逆変形を有するNi−Ti系合金である。
As a result of intensive studies in view of the above problems, the present inventor has found that the A f temperature after solution treatment and Ni
It has been found that the above problems can be solved by defining the volume ratio of the matrix phase in the —Ti alloy, and the present invention has been completed based on this finding. That is, the present invention (the invention according to claim 1) has a composition of Ni of 50.4 to 52.
A Ni-Ti alloy containing 0 at% and the balance Ti, in the coordinate plane with the Af temperature when cooled after the solution treatment and the volume ratio of the mother phase in the alloy at room temperature as coordinate axes. , (A f temperature (° C.), mother phase volume ratio (%)) have coordinates (60, 50), (60, 50)
70), (-75,95) and (-75,55) 4
This is a Ni—Ti based alloy having a high rigidity type and reversible deformation, characterized in that the A f temperature and the volume fraction of the matrix phase are within a region where points are connected by a straight line in this order.

【0005】また、本発明(請求項2記載の発明)は、
組成がNiを50.4〜52.0at%含有し、さらに
Co、Fe、Cr、Mn、Mo、Pd、Zr、Hf、A
u、Cu、Vよりなる群から選択された1種または2種
以上を合計で0.1〜2.0at%含有し、残部がTi
であるNi−Ti合金材であって、溶体化処理後に冷却
した時のA温度と、室温における合金内の母相の体積
率とをそれぞれ座標軸とした座標平面において、(A
温度(℃),母相体積率(%))で示される座標が、
(60,50)、(60,70)、(−75,95)お
よび(−75,55)の4点をこの順に直線でつないだ
領域内に前記A温度及び前記母相の体積率があること
を特徴とする高剛性型の可逆変形を有するNi−Ti系
合金である。さらに、本発明(請求項3記載の発明)
は、請求項1または2に記載の組成のNiTi合金材で
あって、溶体化処理後に冷却した時のA温度と、室温
における合金内の母相の体積率とをそれぞれ座標軸とし
た座標平面において、(A温度(℃),母相体積率
(%))で示される座標が、(40,55)、(40,
70)、(−10,80)および(−10,55)の4
点をこの順に直線でつないだ領域内に前記A温度及び
前記母相の体積率があることを特徴とする高剛性型の可
逆変形を有するNi−Ti系合金である。
The present invention (the invention according to claim 2) is
The composition contains 50.4 to 52.0 at% Ni, and further contains Co, Fe, Cr, Mn, Mo, Pd, Zr, Hf, and A.
u, Cu, V, one or more selected from the group consisting of 0.1 to 2.0 at% in total, with the balance being Ti
In the coordinate plane having the Af temperature when cooled after the solution treatment and the volume ratio of the parent phase in the alloy at room temperature as coordinate axes, the (A f
The coordinates indicated by the temperature (℃) and the matrix volume ratio (%) are
The A f temperature and the volume fraction of the mother phase are within a region where four points of (60, 50), (60, 70), (-75, 95) and (-75, 55) are connected by a straight line in this order. It is a Ni—Ti based alloy having high rigidity and reversible deformation. Furthermore, the present invention (the invention according to claim 3)
Is a NiTi alloy material having the composition according to claim 1 or 2, and is a coordinate plane having coordinate axes of the A f temperature when cooled after the solution treatment and the volume ratio of the matrix phase in the alloy at room temperature. In, the coordinates indicated by (A f temperature (° C.), parent phase volume ratio (%)) are (40, 55), (40,
70), (-10, 80) and (-10, 55) 4
This is a Ni—Ti based alloy having a high rigidity type and reversible deformation, characterized in that the A f temperature and the volume fraction of the matrix phase are within a region where points are connected by a straight line in this order.

【0006】[0006]

【作用】本発明のNi−Ti合金おいける合金組成の限
定理由を示す。本発明において、合金組成をNiの含有
量を50.4〜52.0at%としたのは、52.0a
t%以上の組成においては製造が困難になるからであ
り、50.4at%以下の組成においては室温近傍,お
よび体温近傍の使用温度で歪みの残留が大きすぎるため
である。また、副成分として、Co:0.1〜2.0a
t%、Fe:0.1〜2.0at%、Cr:0.1〜
2.0at%、Mn:0.1〜2.0at%、Mo:
0.1〜2.0at%、Pd:0.1〜2.0at%、
Zr:0.1〜2.0at%、Hf:0.1〜2.0a
t%、Au:0.1〜2.0at%、Cu:0.1〜
2.0at%、V:0.1〜2.0at%よりなる群か
ら選択された1種または2種以上の元素を合計で0.1
〜2.0at%添加することにより剛性が向上する。C
o、Fe、Cr、Mn、Mo、Pd、Zr、Hf、A
u、Cu、Vよりなる群から選択された1種または2種
以上を合計で、0.1at%以下ではその効果が現れ
ず、2.0at%以上では製造が困難になる。
The reason for limiting the alloy composition in the Ni-Ti alloy of the present invention will be shown. In the present invention, the alloy composition with the Ni content of 50.4 to 52.0 at% is 52.0a.
This is because it is difficult to manufacture the composition at t% or more, and at the composition temperature of 50.4 at% or less, the residual strain is too large near the room temperature and the operating temperature near the body temperature. In addition, as an accessory component, Co: 0.1 to 2.0a
t%, Fe: 0.1 to 2.0 at%, Cr: 0.1
2.0 at%, Mn: 0.1 to 2.0 at%, Mo:
0.1-2.0 at%, Pd: 0.1-2.0 at%,
Zr: 0.1 to 2.0 at%, Hf: 0.1 to 2.0 a
t%, Au: 0.1 to 2.0 at%, Cu: 0.1
2.0 at%, V: 0.1 to 2.0 at% and 1 or 2 or more elements selected from the group consisting of 0.1 in total.
The rigidity is improved by adding ~ 2.0 at%. C
o, Fe, Cr, Mn, Mo, Pd, Zr, Hf, A
If at least one at least one selected from the group consisting of u, Cu and V is 0.1 at% or less in total, the effect does not appear, and if it is 2.0 at% or more, production becomes difficult.

【0007】本発明のNi−Ti合金おける、溶体化処
理後に冷却した時のA温度と、室温における合金内の
母相の体積率について、図1に示し説明する。図1は、
座標軸として溶体化処理後に冷却した時のA温度
[℃]を横軸、室温における合金内の母相の体積率
[%]を縦軸としたものであり、この座標平面に(A
温度(℃),母相体積率(%))で示される座標が、A
点(60,50)、B点(60,70)、C点(−7
5,95)、およびD点(−75,55)の4点をA点
からD点の順に直線でつないだ。本発明のNi−Ti合
金おいける溶体化処理後に冷却した時のA温度[℃]
と、室温における合金内の母相の体積率[%]が、図1
のA点からD点の順に直線でつなぎ囲んだ範囲内のもの
である。
The Af temperature of the Ni-Ti alloy of the present invention when cooled after the solution treatment and the volume ratio of the matrix phase in the alloy at room temperature will be described with reference to FIG. Figure 1
Horizontal axis A f temperature [℃] when cooled after the solution treatment as coordinate axes, is obtained by the vertical axis the volume fraction of the matrix phase of the alloy at room temperature [%], on the coordinate plane (A f
Coordinates indicated by temperature (° C) and volume ratio of parent phase (%) are A
Point (60, 50), B point (60, 70), C point (-7
5, 95) and D point (-75, 55) were connected by a straight line in order from A point to D point. A f temperature [° C.] when cooled after solution treatment in the Ni—Ti alloy of the present invention
And the volume ratio [%] of the matrix phase in the alloy at room temperature are shown in FIG.
Within the range surrounded by a straight line from the point A to the point D.

【0008】本発明(請求項1,2)おいて、(A
度(℃),母相体積率(%))で示される座標が、A点
(60,50)、B点(60,70)、C点(−75,
95)、およびD点(−75,55)の4点をA点から
D点の順に直線でつないだ範囲内としたのは、母相の体
積率がB点(60,70)、C点(−75,95)をつ
ないだ直線より大きい場合、残留歪みが大きくなり可逆
変形しなくなる。また、母相の体積率がA点(60,5
0)、D点(−75,55)をそれぞれつないだ直線よ
り小さい場合、応力誘起変態によって剛性の低下が著し
くなり、実用に適さなくなる。溶体化処理後に冷却した
後のA温度[℃]を、−75〜60℃とした理由につ
いて述べる。A温度が−75℃以下とするためには、
組成において52at%Ni以上、あるいは副成分元素
を高濃度に添加した場合に対応するため、製造が困難に
なる。一方、A温度が60℃以上の場合、室温近傍あ
るいは体温近傍の温度において、マルテンサイト相が多
量に存在してしまい,マルテンサイト相は低い応力で変
形する性質のため剛性の低下を招くからである。
In the present invention (claims 1 and 2), the coordinates indicated by (A f temperature (° C.), mother phase volume ratio (%)) are points A (60, 50) and B (60, 50). 70), point C (-75,
95) and D point (-75, 55) within the range of connecting straight lines from A point to D point in order that the volume ratio of the mother phase is B point (60, 70), C point. If it is larger than the straight line connecting (-75, 95), the residual strain becomes large and reversible deformation does not occur. In addition, the volume ratio of the mother phase is point A (60,5
If it is smaller than the straight line connecting points 0) and D (-75, 55), the stress-induced transformation causes a marked decrease in rigidity, making it unsuitable for practical use. The reason for setting the A f temperature [° C.] after cooling after the solution treatment to −75 to 60 ° C. will be described. In order to keep the A f temperature at −75 ° C. or lower,
Since it corresponds to the case where the composition is 52 at% Ni or more or the sub-component element is added at a high concentration, the manufacturing becomes difficult. On the other hand, when the A f temperature is 60 ° C. or higher, a large amount of martensite phase exists at a temperature near room temperature or near body temperature, and the martensite phase deforms with a low stress, resulting in a decrease in rigidity. Is.

【0009】以上の理由により(A温度(℃),体積
率(%))を図1の座標、A点(60,50)、B点
(60,70)、C点(−75,95)、およびD点
(−75,55)の4点をA点からD点の順に直線でつ
ないだ範囲内に限定するものであるが、さらに本発明
(請求項3)おいては、図1の座標、E点(40,5
5)、F点(40,70)、G点(−10,80)およ
びH点(−10,55)の4点をE点からH点の順に直
線でつないで囲んだ領域内にすることが好ましい。
For the above reasons, (A f temperature (° C.), volume ratio (%)) is the coordinates in FIG. 1, point A (60, 50), point B (60, 70), point C (−75, 95). ) And D point (-75, 55) are limited to the range connected by a straight line in the order from A point to D point. Further, in the present invention (claim 3), FIG. Coordinates, E point (40,5
5), F point (40, 70), G point (-10, 80), and H point (-10, 55) within the area surrounded by a straight line from E point to H point. Is preferred.

【0010】A温度は、Ni−Ti合金製造時の加工
・熱処理条件に依存する。合金成分にのみ依存したA
温度等の変態温度を得るために、溶体化処理後急冷する
処理を通常施す。本発明においては、950℃で1時間
加熱した後、油冷を施した材料によりA温度を求め
た。次に、母相の体積率の求め方について説明する。本
発明のNi−Ti合金の組織を構成している可能性のあ
る相として、母相、マルテンサイト相、R相および微少
量の析出相がある。個々の結晶粒に対してTEM(透過
型電子顕微鏡)による電子線回折を行い、結晶粒の相を
同定し、各相がどの程度存在するかを調べた。本発明の
Ni−Ti合金中、大部分を占める相は体心立方晶の母
相と単斜晶のマルテンサイト相であり、この両者は結晶
格子が異なるため各結晶がいずれの相であるかの判定が
可能である。相の同定は、TEMによる電子線回折以外
にも、X線回折、SEM(走査型電子顕微鏡)による電
子線回折(EBSD)等により可能である。各試料につ
き、「母相の回折像数÷全回折像数」を母相の体積率と
定義した。
The A f temperature depends on the processing and heat treatment conditions at the time of manufacturing the Ni—Ti alloy. A f dependent only on alloy composition
In order to obtain a transformation temperature such as a temperature, a treatment of quenching after the solution treatment is usually performed. In the present invention, after heating at 950 ° C. for 1 hour, the A f temperature was obtained from the oil-cooled material. Next, a method for obtaining the volume ratio of the mother phase will be described. As the phases that may constitute the structure of the Ni—Ti alloy of the present invention, there are a matrix phase, a martensite phase, an R phase, and a minute amount of precipitation phase. Each crystal grain was subjected to electron beam diffraction by a TEM (transmission electron microscope) to identify the phase of the crystal grain, and to what extent each phase existed was investigated. In the Ni—Ti alloy of the present invention, most of the phases are a body-centered cubic matrix and a monoclinic martensite phase. Since both have different crystal lattices, which phase is each crystal? Can be determined. The phase can be identified not only by electron diffraction by TEM but also by X-ray diffraction, electron diffraction (EBSD) by SEM (scanning electron microscope), and the like. For each sample, "the number of diffraction images of the mother phase / the number of all diffraction images" was defined as the volume ratio of the mother phase.

【0011】[0011]

【発明の実施の形態】本発明の高剛性型の可逆変形を有
するNi−Ti系合金は、高い剛性と可逆変形性を兼ね
備え、剛性と残留ひずみに優れた特性を示していている
もので、この合金材は、例えば、医療用としてカテーテ
ルガイドワイヤ、ステント等に、装身具用としてブレス
レットやメガネテンプレート等に、アンテナとしては携
帯電話用アンテナ等に用られ、工業上有用なものであ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The highly rigid Ni-Ti alloy having reversible deformation according to the present invention has both high rigidity and reversible deformability, and exhibits excellent characteristics in rigidity and residual strain. This alloy material is industrially useful, for example, for catheter guide wires, stents and the like for medical purposes, bracelets and glasses templates for personal accessories, and for mobile phone antennas and the like as antennas.

【0012】[0012]

【実施例】本発明の実施例について、表1、図1及び図
2に示し説明する。表1は、Ni−Ti合金のNi量、
添加元素量、A温度、熱処理、母相体積率、剛性、残
留ひずみを示したものであり、図1には表1の試料につ
いて、(A 温度(℃),体積率(%))を示した。表
1に示した各Ni−Ti合金を溶解鋳造し、鍛造、熱間
加工を経て、冷間伸線と焼鈍を繰り返しながら縮径し、
最終焼鈍後、35%減面加工率の冷間伸線を行い、線径
2.0mm〜0.5mmの複数本の線材を作製した。こ
れら線材に対して、各種熱処理を施し試料片とした。
EXAMPLES Table 1, FIG. 1 and FIG.
2 will be described. Table 1 shows the Ni content of the Ni-Ti alloy,
Amount of additive element, AfTemperature, heat treatment, matrix volume ratio, rigidity, residual
Fig. 1 shows the residual strain.
And (A fThe temperature (° C) and volume ratio (%) are shown. table
Each Ni-Ti alloy shown in 1 is melt cast, forged, hot
After working, the diameter is reduced while repeating cold wire drawing and annealing.
After the final annealing, cold drawing with 35% surface reduction is performed to obtain the wire diameter.
A plurality of wire rods of 2.0 mm to 0.5 mm were produced. This
Various heat treatments were performed on these wire rods to obtain sample pieces.

【表1】 [Table 1]

【0013】また、透過型電子顕微鏡を用いて、各Ni
−Ti合金内の結晶粒が母相であるか、マルテンサイト
相であるかの判定を実施するため、試料を電子顕微鏡用
に薄片化した。まず、各線材から約0.5mmの厚さの
試料片を切りだし、厚さが0.1mm程度になるまで機
械的に研磨した。次に電解研磨により、試料中央に微細
な孔を形成した。続いて上記薄片化した試料について、
単一の結晶粒に電子線を照射し、電子線回折像を撮影し
た。一つの試料につき20個の結晶粒を任意に選んで回
折像を撮影し、母相体積率を求めた。なお、試料温度は
室温である。A温度(オーステナイト変態(マルテン
サイト逆変態)終了温度)は、950℃で1時間の熱処
理を行った後に油冷却処理を施した試料を用いて、DS
C(示差走査熱量計)測定による昇温過程から求めた。
室温で引張試験を実施し、剛性と残留歪みを調べた。剛
性については、歪み量が0〜4%の領域の応力−ひずみ
曲線が、完全な直線あるいはほぼ直線のものを「◎」、
明らかな変曲点を有すものを「×」とした。「◎」と
「×」の中間の曲線形状になるものを「○」とした。
Further, using a transmission electron microscope, each Ni
In order to determine whether the crystal grains in the -Ti alloy are the parent phase or the martensite phase, the sample was sliced for an electron microscope. First, a sample piece having a thickness of about 0.5 mm was cut out from each wire and mechanically polished to a thickness of about 0.1 mm. Next, a fine hole was formed in the center of the sample by electrolytic polishing. Then, for the thinned sample,
A single crystal grain was irradiated with an electron beam, and an electron beam diffraction image was taken. Twenty crystal grains were arbitrarily selected for one sample, a diffraction image was taken, and the matrix phase volume ratio was obtained. The sample temperature is room temperature. The A f temperature (end temperature of austenite transformation (reverse transformation of martensite)) was measured by using a sample subjected to oil cooling treatment after heat treatment at 950 ° C. for 1 hour, and DS
It was determined from the temperature rising process by C (differential scanning calorimeter) measurement.
A tensile test was performed at room temperature to examine the rigidity and residual strain. As for rigidity, if the stress-strain curve in the region where the strain amount is 0 to 4% is a perfect straight line or a nearly straight line, “◎”,
Those having an obvious inflection point were marked with "x". A curve having an intermediate shape between “◎” and “x” was designated as “◯”.

【0014】その結果は表1から明らかなように、本発
明によるNi−Ti系合金材は高い剛性と可逆変形性を
兼ね備えている。本発明の中でも,実施例No.3、N
o.4、No.5、No.No.7、No.8、No.
9については,剛性と残留ひずみの両方,もしくは片方
で「◎」,すなわち非常に優れた特性を示すものであっ
た。これに対して、比較例No.10、No.12は、
高い剛性を示すものの、残留歪みが0.5%を超えてし
まう。これらは、いわゆる加工硬化型の応力ひずみ特性
を有する。すなわち、母相体積率が小さすぎるため、歪
みが残留したのである。また、比較例No.11は、残
留歪みが0.5%以内であるが、剛性が低い。これはい
わゆる超弾性型の応力ひずみ特性である。すなわち、母
相体積率が大きすぎるため、低い応力で母相からマルテ
ンサイト相への応力誘起マルテンサイト変態が起き、高
い剛性を得ることができないのである。
As is clear from Table 1, the results show that the Ni--Ti alloy material according to the present invention has both high rigidity and reversible deformability. Among the present invention, Example No. 3, N
o. 4, No. 5, No. No. 7, No. 8, No.
Regarding No. 9, both the rigidity and the residual strain, or one of them was “⊚”, that is, extremely excellent characteristics were exhibited. On the other hand, Comparative Example No. 10, No. 12 is
Although it exhibits high rigidity, the residual strain exceeds 0.5%. These have so-called work hardening type stress-strain characteristics. That is, the strain remained because the matrix volume ratio was too small. In addition, Comparative Example No. In No. 11, the residual strain is within 0.5%, but the rigidity is low. This is a so-called superelastic type stress-strain characteristic. That is, since the matrix phase volume ratio is too large, stress-induced martensite transformation from the matrix phase to the martensite phase occurs at low stress, and high rigidity cannot be obtained.

【0015】図2に応力−歪み曲線の負荷過程の例を示
す。実施例No.4は、歪み初期の弾性変形領域から歪
み3〜4%に至るまで編曲点を形成せず、高い歪み領域
では他よりも剛性の大きい特徴を有しており、また実施
例No.5も剛性の大きい特徴を有しているものであっ
た。これに対して比較例No.11は、歪み1%程度で
偏曲点を生じ,高い歪み領域では応力値が低い。これは
剛性の小さい材料である。このような偏曲点は、応力誘
起マルテンサイト変態もしくはマルテンサイト相の双晶
変形に起因するものである。従って、応力−歪み曲線の
直線性、すなわち偏曲点の有る無しを判定することで、
剛性の大小を見ることができるのである。
FIG. 2 shows an example of a stress-strain curve loading process. Example No. No. 4 does not form an inflection point from the elastic deformation region at the initial stage of strain to strain of 3 to 4%, and has the characteristic that the rigidity is higher than the others in the high strain region. No. 5 also had a feature of high rigidity. On the other hand, Comparative Example No. No. 11 has an inflection point at a strain of about 1%, and the stress value is low in a high strain region. This is a material with low rigidity. Such an inflection point is due to the stress-induced martensitic transformation or twin deformation of the martensitic phase. Therefore, by determining the linearity of the stress-strain curve, that is, whether or not there is an inflection point,
You can see the size of the rigidity.

【0016】[0016]

【発明の効果】以上説明したように、本発明によれば、
使用時にほぼ完全な可逆変形挙動を示し、かつ比較的大
きい歪み領域(変形領域)においても高い剛性を示す、
高い剛性と可逆変形性を兼ね備えたNiTi系合金材を
得ることが可能であり、医療用、装身具用、アンテナ用
として工業上顕著な効果を奏するものである。
As described above, according to the present invention,
Shows almost complete reversible deformation behavior during use, and exhibits high rigidity even in a relatively large strain area (deformation area),
It is possible to obtain a NiTi-based alloy material having both high rigidity and reversible deformability, and it has an industrially remarkable effect for medical use, accessories, and antennas.

【図面の簡単な説明】[Brief description of drawings]

【図1】 A温度と母相体積率を座標に示した図FIG. 1 is a diagram showing coordinates of A f temperature and matrix volume fraction.

【図2】 応力−歪み曲線を示す図FIG. 2 is a diagram showing a stress-strain curve.

【符号の説明】[Explanation of symbols]

A〜D、E〜G A温度と母相体積率について本発
明領域の座標点 1〜12 A温度と母相を体積率の座標点
A to D, E to G A f Temperature and mother phase volume ratio Coordinate points 1 to 12 A f temperature and mother phase volume ratio coordinate points of the present invention region

───────────────────────────────────────────────────── フロントページの続き (72)発明者 浅井 真人 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 (72)発明者 堀川 宏 神奈川県平塚市東八幡5丁目1番8号 株 式会社古河テクノマテリアル内 (72)発明者 田中 豊延 神奈川県平塚市東八幡5丁目1番8号 株 式会社古河テクノマテリアル内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Masato Asai             2-6-1, Marunouchi, Chiyoda-ku, Tokyo             Kawa Electric Industry Co., Ltd. (72) Inventor Hiroshi Horikawa             5-1-8 Higashi-Hachiman, Hiratsuka City, Kanagawa Prefecture             Furukawa Techno Material (72) Inventor Toyonobu Tanaka             5-1-8 Higashi-Hachiman, Hiratsuka City, Kanagawa Prefecture             Furukawa Techno Material

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 組成がNiを50.4〜52.0at%
含有し、残部がTiであるNi−Ti合金であって、溶
体化処理後に冷却した時のA温度と、室温における合
金内の母相の体積率とをそれぞれ座標軸とした座標平面
において、(A温度(℃),母相体積率(%))で示
される座標が、(60,50)、(60,70)、(−
75,95)および(−75,55)の4点をこの順に
直線でつないだ領域内に前記A温度及び前記母相の体
積率があることを特徴とする高剛性型の可逆変形を有す
るNi−Ti系合金。
1. The composition has a Ni content of 50.4 to 52.0 at%.
A Ni-Ti alloy containing Ti, the balance being Ti, in the coordinate planes with the Af temperature when cooled after the solution treatment and the volume ratio of the parent phase in the alloy at room temperature as coordinate axes, The coordinates indicated by A f temperature (° C.) and mother phase volume ratio (%) are (60, 50), (60, 70), (−
75, 95) and (-75, 55) having a high rigidity reversible deformation characterized by having the A f temperature and the volume fraction of the mother phase in a region connected by a straight line in this order. Ni-Ti alloy.
【請求項2】 組成がNiを50.4〜52.0at%
含有し、さらにCo、Fe、Cr、Mn、Mo、Pd、
Zr、Hf、Au、Cu、Vよりなる群から選択された
1種または2種以上を合計で0.1〜2.0at%含有
し、残部がTiであるNi−Ti合金材であって、溶体
化処理後に冷却した時のA温度と、室温における合金
内の母相の体積率とをそれぞれ座標軸とした座標平面に
おいて、(A温度(℃),母相体積率(%))で示さ
れる座標が、(60,50)、(60,70)、(−7
5,95)および(−75,55)の4点をこの順に直
線でつないだ領域内に前記A温度及び前記母相の体積
率があることを特徴とする高剛性型の可逆変形を有する
Ni−Ti系合金。
2. The composition has Ni of 50.4 to 52.0 at%.
In addition, Co, Fe, Cr, Mn, Mo, Pd,
A Ni-Ti alloy material containing 0.1 to 2.0 at% in total of one type or two or more types selected from the group consisting of Zr, Hf, Au, Cu and V, and the balance being Ti, On the coordinate planes with the A f temperature when cooled after the solution treatment and the volume ratio of the matrix phase in the alloy at room temperature as coordinate axes, (A f temperature (° C.), matrix phase volume ratio (%)) The coordinates shown are (60, 50), (60, 70), (-7
5, 95) and (-75, 55) have a high rigidity type reversible deformation characterized in that the A f temperature and the volume fraction of the parent phase are within a region connected by straight lines in this order. Ni-Ti alloy.
【請求項3】 請求項1または2に記載の組成のNiT
i合金材であって、溶体化処理後に冷却した時のA
度と、室温における合金内の母相の体積率とをそれぞれ
座標軸とした座標平面において、(A温度(℃),母
相体積率(%))で示される座標が、(40,55)、
(40,70)、(−10,80)および(−10,5
5)の4点をこの順に直線でつないだ領域内に前記A
温度及び前記母相の体積率があることを特徴とする高剛
性型の可逆変形を有するNi−Ti系合金。
3. NiT having the composition according to claim 1 or 2.
In the coordinate planes of the i alloy material, the A f temperature when cooled after the solution treatment and the volume ratio of the matrix phase in the alloy at room temperature are coordinate axes, (A f temperature (° C.), matrix phase The coordinates indicated by the volume ratio (%) are (40, 55),
(40,70), (-10,80) and (-10,5)
In the area where the four points in 5) are connected by a straight line in this order, the A f
A high-rigidity reversible Ni-Ti based alloy having a temperature and a volume fraction of the parent phase.
JP2001284885A 2001-09-19 2001-09-19 Ni-Ti ALLOY WITH HIGH RIGIDITY TYPE REVERSIBLE DEFORMATION Pending JP2003089834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001284885A JP2003089834A (en) 2001-09-19 2001-09-19 Ni-Ti ALLOY WITH HIGH RIGIDITY TYPE REVERSIBLE DEFORMATION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001284885A JP2003089834A (en) 2001-09-19 2001-09-19 Ni-Ti ALLOY WITH HIGH RIGIDITY TYPE REVERSIBLE DEFORMATION

Publications (1)

Publication Number Publication Date
JP2003089834A true JP2003089834A (en) 2003-03-28

Family

ID=19108131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001284885A Pending JP2003089834A (en) 2001-09-19 2001-09-19 Ni-Ti ALLOY WITH HIGH RIGIDITY TYPE REVERSIBLE DEFORMATION

Country Status (1)

Country Link
JP (1) JP2003089834A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006523770A (en) * 2003-04-18 2006-10-19 ザ ユニバーシティ オブ ホンコン Shape memory material and method of manufacturing the same
WO2011084240A1 (en) * 2009-12-17 2011-07-14 Cook Incorporated Method of improving the properties of a component of a medical device comprising a nickel-titanium-chromium alloy
WO2015022969A1 (en) * 2013-08-12 2015-02-19 国立大学法人東北大学 MEDICAL Ti-Ni ALLOY

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11196732A (en) * 1998-01-21 1999-07-27 Furukawa Techno Material:Kk Fishline made of nickel-titanium-based shape memory alloy and its production
JP2000140124A (en) * 1998-11-06 2000-05-23 Furukawa Electric Co Ltd:The Medical guide wire using wide strain range high- elasticity ni-ti alloy wire
JP2000204458A (en) * 1999-01-13 2000-07-25 Furukawa Electric Co Ltd:The Wide strain range high elasticity antenna
JP2001164348A (en) * 1999-09-27 2001-06-19 Furukawa Techno Material Co Ltd METHOD FOR MANUFACTURING HIGH ELASTICITY Ni-Ti ALLOY WIRE WITH WIDE RANGE OF STRAIN USED FOR GUIDE WIRE FOR MEDICAL TREATMENT, AND HIGH ELASTICITY Ni-Ti ALLOY WIRE WITH WIDE RANGE OF STRAIN MANUFACTURED BY THE SAME METHOD AND USED FOR GUIDE WIRE FOR MEDICAL TREATMENT

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11196732A (en) * 1998-01-21 1999-07-27 Furukawa Techno Material:Kk Fishline made of nickel-titanium-based shape memory alloy and its production
JP2000140124A (en) * 1998-11-06 2000-05-23 Furukawa Electric Co Ltd:The Medical guide wire using wide strain range high- elasticity ni-ti alloy wire
JP2000204458A (en) * 1999-01-13 2000-07-25 Furukawa Electric Co Ltd:The Wide strain range high elasticity antenna
JP2001164348A (en) * 1999-09-27 2001-06-19 Furukawa Techno Material Co Ltd METHOD FOR MANUFACTURING HIGH ELASTICITY Ni-Ti ALLOY WIRE WITH WIDE RANGE OF STRAIN USED FOR GUIDE WIRE FOR MEDICAL TREATMENT, AND HIGH ELASTICITY Ni-Ti ALLOY WIRE WITH WIDE RANGE OF STRAIN MANUFACTURED BY THE SAME METHOD AND USED FOR GUIDE WIRE FOR MEDICAL TREATMENT

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006523770A (en) * 2003-04-18 2006-10-19 ザ ユニバーシティ オブ ホンコン Shape memory material and method of manufacturing the same
WO2011084240A1 (en) * 2009-12-17 2011-07-14 Cook Incorporated Method of improving the properties of a component of a medical device comprising a nickel-titanium-chromium alloy
WO2015022969A1 (en) * 2013-08-12 2015-02-19 国立大学法人東北大学 MEDICAL Ti-Ni ALLOY
EP3034638A4 (en) * 2013-08-12 2017-03-15 Piolax Medical Devices, Inc. MEDICAL Ti-Ni ALLOY

Similar Documents

Publication Publication Date Title
EP2896705B1 (en) Cu-al-mn based alloy exhibiting stable superelasticity and manufacturing process therefor
JP5795030B2 (en) Expanded material made of Cu-Al-Mn alloy material with excellent stress corrosion resistance
JP2005530929A (en) Beta titanium compounds and their production
JP2007520630A (en) Beta titanium composition and method for producing the same
JP2006183100A (en) High-strength titanium alloy having excellent cold workability
JP5089803B2 (en) Core wire for guide wire and manufacturing method thereof
JP5278987B2 (en) Manufacturing method for eyeglass frames
JP2003089834A (en) Ni-Ti ALLOY WITH HIGH RIGIDITY TYPE REVERSIBLE DEFORMATION
JP2006183104A (en) High-strength titanium alloy having excellent cold workability
JP3603726B2 (en) Austenitic stainless steel sheet for electronic components
JP5144334B2 (en) Stainless steel high strength soft fine wire
JP5224569B2 (en) Spectacle member, spectacle frame including the same, and manufacturing method thereof
JP2006265680A (en) Superelastic material and its production method
WO1999049091A1 (en) Ti-V-Al BASED SUPERELASTICITY ALLOY
JPH07207390A (en) Super elastic spring
JP4028008B2 (en) NiTiPd-based superelastic alloy material, manufacturing method thereof, and orthodontic wire using the alloy material
JP2909088B2 (en) Fe-Ni alloy with excellent etching processability
JPH0860277A (en) Nickel-titanium alloy
JP2002182162A (en) Method of manufacturing spectacles frame using ultraelastic material
JP3061977B2 (en) High strength low thermal expansion alloy
JPS6140746B2 (en)
JPH062059A (en) Superelastic material low in residual strain
JP3239382B2 (en) Superelastic material and method of manufacturing the same
JP2784613B2 (en) Method for producing low thermal expansion material
JP2781713B2 (en) Method of manufacturing super-elastic NiTi alloy eyeglass frame member

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Effective date: 20080811

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080901

RD02 Notification of acceptance of power of attorney

Effective date: 20080901

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A521 Written amendment

Effective date: 20080901

Free format text: JAPANESE INTERMEDIATE CODE: A821

A977 Report on retrieval

Effective date: 20110217

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A02 Decision of refusal

Effective date: 20110830

Free format text: JAPANESE INTERMEDIATE CODE: A02