JP2001164348A - METHOD FOR MANUFACTURING HIGH ELASTICITY Ni-Ti ALLOY WIRE WITH WIDE RANGE OF STRAIN USED FOR GUIDE WIRE FOR MEDICAL TREATMENT, AND HIGH ELASTICITY Ni-Ti ALLOY WIRE WITH WIDE RANGE OF STRAIN MANUFACTURED BY THE SAME METHOD AND USED FOR GUIDE WIRE FOR MEDICAL TREATMENT - Google Patents

METHOD FOR MANUFACTURING HIGH ELASTICITY Ni-Ti ALLOY WIRE WITH WIDE RANGE OF STRAIN USED FOR GUIDE WIRE FOR MEDICAL TREATMENT, AND HIGH ELASTICITY Ni-Ti ALLOY WIRE WITH WIDE RANGE OF STRAIN MANUFACTURED BY THE SAME METHOD AND USED FOR GUIDE WIRE FOR MEDICAL TREATMENT

Info

Publication number
JP2001164348A
JP2001164348A JP2000124802A JP2000124802A JP2001164348A JP 2001164348 A JP2001164348 A JP 2001164348A JP 2000124802 A JP2000124802 A JP 2000124802A JP 2000124802 A JP2000124802 A JP 2000124802A JP 2001164348 A JP2001164348 A JP 2001164348A
Authority
JP
Japan
Prior art keywords
strain
alloy wire
wire
alloy
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000124802A
Other languages
Japanese (ja)
Other versions
JP3547366B2 (en
Inventor
Hiroshi Horikawa
宏 堀川
Kaisuke Shiroyama
魁助 城山
Kengo Mitose
賢悟 水戸瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Furukawa Techno Material Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Furukawa Techno Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Furukawa Techno Material Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2000124802A priority Critical patent/JP3547366B2/en
Publication of JP2001164348A publication Critical patent/JP2001164348A/en
Application granted granted Critical
Publication of JP3547366B2 publication Critical patent/JP3547366B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Media Introduction/Drainage Providing Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture a high elasticity Ni-Ti alloy wire with a wide range of strain, used for a guide wire for medical treatment. SOLUTION: In the method for manufacturing the high elasticity Ni-Ti alloy wire with a wide range of strain used as a component element of a guide wire for medical treatment, mechanical straightening is applied under the conditions of torsional shear strain and temperature within the shaded region of Fig. 1 while applying >=18 kgf/mm2 tension to an Ni-Ti alloy wire just after cold working. By this method, dislocation density can be increased, and a guide wire for medical treatment, excellent in pushability, torque transmission characteristic, or the like, can be manufactured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、医療用ガイドワイ
ヤに用いられる広ひずみ範囲高弾性Ni−Ti系合金ワ
イヤの製造方法、および前記製造方法により製造された
医療用ガイドワイヤに用いられる広ひずみ範囲高弾性N
i−Ti系合金ワイヤに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a high strain Ni--Ti alloy wire having a wide strain range used for a medical guidewire, and a wide strain used for a medical guidewire manufactured by the manufacturing method. Range high elasticity N
The present invention relates to an i-Ti alloy wire.

【0002】[0002]

【従来の技術】医療用ガイドワイヤは、例えば、治療ま
たは検査を行うためのカテーテル(細径チューブ)を血
管内に案内し患部に留置するために用いられる。従って
前記ガイドワイヤには、カテーテルを分岐し蛇行する血
管内に血管を傷つけることなく血管形状に順応して送り
込めるよう柔軟性と形状復元性が要求される。そして、
これらの特性は、近年、カテーテルが血管の末端に近い
ところまで導入されるようになり、益々強く要求されて
いる。従来、前記ガイドワイヤには、主にステンレス鋼
線が用いられてきたが、ステンレス鋼線はきつく曲がっ
た血管内を通すと永久変形を起こして、線が曲がったま
まになってしまい、それ以上先に送り込めなくなり、ま
た再挿入もできなくなるという問題がある。またステン
レス鋼線は1.5%のひずみで破断し(図2e参照)信
頼性に劣る。
2. Description of the Related Art A medical guidewire is used, for example, to guide a catheter (small-diameter tube) for performing a treatment or examination into a blood vessel and place it in an affected part. Therefore, the guide wire is required to have flexibility and shape resilience so that the catheter can be fed into the meandering blood vessel in accordance with the shape of the blood vessel without being damaged. And
These properties have been increasingly demanded in recent years as catheters have been introduced closer to the end of the blood vessel. Conventionally, a stainless steel wire has been mainly used for the guide wire.However, the stainless steel wire causes permanent deformation when passed through a tightly bent blood vessel, and the wire remains bent. There is a problem that the data cannot be sent first and cannot be reinserted. Further, the stainless steel wire breaks at a strain of 1.5% (see FIG. 2e), and is inferior in reliability.

【0003】このため、近年、Ni−Ti系合金の超弾
性を利用した超弾性型ワイヤ(特公平2−24550号
公報、特公平2−24548号公報、特公平2−245
49号公報)、或いはNi−Ti系合金の加工硬化型ワ
イヤ(特公平6−83726号公報)が提案された。前
記超弾性型ワイヤは、図2dにその応力−ひずみ曲線を
示すように、応力誘起マルテンサイト変態によって生じ
た変形が除荷時に逆変態によって元の形状に戻る性質を
利用したもので、従来のステンレス鋼線に比べて非常に
しなやかであり、かつ形状復元性が大きい特長(超弾
性)を有している。しかし、前記超弾性型ワイヤは、図
2dに示したように、降伏点Fを有し、これを超えると
それ以上ひずみを負荷しても応力が増加しないためプッ
シャビリティに劣り、血管の末端に近いところまでワイ
ヤを送り込むことができず、また手元の回転がワイヤ先
端に伝わり難く操縦性が悪い(トルク伝達性が悪い)と
いう問題がある。
[0003] For this reason, in recent years, super-elastic wires utilizing super-elasticity of Ni-Ti alloys have been disclosed (Japanese Patent Publication Nos. H2-224550, H2-224548, H2-2-245).
No. 49) or a work hardening type wire made of a Ni—Ti alloy (Japanese Patent Publication No. 6-83726). The super-elastic wire utilizes the property that the deformation caused by stress-induced martensitic transformation returns to its original shape by reverse transformation at the time of unloading, as shown in FIG. Compared to stainless steel wire, it is very flexible and has a feature (superelasticity) with great shape recovery. However, as shown in FIG. 2d, the superelastic wire has a yield point F. If the yield point F is exceeded, the stress does not increase even if a strain is applied any more. There is a problem that the wire cannot be fed to a close place, and that the rotation at hand is difficult to be transmitted to the tip of the wire, resulting in poor maneuverability (poor torque transmission).

【0004】また、冷間加工後低温熱処理を行う加工硬
化型ワイヤは、加工率35〜50%のNiTi系合金線
に型付処理(350〜450℃で10〜30秒間保持)
を施して真直度を高めたもので、図2cにその応力−ひ
ずみ曲線を示す。この加工硬化型ワイヤは、応力差H
(ここでは、応力−ひずみ曲線における荷重付加時と除
荷時のひずみ2%における応力差を示す)が大きく、ま
た型付処理では十分な真直度が得られないためトルク伝
達性に劣るという問題がある。一般に、応力ヒステリシ
スとは、所定荷重まで荷重を負荷したのち、徐々に荷重
を除荷したときの応力−ひずみ曲線の形状のことを言う
が、Ni−Ti系合金の場合には、実用的な観点から便
宜的に応力−ひずみ曲線における荷重負荷時と除荷時の
所定ひずみにおける応力差に着目し、このことを応力ヒ
ステリシスと称することもあり、本発明では、ひずみ2
%での応力ひずみ曲線における荷重負荷時と除荷時の応
力差を、応力ヒステリシス評価パラメータ、即ち応力差
Hと定義する。
Further, a work hardening type wire which is subjected to a low temperature heat treatment after cold working is formed into a NiTi-based alloy wire having a working rate of 35 to 50% by a molding process (held at 350 to 450 ° C. for 10 to 30 seconds).
The stress-strain curve is shown in FIG. 2c. This work hardening type wire has a stress difference H
(Here, the stress-strain curve shows a stress difference at 2% strain between when a load is applied and when the load is unloaded.) In addition, sufficient straightness cannot be obtained by the molding process, so that torque transmission is poor. There is. In general, stress hysteresis refers to the shape of a stress-strain curve when a load is applied to a predetermined load and then the load is gradually unloaded. From the viewpoint, for convenience, attention is focused on the stress difference at a predetermined strain between when a load is applied and when the load is unloaded in a stress-strain curve, and this may be referred to as stress hysteresis.
The stress difference between the time of loading and the time of unloading in the stress-strain curve in% is defined as a stress hysteresis evaluation parameter, that is, a stress difference H.

【0005】[0005]

【発明が解決しようとする課題】このようなことから、
本発明者等は、鋭意研究を進めて、応力誘起マルテンサ
イト変態による超弾性を示さず、広いひずみ範囲に渡っ
て高弾性を示す、プッシャビリティやトルク伝達性など
に優れた、全く新しいメカニズムに基づく医療用ガイド
ワイヤを先に提案した(特願平10−316690号公
報)。本発明は医療用ガイドワイヤに用いられる広ひず
み範囲高弾性Ni−Ti系合金ワイヤの製造方法、およ
び前記製造方法により製造された医療用ガイドワイヤに
用いられる広ひずみ範囲高弾性Ni−Ti系合金ワイヤ
の提供を目的とする。
SUMMARY OF THE INVENTION
The present inventors have intensively studied and developed a completely new mechanism that does not exhibit superelasticity due to stress-induced martensitic transformation, exhibits high elasticity over a wide strain range, and has excellent pushability and torque transmission. A medical guidewire based on the same has been proposed (Japanese Patent Application No. 10-316690). The present invention relates to a method for producing a wide strain range high elasticity Ni-Ti alloy wire used for a medical guidewire, and a wide strain range high elasticity Ni-Ti alloy used for a medical guidewire produced by the production method. The purpose is to provide wires.

【0006】[0006]

【課題を解決するための手段】請求項1記載の発明は、
医療用ガイドワイヤの構成要素として用いられるNi−
Ti系合金ワイヤの製造方法であって、冷間加工上がり
のNi−Ti系合金ワイヤに18kgf/mm2 以上の
張力を掛けつつ、図1の斜線部分のねじり剪断ひずみと
温度の条件範囲で機械的矯正加工を施すことを特徴とす
る医療用ガイドワイヤに用いられる広ひずみ範囲高弾性
Ni−Ti系合金ワイヤの製造方法である。
According to the first aspect of the present invention,
Ni- used as a component of medical guidewire
1. A method for producing a Ti-based alloy wire, which comprises applying a tension of 18 kgf / mm 2 or more to a cold-worked Ni—Ti-based alloy wire while maintaining a mechanical range within the range of the torsional shear strain and temperature in the hatched portion in FIG. This is a method for producing a wide-strain range high-elasticity Ni-Ti-based alloy wire used for a medical guidewire, which is characterized by performing a corrective process.

【0007】請求項2記載の発明は、冷間加工上がりの
Ni−Ti系合金ワイヤに18kgf/mm2 以上の張
力を掛けつつ、図1の斜線部分のねじり剪断ひずみと温
度の条件範囲で機械的矯正加工を施して製造された医療
用ガイドワイヤの構成要素として用いられるNi−Ti
系合金ワイヤであって、その引張試験における応力−ひ
ずみ曲線が下記 (1)〜(3) の条件を満足し、かつ (4)垂
下法による真直度が20mm/1.5m以下であること
を特徴とする医療用ガイドワイヤに用いられる広ひずみ
範囲高弾性Ni−Ti系合金ワイヤである。 (1)応力誘起マルテンサイト変態を示さない。 (2)ひずみ4%における見かけ上の弾性率が3000k
g/mm2 以上。 (3)ひずみを4%まで負荷後、除荷したときの残留ひず
みが0.15%以下。
[0007] According to a second aspect of the invention, while applying a 18 kgf / mm 2 or more tension to Ni-Ti-based alloy wire of cold working up, the machine in the range of the condition of the torsional shear strain and temperature of the hatched portion in FIG. 1 -Ti used as a component of a medical guidewire manufactured by subjecting to a corrective processing
A stress-strain curve in a tensile test that satisfies the following conditions (1) to (3), and (4) the straightness by the hanging method is 20 mm / 1.5 m or less. It is a wide-strain range, high elasticity Ni-Ti alloy wire used for a medical guidewire. (1) It does not show stress-induced martensitic transformation. (2) Apparent elastic modulus at 4% strain is 3000k
g / mm 2 or more. (3) Residual strain is 0.15% or less when unloading after loading strain to 4%.

【0008】請求項3記載の発明は、冷間加工上がりの
Ni−Ti系合金ワイヤに18kgf/mm2 以上の張
力を掛けつつ、図1の斜線部分のねじり剪断ひずみと温
度の条件範囲で機械的矯正加工を施して製造された医療
用ガイドワイヤの構成要素として用いられるNi−Ti
系合金ワイヤであって、その引張試験における応力−ひ
ずみ曲線が下記 (1)〜(3)(5)(6) の条件を満足し、かつ
(4)垂下法による真直度が20mm/1.5m以下であ
ることを特徴とする医療用ガイドワイヤに用いられる広
ひずみ範囲高弾性Ni−Ti系合金ワイヤである。 (1)応力誘起マルテンサイト変態を示さない。 (2)ひずみ4%における見かけ上の弾性率が3000k
g/mm2 以上。 (3)ひずみを4%まで負荷後、除荷したときの残留ひず
みが0.15%以下。 (5)ひずみ4%まで降伏点や変曲点を持たず応力が単調
に増加する。 (6)ひずみを4%まで負荷後、除荷したときのひずみ2
%における負荷時と除荷時の応力差が15kg/mm2
以下。
[0008] According to a third aspect, while applying a 18 kgf / mm 2 or more tension to Ni-Ti-based alloy wire of cold working up, the machine in the range of the condition of the torsional shear strain and temperature of the hatched portion in FIG. 1 -Ti used as a component of a medical guidewire manufactured by subjecting to a corrective processing
A stress-strain curve in a tensile test that satisfies the following conditions (1) to (3) (5) (6), and
(4) A wide strain range, high elasticity Ni-Ti alloy wire used for a medical guide wire, characterized in that the straightness by the hanging method is 20 mm / 1.5 m or less. (1) It does not show stress-induced martensitic transformation. (2) Apparent elastic modulus at 4% strain is 3000k
g / mm 2 or more. (3) Residual strain is 0.15% or less when unloading after loading strain to 4%. (5) The stress monotonically increases up to a strain of 4% without any yield point or inflection point. (6) Strain when unloading after loading strain to 4% 2
% Is 15 kg / mm 2 when the load is applied and when the load is unloaded.
Less than.

【0009】請求項4記載の発明は、Ni−Ti系合金
ワイヤが、Niを50.2〜51.5at%含有し、残部
がTiからなる合金であることを特徴とする請求項1記
載の医療用ガイドワイヤに用いられる広ひずみ範囲高弾
性Ni−Ti系合金ワイヤの製造方法である。
According to a fourth aspect of the present invention, the Ni-Ti alloy wire is an alloy containing 50.2 to 51.5 at% of Ni and the balance being Ti. This is a method for producing a wide strain range high elasticity Ni-Ti alloy wire used for a medical guidewire.

【0010】請求項5記載の発明は、Ni−Ti系合金
ワイヤが、Niを49.8〜51.5at%含有し、さら
にCr、Fe、V、Al、Cu、Co、Moの中から1
種または2種以上を0.1〜2.0at%含有し、残部が
Tiからなる合金であることを特徴とする請求項1記載
の医療用ガイドワイヤに用いられる広ひずみ範囲高弾性
Ni−Ti系合金ワイヤの製造方法である。
According to a fifth aspect of the present invention, the Ni-Ti alloy wire contains 49.8 to 51.5 at% of Ni, and further contains one of Cr, Fe, V, Al, Cu, Co, and Mo.
2. A wide strain range high elasticity Ni-Ti used for a medical guidewire according to claim 1, wherein the alloy contains 0.1 to 2.0 at% of a seed or two or more kinds and the balance is Ti. This is a method for producing a base alloy wire.

【0011】請求項6記載の発明は、Ni−Ti系合金
ワイヤが、Niを49.0〜51.0at%、Cuを5〜
12at%含有し、さらにCr、Fe、V、Al、Co、
Moの中から1種または2種以上を0.1〜2.0at%
含有し、残部がTiからなる合金であることを特徴とす
る請求項1記載の医療用ガイドワイヤに用いられる広ひ
ずみ範囲高弾性Ni−Ti系合金ワイヤの製造方法であ
る。
According to a sixth aspect of the present invention, in the Ni-Ti alloy wire, 49.0 to 51.0 at% of Ni and 5 to 5 at% of Cu are contained.
12 at%, Cr, Fe, V, Al, Co,
0.1 to 2.0 at% of one or more of Mo
2. A method for producing a high strain Ni-Ti alloy wire having a wide strain range and used for a medical guide wire according to claim 1, wherein the alloy comprises Ti and the balance is Ti.

【0012】請求項7記載の発明は、Ni−Ti系合金
ワイヤが、Niを50.2〜51.5at%含有し、残部
がTiからなる合金であることを特徴とする請求項2ま
たは3記載の医療用ガイドワイヤに用いられる広ひずみ
範囲高弾性Ni−Ti系合金ワイヤである。
The invention according to claim 7 is characterized in that the Ni-Ti alloy wire is an alloy containing 50.2 to 51.5 at% of Ni and the balance being Ti. It is a wide strain range high elasticity Ni-Ti alloy wire used for the described medical guidewire.

【0013】請求項8記載の発明は、Ni−Ti系合金
ワイヤが、Niを49.8〜51.5at%含有し、さら
にCr、Fe、V、Al、Cu、Co、Moの中から1
種または2種以上を0.1〜2.0at%含有し、残部が
Tiからなる合金であることを特徴とする請求項2また
は3記載の医療用ガイドワイヤに用いられる広ひずみ範
囲高弾性Ni−Ti系合金ワイヤである。
[0013] The invention according to claim 8 is that the Ni-Ti alloy wire contains 49.8 to 51.5 at% of Ni and further contains one of Cr, Fe, V, Al, Cu, Co, and Mo.
4. A wide strain range high elasticity Ni used for a medical guidewire according to claim 2, wherein the alloy contains 0.1 to 2.0 at% of a species or two or more species and the balance is Ti. -Ti-based alloy wire.

【0014】請求項9記載の発明は、Ni−Ti系合金
ワイヤが、Niを49.0〜51.0at%、Cuを5〜
12at%含有し、さらにCr、Fe、V、Al、Co、
Moの中から1種または2種以上を0.1〜2.0at%
含有し残部がTiからなる合金であることを特徴とする
請求項2または3記載の医療用ガイドワイヤに用いられ
る広ひずみ範囲高弾性Ni−Ti系合金ワイヤである。
According to a ninth aspect of the present invention, the Ni-Ti alloy wire has a Ni content of 49.0 to 51.0 at% and a Cu content of 5 to 5 at%.
12 at%, Cr, Fe, V, Al, Co,
0.1 to 2.0 at% of one or more of Mo
The high elasticity Ni-Ti alloy wire for a wide strain range used for a medical guidewire according to claim 2 or 3, wherein the balance is an alloy comprising Ti.

【0015】請求項10記載の発明は、Ni−Ti系合
金ワイヤが医療用ガイドワイヤの少なくとも一部に用い
られていることを特徴とする請求項2、3、7、8、9
のいずれかに記載の広ひずみ範囲高弾性Ni−Ti系合
金ワイヤである。
According to a tenth aspect of the present invention, the Ni-Ti alloy wire is used for at least a part of a medical guide wire.
The high strain Ni-Ti based alloy wire according to any one of the above,

【0016】請求項11記載の発明は、医療用ガイドワ
イヤの構成要素として用いられるNi−Ti系合金ワイ
ヤであって、下記 (1)〜(3) の条件を満足し、かつ (4)
垂下法による真直度が20mm/1.5m以下であるこ
とを特徴とする医療用ガイドワイヤに用いられる広ひず
み範囲高弾性Ni−Ti系合金ワイヤである。 (1)応力誘起マルテンサイト変態を示さない。 (2)ひずみ4%における見かけ上の弾性率が3000k
g/mm2 以上。 (3)ひずみを4%まで負荷後、除荷したときの残留ひず
みが0.15%以下。
An eleventh aspect of the present invention is a Ni—Ti alloy wire used as a component of a medical guidewire, which satisfies the following conditions (1) to (3), and (4)
A wide-strain range high-elasticity Ni-Ti alloy wire used for a medical guidewire, characterized in that the straightness by the hanging method is 20 mm / 1.5 m or less. (1) It does not show stress-induced martensitic transformation. (2) Apparent elastic modulus at 4% strain is 3000k
g / mm 2 or more. (3) Residual strain is 0.15% or less when unloading after loading strain to 4%.

【0017】請求項12記載の発明は、医療用ガイドワ
イヤの構成要素として用いられるNi−Ti系合金ワイ
ヤであって、下記 (1)〜(3)(5)(6) の条件を満足し、か
つ (4)垂下法による真直度が20mm/1.5m以下で
あることを特徴とする医療用ガイドワイヤに用いられる
広ひずみ範囲高弾性Ni−Ti系合金ワイヤである。 (1)応力誘起マルテンサイト変態を示さない。 (2)ひずみ4%における見かけ上の弾性率が3000k
g/mm2 以上。 (3)ひずみを4%まで負荷後、除荷したときの残留ひず
みが0.15%以下。 (5)ひずみ4%まで降伏点や変曲点を持たず応力が単調
に増加する。 (6)ひずみを4%まで負荷後、除荷したときのひずみ2
%における負荷時と除荷時の応力差が15kg/mm2
以下。
According to a twelfth aspect of the present invention, there is provided a Ni—Ti alloy wire used as a component of a medical guidewire, which satisfies the following conditions (1) to (3), (5) and (6). And (4) a high strain Ni-Ti alloy wire with a wide strain range used for a medical guide wire, characterized in that the straightness by the hanging method is 20 mm / 1.5 m or less. (1) It does not show stress-induced martensitic transformation. (2) Apparent elastic modulus at 4% strain is 3000k
g / mm 2 or more. (3) Residual strain is 0.15% or less when unloading after loading strain to 4%. (5) The stress monotonically increases up to a strain of 4% without any yield point or inflection point. (6) Strain when unloading after loading strain to 4% 2
% Is 15 kg / mm 2 when the load is applied and when the load is unloaded.
Less than.

【0018】[0018]

【発明の実施の形態】本発明により製造される医療用ガ
イドワイヤは、引張試験における応力−ひずみ曲線が
(1)応力誘起マルテンサイト変態を示さない、 (2)ひず
み4%における見かけ上の弾性率Eが3000kg/m
2 以上、 (3)ひずみを4%まで負荷後、除荷したとき
の残留ひずみZが0.15%以下の条件を満足し、かつ
(4)真直度が垂下法で20mm/1.5m以下の広ひず
み範囲高弾性Ni−Ti系合金ワイヤである。特には、
前記 (1)〜(4) の条件に加えて、引張試験における応力
−ひずみ曲線が (5)ひずみ4%まで降伏点Fや変曲点を
持たず応力が単調に増加する、 (6)ひずみを4%まで負
荷後、除荷したときのひずみ2%における負荷時と除荷
時の応力差Hが15kg/mm2 以下の条件を満足する
広ひずみ範囲高弾性Ni−Ti系合金ワイヤである。
BEST MODE FOR CARRYING OUT THE INVENTION A medical guidewire manufactured according to the present invention has a stress-strain curve in a tensile test.
(1) not exhibiting stress-induced martensitic transformation; (2) apparent elastic modulus E at a strain of 4% is 3000 kg / m
m 2 or more, and satisfying the expression (3) after challenge up to 4% strain, retained strain Z the following 0.15% condition when unloaded, and
(4) It is a highly elastic Ni-Ti alloy wire having a straightness of 20 mm / 1.5 m or less according to the hanging method. in particular,
In addition to the above conditions (1) to (4), the stress-strain curve in the tensile test is: (5) The stress monotonically increases without a yield point F or an inflection point up to a strain of 4%; Is a wide strain range high elasticity Ni-Ti alloy wire satisfying the condition that the stress difference H between the load and the unloading at a strain of 2% when the load is unloaded after loading to 4% is 15 kg / mm 2 or less. .

【0019】前記降伏点F、見かけ上の弾性率E、応力
差H、残留ひずみZは、図3に示されるものである。応
力差Hは図2に示すようにワイヤのタイプにより相異な
るものである。
FIG. 3 shows the yield point F, apparent elastic modulus E, stress difference H, and residual strain Z. The stress difference H differs depending on the type of wire as shown in FIG.

【0020】本発明により製造される医療用ガイドワイ
ヤは、プッシャビリティやトルク伝達性などの特性に優
れる。そして、これらの特性はガイドワイヤの引張試験
での応力−ひずみ曲線における降伏点Fの有無、弾性率
Eの大小、応力ヒステリシス評価パラメータHの大小、
残留ひずみZの大小、ワイヤの真直度などに左右され
る。即ち、表1に示すように、降伏点がなく、弾性率が
大きい程プッシャビリティが良好になりガイドワイヤを
血管の末端近くまで送り込むことができる。また残留ひ
ずみが小さい程弾性的で再挿入が可能になる。さらに応
力ヒステリシス評価パラメータ(応力差)Hが小さい程
トルク伝達性が良好になりガイドワイヤの操縦性が向上
する。さらに真直度の高いものはトルク伝達性が一段と
向上する。
The medical guidewire manufactured according to the present invention has excellent properties such as pushability and torque transmission. These characteristics include the presence or absence of a yield point F in the stress-strain curve in the tensile test of the guide wire, the magnitude of the elastic modulus E, the magnitude of the stress hysteresis evaluation parameter H,
It depends on the magnitude of the residual strain Z, the straightness of the wire, and the like. That is, as shown in Table 1, as there is no yield point and the elastic modulus is large, the pushability is improved, and the guide wire can be sent near the distal end of the blood vessel. Also, the smaller the residual strain, the more elastic and reinsertable. Furthermore, the smaller the stress hysteresis evaluation parameter (stress difference) H is, the better the torque transmission is, and the steerability of the guide wire is improved. Further, a straightness is further improved in torque transmission.

【0021】[0021]

【表1】 (表1の註)応力差(応力ヒステリシス評価パラメータ
H):4%までひずみをかけ除荷したとき、ひずみ2%
における負荷時と除荷時の応力差。
[Table 1] (Note for Table 1) Stress difference (stress hysteresis evaluation parameter H): 2% strain when unloaded after applying strain to 4%
The difference in stress between loading and unloading.

【0022】本発明では、Ni−Ti系合金鋳塊に熱間
加工および冷間伸線加工を施して線材とし、これに機械
的矯正加工を施して医療用ガイドワイヤを製造する。前
記機械的矯正加工は、得られる医療用ガイドワイヤの特
性に最も大きく影響する重要な工程であり、機械的矯正
加工を施さない伸線加工上がりの線材では、真直度が低
く、また図2bにその応力−ひずみ曲線を示すように、
4%のひずみを負荷すると残留ひずみZが大きくなり、
きつく曲がった血管を通すと永久変形を起こして、それ
以上奥へ挿入できなくなるなどの問題があり、医療用と
しては使用できない。
In the present invention, a Ni-Ti alloy ingot is subjected to hot working and cold drawing to obtain a wire, which is subjected to mechanical straightening to produce a medical guidewire. The mechanical straightening is an important step that has the greatest effect on the properties of the medical guidewire to be obtained, and the straightness of the drawn wire without mechanical straightening is low, and FIG. As shown by the stress-strain curve,
When a strain of 4% is applied, the residual strain Z increases,
There is a problem in that when a tightly bent blood vessel is passed through, permanent deformation occurs and it becomes impossible to insert the blood vessel any further, and it cannot be used for medical purposes.

【0023】本発明において、前記機械的矯正加工は、
線材に張力を掛けつつ、所定温度でねじり剪断ひずみを
負荷して施される。本発明において、前記張力を18k
gf/mm2 以上とし、前記ねじり剪断ひずみを図1の
斜線部分内の温度条件で負荷する理由は、前記張力が1
8kgf/mm2 未満でも、またねじり剪断ひずみを図
1の斜線部分外の温度条件で施しても、前記段落番号0
007、0016に記載した (1)〜(4) または前記段落
番号0008、0017に記載した (1)〜(6) の特性が
得られないためである。前記ねじり加工時のワイヤ温度
は大変重要な因子であり、275℃より高温では応力誘
起マルテンサイト変態による降伏点が出現してプッシャ
ビリティやトルク伝達性などの特性が低下してしまい、
100℃未満では十分な真直度が得られない。前記冷間
伸線加工では適宜中間焼鈍が施されるが、最終の冷間伸
線加工率は15〜60%にするのが、機械的矯正加工に
よる効果が十分に得られ望ましい。なお、本発明で施す
機械的矯正加工と、線材に数kgf/mm2 オーダーの
張力を掛けつつ行う通常の低温焼鈍処理とは、負荷する
ひずみの大きさや応力誘起マルテンサイト変態の有無に
より区別される。即ち、前者は応力誘起マルテンサイト
変態を生じないのに対し、後者は応力誘起マルテンサイ
ト変態を生じる点で相違する。
In the present invention, the mechanical straightening is performed by:
The wire is applied by applying a torsional shear strain at a predetermined temperature while applying tension to the wire. In the present invention, the tension is 18 k
gf / mm 2 or more, and the torsional shear strain is applied under the temperature conditions in the hatched portion in FIG.
Even if less than 8 kgf / mm 2 , or even if the torsional shear strain is applied under the temperature conditions outside the hatched portion in FIG.
This is because the characteristics (1) to (4) described in 007 and 0016 or the characteristics (1) to (6) described in paragraphs 0008 and 0017 cannot be obtained. The wire temperature during the torsion process is a very important factor, and at a temperature higher than 275 ° C., a yield point due to stress-induced martensitic transformation appears and characteristics such as pushability and torque transmission are reduced,
If it is lower than 100 ° C., sufficient straightness cannot be obtained. Intermediate annealing is appropriately performed in the cold drawing, and the final cold drawing rate is preferably set to 15 to 60%, since the effect of the mechanical straightening can be sufficiently obtained. The mechanical straightening performed in the present invention and the ordinary low-temperature annealing performed while applying a tension of several kgf / mm 2 to the wire are distinguished by the magnitude of the applied strain and the presence or absence of stress-induced martensite transformation. You. That is, the former differs from the former in that it does not cause stress-induced martensite transformation, whereas the latter generates stress-induced martensite transformation.

【0024】本発明では、実質的に記憶処理工程を含ま
ず、従って応力誘起マルテンサイト変態による超弾性を
示さない医療用ガイドワイヤが得られ、本発明はこれま
でにない全く新しいメカニズムに基づく製造方法であ
る。本発明により、前記 (1)〜(4) または (1)〜(6) の
特性を満足する医療用ガイドワイヤが得られる理由は、
伸線加工時に導入される転位は線の長さ方向に配向し、
機械的矯正加工時に導入される転位は線の径方向(曲
げ、ねじり方向)に配向し、両転位は共存が可能で、機
械的矯正加工後において転位密度が著しく増大するため
である。
According to the present invention, a medical guidewire is obtained which does not substantially include an amnestic process and therefore does not exhibit superelasticity due to stress-induced martensitic transformation. Is the way. According to the present invention, the reason that a medical guidewire that satisfies the characteristics of the above (1) to (4) or (1) to (6) is obtained is as follows.
Dislocations introduced during wire drawing are oriented in the length direction of the wire,
This is because the dislocations introduced during mechanical straightening are oriented in the radial direction (bending and torsion directions) of the wire, and both dislocations can coexist and the dislocation density is significantly increased after the mechanical straightening.

【0025】本発明で得られる医療用ガイドワイヤは、
従来の超弾性型ワイヤとは異なり、ガイドワイヤの先端
部を60℃のお湯につけるだけで血管内に送り込み易い
形状に手で自由に塑性変形させることができる。
The medical guide wire obtained according to the present invention comprises:
Unlike a conventional superelastic wire, the guide wire can be freely plastically deformed by hand into a shape that can be easily fed into a blood vessel simply by immersing the distal end of the guide wire in hot water at 60 ° C.

【0026】以下に、本発明の製造方法を図を参照して
具体的に説明する。図4は本発明で施す機械的矯正加工
方法の第1の実施形態を示す縦断面説明図である。この
方法は、線材1の上端を固定具2に固定し、下端に錘3
を取付けて線材1を張力を掛けて垂直に保持し、この線
材1の中間部分を熱処理槽4により所定温度に加熱しつ
つ、錘3を回転させて線材1に所定のねじり剪断ひずみ
を負荷する方法である。
Hereinafter, the manufacturing method of the present invention will be specifically described with reference to the drawings. FIG. 4 is an explanatory longitudinal sectional view showing a first embodiment of the mechanical straightening method performed in the present invention. In this method, an upper end of a wire 1 is fixed to a fixture 2, and a weight 3 is attached to a lower end.
The wire 1 is tensioned to hold the wire 1 vertically, and the intermediate portion of the wire 1 is heated to a predetermined temperature by the heat treatment tank 4 and the weight 3 is rotated to apply a predetermined torsional shear strain to the wire 1. Is the way.

【0027】図5は本発明で施す機械的矯正加工方法の
第2の実施形態を示す縦断面説明図である。この方法
は、線材1の一端を固定具2に固定し、他端側をプーリ
ー5に配し、その先に錘3を取付けて線材1を張力を掛
けて水平に保持し、この線材1の中間部分を熱処理槽4
により所定の温度に加熱しつつ、固定具2を回転させて
線材1にねじり剪断ひずみを負荷する方法である。
FIG. 5 is an explanatory longitudinal sectional view showing a second embodiment of the mechanical straightening method performed in the present invention. In this method, one end of a wire 1 is fixed to a fixture 2, the other end is arranged on a pulley 5, a weight 3 is attached to the end of the pulley 5, tension is applied to the wire 1, and the wire 1 is horizontally held. Heat treatment tank 4 in the middle
And heating the wire 2 to a predetermined temperature to apply a torsional shear strain to the wire 1.

【0028】図6は本発明で施す機械的矯正加工方法の
第3の実施形態を示す縦断面説明図である。この方法
は、ボビン6に巻かれた線材1をピンチロール7により
連続的に引き出し、熱処理槽4にて所定の温度に加熱し
つつ、ボビン6を回転させて線材1にねじり剪断ひずみ
を負荷する方法で、量産を考慮したものである。ねじり
剪断ひずみを負荷された線材1はキャプスタン8に巻付
けられ、次いでピンチロール9により引き出され所望の
長さに切断される。線材1は切断せずに巻取っても良
い。
FIG. 6 is an explanatory longitudinal sectional view showing a third embodiment of the mechanical straightening method performed in the present invention. In this method, the wire 1 wound around the bobbin 6 is continuously pulled out by a pinch roll 7, and is heated to a predetermined temperature in the heat treatment tank 4 while rotating the bobbin 6 to apply a torsional shear strain to the wire 1. The method considers mass production. The wire 1 loaded with the torsional shear strain is wound around a capstan 8 and then pulled out by a pinch roll 9 and cut to a desired length. The wire 1 may be wound without cutting.

【0029】本発明では、Ni−Ti系合金ワイヤに
は、Niを50.2〜51.5at%含有し、残部がTi
からなる合金、Niを49.8〜51.5at%含有し、
さらにCr、Fe、V、Al、Cu、Co、Moの中か
ら1種または2種以上を0.1〜2.0at%含有し残部
がTiからなる合金、Niを49.0〜51.0at%、
Cuを5〜12at%含有し、さらにCr、Fe、V、A
l、Co、Moの中から1種または2種以上を0.1〜
2.0at%含有し残部がTiからなる合金などが含まれ
る。
In the present invention, the Ni—Ti alloy wire contains 50.2 to 51.5 at% of Ni, and the balance is Ti.
An alloy consisting of 49.8-51.5 at% Ni,
Further, an alloy containing 0.1 to 2.0 at% of one or more of Cr, Fe, V, Al, Cu, Co, and Mo, with the balance being Ti, and Ni of 49.0 to 51.0 at% %,
Contains 5 to 12 at% of Cu, and further contains Cr, Fe, V, A
One, two or more of l, Co, Mo
An alloy containing 2.0 at% with the balance being Ti is included.

【0030】[0030]

【実施例】以下に本発明を実施例により詳細に説明す
る。 (実施例1)Niを51at%含有し残部がTiからなる
Ni−Ti系合金鋳塊に熱間加工および冷間伸線加工を
施して直径0.35mmの線材とし、これを図6に示し
た方法により機械的矯正加工を施して医療用ガイドワイ
ヤを製造した。前記冷間伸線加工では最終焼鈍後の伸線
加工率は55%とし、前記機械的矯正加工では、張力は
75kgf/mm2 に設定し、ねじり剪断ひずみと温度
は、両者の関係が図1に示す斜線部分内に納まるように
設定した。
The present invention will be described below in detail with reference to examples. (Example 1) A Ni-Ti alloy ingot containing 51 at% of Ni and the balance being Ti is subjected to hot working and cold drawing to obtain a wire having a diameter of 0.35 mm, which is shown in Fig. 6. The medical guide wire was manufactured by performing mechanical straightening according to the above method. In the cold drawing, the drawing rate after the final annealing was 55%, in the mechanical straightening, the tension was set to 75 kgf / mm 2 , and the relationship between the torsional shear strain and the temperature was shown in FIG. It was set to fit within the shaded area shown in.

【0031】(実施例2)Ni−Ti系合金鋳塊に、N
i−48.9at%Ti−0.2at%Cr合金、またはN
i−50.0at%Ti−8.0at%Cu−0.2at%F
e合金を用いた他は、実施例1と同じ方法により医療用
ガイドワイヤを製造した。
(Example 2) N-Ti alloy ingot was mixed with N
i-48.9 at% Ti-0.2 at% Cr alloy or N
i-50.0at% Ti-8.0at% Cu-0.2at% F
A medical guidewire was manufactured in the same manner as in Example 1 except that the e-alloy was used.

【0032】(比較例1)ねじり剪断ひずみと温度が図
1に示す斜線部分外になるように設定した他は、実施例
1と同じ方法によりガイドワイヤを製造した。
(Comparative Example 1) A guide wire was manufactured in the same manner as in Example 1 except that the torsional shear strain and the temperature were set outside the hatched portion shown in FIG.

【0033】実施例1、2、および比較例1で得られた
各々のガイドワイヤについて、真直度、見かけ上の弾性
率E、応力ヒステリシス評価パラメータ(応力差)H、
残留ひずみZを測定した。前記真直度は、垂下法により
測定した。即ち、図7に示すように長さ方向が床面に垂
直になるように配置したSUS製チューブ(内径0.3
8mm、外径0.5mm、長さ50mm)10に、所定
長さの試験線11の一端を固定し、試験線11の先端の
位置と、完全に真直な線12の先端の位置との床面に平
行な距離b(mm)を測定して判定した。医療用ガイド
ワイヤには操縦性(トルク伝達性)を考慮して、前記距
離bが20mm以下になる真直度が要求される。結果を
表2に示す。表2には矯正加工条件を併記した。また図
8に真直度(距離b)とねじり剪断ひずみとの関係を示
した。矯正加工条件のうちねじり剪断ひずみは線に与え
る回転数と、ねじりを与えられる線の長さとから計算に
より求めた。
For each of the guide wires obtained in Examples 1 and 2 and Comparative Example 1, straightness, apparent elastic modulus E, stress hysteresis evaluation parameter (stress difference) H,
The residual strain Z was measured. The straightness was measured by the hanging method. That is, as shown in FIG. 7, a SUS tube (with an inner diameter of 0.3) arranged so that the length direction is perpendicular to the floor surface.
(8 mm, outer diameter 0.5 mm, length 50 mm) 10, one end of a test line 11 of a predetermined length is fixed, and the floor between the position of the test line 11 and the position of the completely straight line 12 is fixed. It was determined by measuring the distance b (mm) parallel to the plane. The medical guidewire is required to have a straightness in which the distance b is 20 mm or less in consideration of maneuverability (torque transmission). Table 2 shows the results. Table 2 also shows the correction processing conditions. FIG. 8 shows the relationship between straightness (distance b) and torsional shear strain. Of the straightening conditions, the torsional shear strain was determined by calculation from the number of rotations applied to the wire and the length of the wire to which the torsion was applied.

【0034】[0034]

【表2】 [Table 2]

【0035】表2より明らかなように、本発明例のN
o.1〜12は、いずれも真直度が高く(距離bが20
mm以下)、引張試験での応力−ひずみ曲線が図2aに
示したものと同じで前記 (1)〜(4) の規定値を満足し、
医療用ガイドワイヤとして有用である。これに対して比
較例は、ねじり剪断ひずみと温度の関係が図1の斜線部
分外であったため、No.13〜15ではいずれも残留
ひずみZと応力ヒステリシス評価パラメータ(応力差)
Hが大きくなり、真直度が低下し、No.16〜22で
はいずれも真直度が低下し、医療用ガイドワイヤとして
不適当である。図8から、真直度は、矯正加工時の温度
が高温なほど、ねじり剪断ひずみが大きいほど向上する
ことが判る。
As is clear from Table 2, N of the present invention example
o. 1 to 12 have high straightness (distance b is 20
mm or less), the stress-strain curve in the tensile test is the same as that shown in FIG. 2a, and satisfies the above-mentioned specified values (1) to (4);
Useful as a medical guidewire. On the other hand, in the comparative example, the relationship between the torsional shear strain and the temperature was outside the shaded portion in FIG. For 13 to 15, residual strain Z and stress hysteresis evaluation parameter (stress difference)
H increases, the straightness decreases, and In any of 16 to 22, the straightness is lowered, and is unsuitable as a medical guidewire. From FIG. 8, it can be seen that the straightness improves as the temperature during the straightening process increases and the torsional shear strain increases.

【0036】ここで、本発明例のNo.1について、示
差走査熱測定(DSC)を高感度装置を用いて精密に行
った。その結果、図10(a)に示すようにマルテンサ
イト相と母相間の変態を示す吸熱または発熱のピークは
全く現れなかった。即ち、本発明のワイヤは応力誘起マ
ルテンサイト変態が全く生じないことが確認された。同
じ測定を、特公平6−83726号公報に記載された従
来の加工硬化型ワイヤ(応力−ひずみ曲線が図2cのワ
イヤ)についても行ったが、図10(b)に示すように
ブロードではあるが変態を示すピークが現れ、前記加工
硬化型ワイヤには応力誘起マルテンサイト変態が生じる
ことが確認された。つまり、本発明のワイヤは応力誘起
マルテンサイト変態を全く示さず、従来の加工硬化型ワ
イヤは応力誘起マルテンサイト変態を示す。この点で両
者は相違する。
Here, No. 1 of the present invention example. For No. 1, differential scanning calorimetry (DSC) was performed precisely using a high-sensitivity apparatus. As a result, as shown in FIG. 10A, no endothermic or exothermic peak indicating the transformation between the martensite phase and the parent phase appeared at all. That is, it was confirmed that the wire of the present invention did not undergo any stress-induced martensitic transformation. The same measurement was performed for the conventional work hardening type wire (the wire having a stress-strain curve shown in FIG. 2C) described in Japanese Patent Publication No. 6-83726, but it was broad as shown in FIG. Showed a peak indicating transformation, and it was confirmed that stress-induced martensitic transformation occurred in the work hardening type wire. In other words, the wire of the present invention does not show any stress-induced martensitic transformation, and the conventional work hardening type wire shows the stress-induced martensitic transformation. The two differ in this respect.

【0037】(実施例3)Niを51at%含有し、残部
がTiからなるNi−Ti系合金鋳塊に熱間加工と冷間
伸線加工を順に施して直径0.35mmの線材とし、こ
の線材に図6に示した方法により機械的矯正加工を施し
て医療用ガイドワイヤを製造した。前記冷間伸線加工で
は、最終焼鈍後の伸線加工率を55%とし、前記機械的
矯正加工では、張力を18〜170kgf/mm2 、温
度を100または200℃、ねじり剪断ひずみを20ま
たは30%とした。
(Example 3) A Ni-Ti alloy ingot containing 51 at% of Ni and the balance of Ti was subjected to hot working and cold drawing in order to obtain a wire having a diameter of 0.35 mm. The wire was subjected to mechanical straightening by the method shown in FIG. 6 to produce a medical guidewire. In the cold drawing, the drawing rate after the final annealing is 55%. In the mechanical straightening, the tension is 18 to 170 kgf / mm 2 , the temperature is 100 or 200 ° C., and the torsional shear strain is 20 or 30%.

【0038】(比較例2)張力を18kgf/mm2
満とした他は、実施例2と同じ方法により医療用ガイド
ワイヤを製造した。
Comparative Example 2 A medical guidewire was manufactured in the same manner as in Example 2 except that the tension was less than 18 kgf / mm 2 .

【0039】実施例3および比較例2で得られた各々の
医療用ガイドワイヤについて、真直度、見かけ上の弾性
率E、応力ヒステリシス評価パラメータ(応力差)H、
残留ひずみZを測定した。結果を表3に示す。表3には
矯正加工条件を併記した。また図9に真直度(距離b)
と張力の関係を示した。
For each of the medical guide wires obtained in Example 3 and Comparative Example 2, straightness, apparent elastic modulus E, stress hysteresis evaluation parameter (stress difference) H,
The residual strain Z was measured. Table 3 shows the results. Table 3 also shows the correction processing conditions. FIG. 9 shows the straightness (distance b).
And the relationship of tension.

【0040】[0040]

【表3】 [Table 3]

【0041】表3より明らかなように、本発明例のN
o.31〜39は、いずれも、真直度が高く(距離bが
20mm以下)、かつ引張試験での応力−ひずみ曲線が
図2aに示したものと同じで前記 (1)〜(4) の規定値を
満足し、医療用ガイドワイヤとして有用である。これに
対し比較例のNo.40〜42は矯正加工時の張力が低
かったため、いずれも真直度が低くなり、医療用ガイド
ワイヤとして不適当である。図9から、真直度は矯正加
工時の張力が18kgf/mm2 未満(比較例)では低
いが、18kgf/mm2 以上(本発明例)になると急
激に向上することが判る。また真直度は矯正加工時の張
力が高いほど、また温度が高いほど向上することが判
る。
As is clear from Table 3, N of the present invention example
o. 31 to 39 have high straightness (distance b is 20 mm or less), and have the same stress-strain curve in the tensile test as shown in FIG. And is useful as a medical guidewire. On the other hand, in Comparative Example No. Nos. 40 to 42 have low straightness at the time of straightening, and therefore all have low straightness and are unsuitable as medical guidewires. From FIG. 9, it is found that the straightness is low when the tension during the straightening is less than 18 kgf / mm 2 (comparative example), but sharply increases when the tension is 18 kgf / mm 2 or more (example of the present invention). It can also be seen that the straightness increases as the tension during the straightening process increases and as the temperature increases.

【0042】[0042]

【発明の効果】以上に述べたように、本発明では、Ni
−Ti系合金ワイヤに、真直度を高めるための機械的矯
正加工を、18kgf/mm2 以上の張力を掛けつつ、
図1の斜線部分内のねじり剪断ひずみと温度条件範囲で
施すので、転位密度の増大が可能となり、プッシャビリ
ティやトルク伝達性などに優れた医療用ガイドワイヤが
製造される。依って、工業上顕著な効果を奏する。
As described above, according to the present invention, Ni
-Mechanically straightening the Ti-based alloy wire to increase straightness while applying a tension of 18 kgf / mm 2 or more;
Since the application is performed within the range of the torsional shear strain and the temperature conditions in the hatched portion in FIG. 1, the dislocation density can be increased, and a medical guidewire excellent in pushability, torque transmission, and the like can be manufactured. Therefore, an industrially remarkable effect is achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で施す機械的矯正加工におけるねじり剪
断ひずみと温度の条件範囲を示す図である。
FIG. 1 is a diagram showing a condition range of torsional shear strain and temperature in mechanical straightening performed in the present invention.

【図2】(a)は本発明で製造される医療用ガイドワイヤ
の応力−ひずみ曲線図、 (b)〜(e) は従来の医療用ガイ
ドワイヤの応力−ひずみ曲線図である。
2A is a stress-strain curve diagram of a medical guidewire manufactured by the present invention, and FIGS. 2B to 2E are stress-strain curve diagrams of a conventional medical guidewire.

【図3】図2に示した応力−ひずみ曲線を説明するため
の補足図である。
FIG. 3 is a supplementary diagram for explaining the stress-strain curve shown in FIG. 2;

【図4】本発明にて施す機械的矯正加工方法の第1の実
施形態を示す縦断面説明図である。
FIG. 4 is an explanatory longitudinal sectional view showing a first embodiment of the mechanical straightening method performed in the present invention.

【図5】本発明にて施す機械的矯正加工方法の第2の実
施形態を示す縦断面説明図である。
FIG. 5 is an explanatory longitudinal sectional view showing a second embodiment of the mechanical straightening method performed in the present invention.

【図6】本発明にて施す機械的矯正加工方法の第3の実
施形態を示す縦断面説明図である。
FIG. 6 is an explanatory longitudinal sectional view showing a third embodiment of the mechanical straightening method performed in the present invention.

【図7】医療用ガイドワイヤの真直度の求め方の説明図
である。
FIG. 7 is an explanatory diagram of how to determine the straightness of a medical guidewire.

【図8】真直度とねじり剪断ひずみとの関係図である。FIG. 8 is a relationship diagram between straightness and torsional shear strain.

【図9】真直度と張力との関係図である。FIG. 9 is a relationship diagram between straightness and tension.

【図10】(a)は本発明の医療用ガイドワイヤの熱量
変化図、(b)は従来の医療用ガイドワイヤの熱量変化
図である。
FIG. 10 (a) is a diagram showing a change in calorie of the medical guidewire of the present invention, and FIG. 10 (b) is a diagram showing a change in calorie of a conventional medical guidewire.

【符号の説明】[Explanation of symbols]

1 線材 2 固定具 3 錘 4 熱処理槽 5 プーリー 6 ボビン 7 ピンチロール 8 キャプスタン 9 ピンチロール 10 SUS製チューブ 11 真直度の試験線 12 完全に真直な線 b 真直度を示す距離 Reference Signs List 1 wire rod 2 fixture 3 weight 4 heat treatment tank 5 pulley 6 bobbin 7 pinch roll 8 capstan 9 pinch roll 10 SUS tube 11 straightness test line 12 perfect straight line b distance indicating straightness

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 675 C22F 1/00 686A 686 691B 691 691Z A61M 25/00 450F (72)発明者 水戸瀬 賢悟 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 (54)【発明の名称】 医療用ガイドワイヤに用いられる広ひずみ範囲高弾性Ni−Ti系合金ワイヤの製造方法、およ び前記製造方法により製造された医療用ガイドワイヤに用いられる広ひずみ範囲高弾性Ni−T i系合金ワイヤ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22F 1/00 675 C22F 1/00 686A 686 691B 691 691Z A61M 25/00 450F (72) Inventor Kengo Mitose 2-6-1 Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd. (54) [Title of the Invention] A method for manufacturing a wide strain range high elasticity Ni-Ti alloy wire used for a medical guidewire, and Strain and high elasticity Ni-Ti alloy wire used for medical guidewires manufactured by the above manufacturing method

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 医療用ガイドワイヤの構成要素として用
いられるNi−Ti系合金ワイヤの製造方法であって、
冷間加工上がりのNi−Ti系合金ワイヤに18kgf
/mm2 以上の張力を掛けつつ、図1の斜線部分のねじ
り剪断ひずみと温度の条件範囲で機械的矯正加工を施す
ことを特徴とする医療用ガイドワイヤに用いられる広ひ
ずみ範囲高弾性Ni−Ti系合金ワイヤの製造方法。
1. A method for producing a Ni—Ti alloy wire used as a component of a medical guide wire, comprising:
18kgf for cold-worked Ni-Ti alloy wire
/ Mm 2 while applying the above tension, wide strain range, highly elastic for use in medical guide wire is characterized by subjecting the mechanical straightening at the range of the condition of the torsional shear strain and temperature of the hatched portion in FIG. 1 Ni- A method for producing a Ti-based alloy wire.
【請求項2】 冷間加工上がりのNi−Ti系合金ワイ
ヤに18kgf/mm2 以上の張力を掛けつつ、図1の
斜線部分のねじり剪断ひずみと温度の条件範囲で機械的
矯正加工を施して製造された医療用ガイドワイヤの構成
要素として用いられるNi−Ti系合金ワイヤであっ
て、その引張試験における応力−ひずみ曲線が下記 (1)
〜(3) の条件を満足し、かつ (4)垂下法による真直度が
20mm/1.5m以下であることを特徴とする医療用
ガイドワイヤに用いられる広ひずみ範囲高弾性Ni−T
i系合金ワイヤ。 (1)応力誘起マルテンサイト変態を示さない。 (2)ひずみ4%における見かけ上の弾性率が3000k
g/mm2 以上。 (3)ひずみを4%まで負荷後、除荷したときの残留ひず
みが0.15%以下。
2. While applying a tension of 18 kgf / mm 2 or more to the cold-worked Ni—Ti alloy wire, the wire is subjected to mechanical straightening in the range of torsional shear strain and temperature in the hatched portion in FIG. A Ni-Ti alloy wire used as a component of a manufactured medical guidewire, wherein a stress-strain curve in a tensile test is as follows:
A wide strain range high elasticity Ni-T used for a medical guidewire, characterized by satisfying the conditions of (3) to (3) and (4) straightness by the hanging method being 20 mm / 1.5 m or less.
i-based alloy wire. (1) It does not show stress-induced martensitic transformation. (2) Apparent elastic modulus at 4% strain is 3000k
g / mm 2 or more. (3) Residual strain is 0.15% or less when unloading after loading strain to 4%.
【請求項3】 冷間加工上がりのNi−Ti系合金ワイ
ヤに18kgf/mm2 以上の張力を掛けつつ、図1の
斜線部分のねじり剪断ひずみと温度の条件範囲で機械的
矯正加工を施して製造された医療用ガイドワイヤの構成
要素として用いられるNi−Ti系合金ワイヤであっ
て、その引張試験における応力−ひずみ曲線が下記 (1)
〜(3)(5)(6) の条件を満足し、かつ (4)垂下法による真
直度が20mm/1.5m以下であることを特徴とする
医療用ガイドワイヤに用いられる広ひずみ範囲高弾性N
i−Ti系合金ワイヤ。 (1)応力誘起マルテンサイト変態を示さない。 (2)ひずみ4%における見かけ上の弾性率が3000k
g/mm2 以上。 (3)ひずみを4%まで負荷後、除荷したときの残留ひず
みが0.15%以下。 (5)ひずみ4%まで降伏点や変曲点を持たず応力が単調
に増加する。 (6)ひずみを4%まで負荷後、除荷したときのひずみ2
%における負荷時と除荷時の応力差が15kg/mm2
以下。
3. A mechanical straightening process is performed on the Ni-Ti alloy wire after cold working while applying a tension of 18 kgf / mm 2 or more in the range of torsional shear strain and temperature in the hatched portion in FIG. A Ni-Ti alloy wire used as a component of a manufactured medical guidewire, wherein a stress-strain curve in a tensile test is as follows:
(3) satisfying the conditions of (5) and (6), and (4) the straightness by the hanging method is not more than 20 mm / 1.5 m. Elasticity N
i-Ti alloy wire. (1) It does not show stress-induced martensitic transformation. (2) Apparent elastic modulus at 4% strain is 3000k
g / mm 2 or more. (3) Residual strain is 0.15% or less when unloading after loading strain to 4%. (5) The stress monotonically increases up to a strain of 4% without any yield point or inflection point. (6) Strain when unloading after loading strain to 4% 2
% At the time of loading and unloading is 15 kg / mm 2
Less than.
【請求項4】 Ni−Ti系合金ワイヤが、Niを5
0.2〜51.5at%含有し、残部がTiからなる合金
であることを特徴とする請求項1記載の医療用ガイドワ
イヤに用いられる広ひずみ範囲高弾性Ni−Ti系合金
ワイヤの製造方法。
4. The Ni—Ti alloy wire contains 5% Ni.
2. A method for producing a high strain Ni-Ti alloy wire having a wide strain range and used for a medical guide wire according to claim 1, wherein the alloy contains 0.2 to 51.5 at% and the balance is Ti. .
【請求項5】 Ni−Ti系合金ワイヤが、Niを4
9.8〜51.5at%含有し、さらにCr、Fe、V、
Al、Cu、Co、Moの中から1種または2種以上を
0.1〜2.0at%含有し、残部がTiからなる合金で
あることを特徴とする請求項1記載の医療用ガイドワイ
ヤに用いられる広ひずみ範囲高弾性Ni−Ti系合金ワ
イヤの製造方法。
5. The Ni—Ti alloy wire contains 4% Ni.
9.8 to 51.5 at%, Cr, Fe, V,
2. The medical guidewire according to claim 1, wherein one or more of Al, Cu, Co, and Mo are contained in an amount of 0.1 to 2.0 at%, and the balance is Ti. Of manufacturing a high strain Ni-Ti alloy wire having a wide strain range used for a steel sheet.
【請求項6】 Ni−Ti系合金ワイヤが、Niを4
9.0〜51.0at%、Cuを5〜12at%含有し、さ
らにCr、Fe、V、Al、Co、Moの中から1種ま
たは2種以上を0.1〜2.0at%含有し、残部がTi
からなる合金であることを特徴とする請求項1記載の医
療用ガイドワイヤに用いられる広ひずみ範囲高弾性Ni
−Ti系合金ワイヤの製造方法。
6. The Ni—Ti alloy wire contains 4% Ni.
9.0 to 51.0 at%, 5 to 12 at% of Cu, and 0.1 to 2.0 at% of one or more of Cr, Fe, V, Al, Co, and Mo. The rest is Ti
2. A wide strain range high elasticity Ni used for a medical guidewire according to claim 1, wherein the Ni is an alloy comprising:
-A method for producing a Ti-based alloy wire.
【請求項7】 Ni−Ti系合金ワイヤが、Niを5
0.2〜51.5at%含有し、残部がTiからなる合金
であることを特徴とする請求項2または3記載の医療用
ガイドワイヤに用いられる広ひずみ範囲高弾性Ni−T
i系合金ワイヤ。
7. The Ni—Ti alloy wire contains 5% Ni.
4. A wide strain range high elasticity Ni-T used for a medical guidewire according to claim 2, wherein the alloy contains 0.2 to 51.5 at% and the balance is Ti.
i-based alloy wire.
【請求項8】 Ni−Ti系合金ワイヤが、Niを4
9.8〜51.5at%含有し、さらにCr、Fe、V、
Al、Cu、Co、Moの中から1種または2種以上を
0.1〜2.0at%含有し、残部がTiからなる合金で
あることを特徴とする請求項2または3記載の医療用ガ
イドワイヤに用いられる広ひずみ範囲高弾性Ni−Ti
系合金ワイヤ。
8. The Ni—Ti alloy wire contains 4% Ni.
9.8 to 51.5 at%, Cr, Fe, V,
4. The medical device according to claim 2, wherein one or more of Al, Cu, Co, and Mo are contained in an amount of 0.1 to 2.0 at%, and the balance is Ti. Wide strain range high elasticity Ni-Ti used for guide wire
Series alloy wire.
【請求項9】 Ni−Ti系合金ワイヤが、Niを4
9.0〜51.0at%、Cuを5〜12at%含有し、さ
らにCr、Fe、V、Al、Co、Moの中から1種ま
たは2種以上を0.1〜2.0at%含有し残部がTiか
らなる合金であることを特徴とする請求項2または3記
載の医療用ガイドワイヤに用いられる広ひずみ範囲高弾
性Ni−Ti系合金ワイヤ。
9. The Ni—Ti alloy wire contains 4% Ni.
9.0 to 51.0 at%, 5 to 12 at% of Cu, and 0.1 to 2.0 at% of one or more of Cr, Fe, V, Al, Co, and Mo. 4. The high strain Ni-Ti alloy wire according to claim 2, wherein the remainder is an alloy of Ti.
【請求項10】 Ni−Ti系合金ワイヤが医療用ガイ
ドワイヤの少なくとも一部に用いられていることを特徴
とする請求項2、3、7、8、9のいずれかに記載の広
ひずみ範囲高弾性Ni−Ti系合金ワイヤ。
10. The wide strain range according to claim 2, wherein a Ni—Ti alloy wire is used for at least a part of the medical guide wire. High elasticity Ni-Ti alloy wire.
【請求項11】 医療用ガイドワイヤの構成要素として
用いられるNi−Ti系合金ワイヤであって、下記 (1)
〜(3) の条件を満足し、かつ (4)垂下法による真直度が
20mm/1.5m以下であることを特徴とする医療用
ガイドワイヤに用いられる広ひずみ範囲高弾性Ni−T
i系合金ワイヤ。 (1)応力誘起マルテンサイト変態を示さない。 (2)ひずみ4%における見かけ上の弾性率が3000k
g/mm2 以上。 (3)ひずみを4%まで負荷後、除荷したときの残留ひず
みが0.15%以下。
11. A Ni—Ti alloy wire used as a component of a medical guide wire, comprising:
A wide strain range high elasticity Ni-T used for a medical guidewire, characterized by satisfying the conditions of (3) to (3) and (4) straightness by the hanging method being 20 mm / 1.5 m or less.
i-based alloy wire. (1) It does not show stress-induced martensitic transformation. (2) Apparent elastic modulus at 4% strain is 3000k
g / mm 2 or more. (3) Residual strain is 0.15% or less when unloading after loading strain to 4%.
【請求項12】 医療用ガイドワイヤの構成要素として
用いられるNi−Ti系合金ワイヤであって、下記 (1)
〜(3)(5)(6) の条件を満足し、かつ (4)垂下法による真
直度が20mm/1.5m以下であることを特徴とする
医療用ガイドワイヤに用いられる広ひずみ範囲高弾性N
i−Ti系合金ワイヤ。 (1)応力誘起マルテンサイト変態を示さない。 (2)ひずみ4%における見かけ上の弾性率が3000k
g/mm2 以上。 (3)ひずみを4%まで負荷後、除荷したときの残留ひず
みが0.15%以下。 (5)ひずみ4%まで降伏点や変曲点を持たず応力が単調
に増加する。 (6)ひずみを4%まで負荷後、除荷したときのひずみ2
%における負荷時と除荷時の応力差が15kg/mm2
以下。
12. A Ni—Ti-based alloy wire used as a component of a medical guide wire, comprising:
(3) satisfying the conditions of (5) and (6), and (4) the straightness by the hanging method is not more than 20 mm / 1.5 m. Elasticity N
i-Ti alloy wire. (1) It does not show stress-induced martensitic transformation. (2) Apparent elastic modulus at 4% strain is 3000k
g / mm 2 or more. (3) Residual strain is 0.15% or less when unloading after loading strain to 4%. (5) The stress monotonically increases up to a strain of 4% without any yield point or inflection point. (6) Strain when unloading after loading strain to 4% 2
% Is 15 kg / mm 2 when the load is applied and when the load is unloaded.
Less than.
JP2000124802A 1999-09-27 2000-04-25 Method for producing wide strain range high elasticity Ni-Ti alloy wire used for medical guidewire Expired - Fee Related JP3547366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000124802A JP3547366B2 (en) 1999-09-27 2000-04-25 Method for producing wide strain range high elasticity Ni-Ti alloy wire used for medical guidewire

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP27347099 1999-09-27
JP11-273470 1999-09-27
JP2000124802A JP3547366B2 (en) 1999-09-27 2000-04-25 Method for producing wide strain range high elasticity Ni-Ti alloy wire used for medical guidewire

Publications (2)

Publication Number Publication Date
JP2001164348A true JP2001164348A (en) 2001-06-19
JP3547366B2 JP3547366B2 (en) 2004-07-28

Family

ID=26550671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000124802A Expired - Fee Related JP3547366B2 (en) 1999-09-27 2000-04-25 Method for producing wide strain range high elasticity Ni-Ti alloy wire used for medical guidewire

Country Status (1)

Country Link
JP (1) JP3547366B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003089834A (en) * 2001-09-19 2003-03-28 Furukawa Electric Co Ltd:The Ni-Ti ALLOY WITH HIGH RIGIDITY TYPE REVERSIBLE DEFORMATION
WO2006051618A1 (en) * 2004-11-12 2006-05-18 Furukawa-Sky Aluminum Corp. Movable mechanism
JP2010268974A (en) * 2009-05-21 2010-12-02 Asahi Intecc Co Ltd Method of producing metallic material, guide wire, and balloon catheter
WO2011084240A1 (en) * 2009-12-17 2011-07-14 Cook Incorporated Method of improving the properties of a component of a medical device comprising a nickel-titanium-chromium alloy
US8096120B2 (en) 2003-05-14 2012-01-17 Furukawa-Sky Aluminum Corp. Movable mechanism
WO2012008579A1 (en) 2010-07-15 2012-01-19 国立大学法人東北大学 Highly elastic stent and production method for highly elastic stent
EP3300764A1 (en) 2016-09-30 2018-04-04 FMD Co., Ltd. Medical guide wire
WO2024179296A1 (en) * 2023-02-28 2024-09-06 香港科技大学 Nickel-titanium alloy, and preparation method therefor and use thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013240562A (en) * 2012-05-17 2013-12-05 Trs:Kk Medical guide wire

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003089834A (en) * 2001-09-19 2003-03-28 Furukawa Electric Co Ltd:The Ni-Ti ALLOY WITH HIGH RIGIDITY TYPE REVERSIBLE DEFORMATION
US8096120B2 (en) 2003-05-14 2012-01-17 Furukawa-Sky Aluminum Corp. Movable mechanism
WO2006051618A1 (en) * 2004-11-12 2006-05-18 Furukawa-Sky Aluminum Corp. Movable mechanism
JPWO2006051618A1 (en) * 2004-11-12 2008-05-29 古河スカイ株式会社 Movable mechanism
JP4711968B2 (en) * 2004-11-12 2011-06-29 古河スカイ株式会社 Movable mechanism
JP2010268974A (en) * 2009-05-21 2010-12-02 Asahi Intecc Co Ltd Method of producing metallic material, guide wire, and balloon catheter
WO2011084240A1 (en) * 2009-12-17 2011-07-14 Cook Incorporated Method of improving the properties of a component of a medical device comprising a nickel-titanium-chromium alloy
WO2012008579A1 (en) 2010-07-15 2012-01-19 国立大学法人東北大学 Highly elastic stent and production method for highly elastic stent
US9480550B2 (en) 2010-07-15 2016-11-01 Clino Ltd. Highly elastic stent and production method for highly elastic stent
EP3300764A1 (en) 2016-09-30 2018-04-04 FMD Co., Ltd. Medical guide wire
WO2024179296A1 (en) * 2023-02-28 2024-09-06 香港科技大学 Nickel-titanium alloy, and preparation method therefor and use thereof

Also Published As

Publication number Publication date
JP3547366B2 (en) 2004-07-28

Similar Documents

Publication Publication Date Title
US6508803B1 (en) Niti-type medical guide wire and method of producing the same
US6352515B1 (en) NiTi alloyed guidewires
US5341818A (en) Guidewire with superelastic distal portion
US6379369B1 (en) Intracorporeal device with NiTi tubular member
US6042553A (en) Linear elastic member
US5411476A (en) Superelastic guiding member
US7258753B2 (en) Superelastic guiding member
JPH0683726B2 (en) Guide wire for catheter
EP3052177B1 (en) Guide wire core with improved torsional ductility
JP3547366B2 (en) Method for producing wide strain range high elasticity Ni-Ti alloy wire used for medical guidewire
JP3337989B2 (en) Medical guidewire using high strain Ni-Ti alloy wire with wide strain range
JP3560907B2 (en) NiTi-based alloy wire, method for producing the same, and guide wire for catheter using the NiTi-based alloy wire
JP3725900B2 (en) Guide wire with superelastic distal portion
US9889278B2 (en) Methods for manufacturing a guide wire utilizing a cold worked nickel-titanium-niobium ternary alloy
WO2013084599A1 (en) Medical guide wire
JPS6184361A (en) Manufacture of pseudoelastic spring
JP2002058748A (en) Guide wire for catheter and production method thereof
JP2003049249A (en) Material for guide wire and production method therefor
EP1426071A2 (en) Guidewire with superelastic distal portion
JP3595095B2 (en) Antenna material and manufacturing method
JPH0460675B2 (en)
JP2005131358A (en) Ti-ni based super-elasticity alloy wire
WO1995019800A2 (en) Guidewire with superelastic distal portion
JP3141328B2 (en) Manufacturing method of super elastic spring alloy
JP2013240562A (en) Medical guide wire

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040413

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3547366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees