WO2022249665A1 - Aluminum alloy, aluminum alloy wire, and method for manufacturing aluminum alloy wire - Google Patents

Aluminum alloy, aluminum alloy wire, and method for manufacturing aluminum alloy wire Download PDF

Info

Publication number
WO2022249665A1
WO2022249665A1 PCT/JP2022/011699 JP2022011699W WO2022249665A1 WO 2022249665 A1 WO2022249665 A1 WO 2022249665A1 JP 2022011699 W JP2022011699 W JP 2022011699W WO 2022249665 A1 WO2022249665 A1 WO 2022249665A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
aluminum alloy
wire
content
Prior art date
Application number
PCT/JP2022/011699
Other languages
French (fr)
Japanese (ja)
Inventor
亮太 松儀
司 松尾
博昭 高井
Original Assignee
住友電気工業株式会社
富山住友電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 富山住友電工株式会社 filed Critical 住友電気工業株式会社
Priority to JP2022543189A priority Critical patent/JPWO2022249665A1/ja
Publication of WO2022249665A1 publication Critical patent/WO2022249665A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent

Definitions

  • the present disclosure relates to aluminum alloys, aluminum alloy wires, and methods of manufacturing aluminum alloy wires.
  • This application claims priority based on Japanese Patent Application No. 2021-089505 filed in Japan on May 27, 2021, and incorporates all the content described in the Japanese application.
  • Patent Document 1 discloses an aluminum alloy wire made of an aluminum alloy containing silicon and magnesium and having high tensile strength after solution treatment and aging treatment.
  • the above aluminum alloy wire can be used as a raw material for aluminum alloy members.
  • the aluminum alloy member is manufactured by subjecting the aluminum alloy wire to predetermined plastic working, followed by solution treatment and aging treatment.
  • the aluminum alloy of the present disclosure contains 0.6% to 1.5% by mass of silicon, 0.5% to 1.3% by mass of magnesium, and more than 0.3% by mass to 1.2% by mass of copper.
  • the composition includes 0.2% by mass or more and 1.15% by mass or less of manganese, and the balance is aluminum and unavoidable impurities.
  • the existence ratio of subgrain boundaries obtained by crystallographic analysis of a cross section by the SEM-EBSD method in the state of being subjected to solution treatment and aging treatment is 15% or more.
  • the SEM-EBSD method is a crystal orientation analysis method using a scanning electron microscope (SEM) and an electron back scattering diffraction pattern (EBSD pattern).
  • the aluminum alloy wire of the present disclosure is made of the aluminum alloy of the present disclosure.
  • the method for producing an aluminum alloy wire of the present disclosure contains silicon in an amount of 0.6% by mass or more and 1.5% by mass or less, magnesium in an amount of 0.5% by mass or more and 1.3% by mass or less, and copper in an amount of more than 0.3% by mass1. .2% by mass or less, containing 0.2% by mass or more and 1.15% by mass or less of manganese, and the balance being aluminum and unavoidable impurities.
  • the heating temperature of the first softening treatment and the second softening treatment is 300°C or higher and lower than 500°C.
  • the working ratio of the first wire drawing is 30% or more.
  • the working ratio of the second wire drawing is 20% or more.
  • FIG. 1 is a perspective view showing an example of an aluminum alloy wire of an embodiment.
  • FIG. 2 is a schematic diagram illustrating the process of forming a structure containing subgrain boundaries in an aluminum alloy.
  • FIG. 3 is a schematic diagram illustrating the process of forming a structure containing subgrain boundaries in an aluminum alloy.
  • the aluminum alloy wire described in Patent Document 1 has a high tensile strength after a heat resistance test in a state of solution treatment and aging treatment. If such an aluminum alloy wire is used as a raw material for an aluminum alloy member, an aluminum alloy member having high tensile strength even when used at high temperatures can be obtained. However, conventionally, no mention has been made of an aluminum alloy wire from which an aluminum alloy member having excellent creep properties can be obtained.
  • the aluminum alloy of the present disclosure and the aluminum alloy wire of the present disclosure have excellent creep properties in the state of solution heat treatment and aging treatment.
  • the aluminum alloy wire manufacturing method of the present disclosure can manufacture the aluminum alloy wire of the present disclosure.
  • the aluminum alloy according to one aspect of the present disclosure contains 0.6% by mass or more and 1.5% by mass or less of silicon, 0.5% by mass or more and 1.3% by mass or less of magnesium, and 0.3% by mass of copper. % and 1.2% by mass or less, 0.2% by mass or more and 1.15% by mass or less of manganese, and the balance being aluminum and unavoidable impurities.
  • the existence ratio of subgrain boundaries obtained by crystallographic analysis of the cross section by the SEM-EBSD method in the state of being subjected to solution treatment and aging treatment is 15% or more.
  • a subgrain boundary in the present disclosure means a grain boundary existing between adjacent crystal grains having a crystal orientation difference of 2° or more and 15° or less.
  • a grain boundary existing between adjacent crystal grains having a crystal orientation difference of more than 15° and less than or equal to 180° is called a large-angle boundary.
  • the existence ratio of subgrain boundaries in the present disclosure is the ratio of the length of subgrain boundaries to the total length of the length of subgrain boundaries and the length of large-angle boundaries in a cross section of an aluminum alloy. A method for measuring the length of the subgrain boundary and the length of the large angle boundary will be described later.
  • the cross section of the aluminum alloy is, for example, the following cross sections.
  • the heating temperature is a temperature selected from the range of 530°C or higher and 580°C or lower.
  • the heating time is selected from the range of 15 minutes or more and 120 minutes or less.
  • the heating temperature is a temperature selected from the range of 150°C or higher and 180°C or lower.
  • the heating time is selected from the range of 4 hours or more and 100 hours or less.
  • the aluminum alloy of the present disclosure has the above-described specific composition, so that its strength is increased by precipitation hardening in the state of being subjected to solution treatment and aging treatment. From this point, the aluminum alloy of the present disclosure is less prone to creep deformation in the state of being subjected to solution treatment and aging treatment.
  • the aluminum alloy of the present disclosure has a specific structure including subgrain boundaries in the above range in cross section. Subgrain boundaries are thought to provide resistance to dislocation motion in aluminum alloys. Creep deformation caused by diffusion of atoms and movement of dislocations is suppressed in aluminum alloys as the proportion of subgrain boundaries increases. From this point, the aluminum alloy of the present disclosure is less prone to creep deformation in the state of being subjected to solution treatment and aging treatment. As described above, the aluminum alloy of the present disclosure has excellent creep properties in the state of solution heat treatment and aging treatment.
  • the aluminum alloy of the present disclosure has well-balanced heat resistance, corrosion resistance, and strength in the state of solution heat treatment and aging treatment, similar to alloys called 6000 series alloys in the international alloy symbol.
  • Such an aluminum alloy of the present disclosure can be suitably used as an aluminum alloy member that is required to have excellent creep properties in addition to heat resistance, corrosion resistance, and strength, and as a raw material for this aluminum alloy member.
  • Examples of aluminum alloy members include automobile parts and various structural members. Automobile parts and various structural members can take the form of wires, bars, pipes, and the like. The raw material is, for example, an aluminum alloy wire, an aluminum alloy plate, or the like.
  • the aluminum alloy of the present disclosure may further contain one or more elements selected from the group consisting of iron, chromium, zinc, titanium, and zirconium.
  • the iron content is more than 0% by mass and 0.8% by mass or less.
  • the content of chromium is more than 0% by mass and 0.35% by mass or less.
  • the zinc content is more than 0% by mass and 0.5% by mass or less.
  • the content of titanium is more than 0% by mass and 0.2% by mass or less.
  • the content of zirconium is more than 0% by mass and 0.2% by mass or less.
  • the aluminum alloy of (2) above contains 0.9 mass % or more and 1.3 mass % or less of silicon, 0.8 mass % or more and 1.2 mass % or less of magnesium, and more than 0 mass % of iron. 4% by mass or less, 0.65% by mass or more and 1.1% by mass or less of copper, 0.55% by mass or more and 1.15% by mass or less of manganese, more than 0% by mass of chromium and 0.35% by mass or less, zinc 0.12% by mass or more and 0.25% by mass or less, more than 0% by mass and 0.075% by mass or less of titanium, 0.05% by mass or more and 0.17% by mass or less of zirconium, and the balance being aluminum and inevitable impurities composition.
  • the aluminum alloy of (2) above contains 0.6% by mass or more and 1.5% by mass or less of silicon, 0.7% by mass or more and 1.3% by mass or less of magnesium, and 0.02% by mass or more of iron. 0.4% by mass or less, 0.5% by mass or more and 1.2% by mass or less of copper, 0.5% by mass or more and 1.1% by mass or less of manganese, 0% by mass or more and 0.3% by mass or less of chromium, 0.005 mass% or more and 0.5 mass% or less of zinc, 0.01 mass% or more and 0.2 mass% or less of titanium, 0.05 mass% or more and 0.2 mass% or less of zirconium, and the balance being aluminum and It may have a composition consisting of unavoidable impurities.
  • the product of the average value of the steady creep rate and the cube of the average grain size of the cross section in the state of solution treatment and aging treatment is 80 ⁇ m 3 / h or less.
  • the value obtained by multiplying the average value of the steady creep rate by the cube of the average grain size of the cross section is sometimes referred to as the creep evaluation value. The method for measuring the average value of the steady creep rate and the average grain size will be described later.
  • the above aluminum alloys are superior in creep properties.
  • the aluminum alloy of the present disclosure may have an average crystal grain size of 10 ⁇ m or more and 200 ⁇ m or less in the cross section after solution treatment and aging treatment.
  • the above aluminum alloy has excellent creep properties and strength.
  • An aluminum alloy wire according to an aspect of the present disclosure is made of the aluminum alloy according to any one of (1) to (6) above.
  • the aluminum alloy wire of the present disclosure is made of the aluminum alloy of the present disclosure, it has excellent creep properties in a state in which solution treatment and aging treatment have been performed.
  • Such an aluminum alloy wire of the present disclosure can be used as a raw material for aluminum alloy members.
  • the aluminum alloy wire of the present disclosure is excellent in manufacturability because it can be mass-produced by using, for example, the method for producing an aluminum alloy wire described later.
  • a method for manufacturing an aluminum alloy wire according to one aspect of the present disclosure includes silicon of 0.6% by mass or more and 1.5% by mass or less, magnesium of 0.5% by mass or more and 1.3% by mass or less, and copper.
  • Hot plastic working of an aluminum alloy cast material having a composition of more than 0.3% by mass and 1.2% by mass or less, containing 0.2% by mass or more and 1.15% by mass or less of manganese, and the balance being aluminum and inevitable impurities a step of producing a hot-worked material by applying a first softening treatment to the hot-worked material to produce a first softened material; and a first cold stretching of the first softened material.
  • a step of producing a first drawn wire material by wire working a step of producing a second softened material by subjecting the first drawn wire material to a second softening treatment; and a step of manufacturing a second drawn wire material by performing a second wire drawing process.
  • the heating temperature of the first softening treatment and the second softening treatment is 300°C or higher and lower than 500°C.
  • the working ratio of the first wire drawing is 30% or more.
  • the working ratio of the second wire drawing is 20% or more.
  • the method for producing an aluminum alloy wire of the present disclosure can produce an aluminum alloy wire that has excellent creep properties in a state in which solution treatment and aging treatment have been performed. The reason for this will be described later.
  • the aluminum alloy may further contain one or more elements selected from the group consisting of iron, chromium, zinc, titanium, and zirconium.
  • the iron content is more than 0% by mass and 0.8% by mass or less.
  • the content of chromium is more than 0% by mass and 0.35% by mass or less.
  • the zinc content is more than 0% by mass and 0.5% by mass or less.
  • the content of titanium is more than 0% by mass and 0.2% by mass or less.
  • the content of zirconium is more than 0% by mass and 0.2% by mass or less.
  • the above method for producing an aluminum alloy wire can produce an aluminum alloy wire with better creep properties.
  • the aluminum alloy of the embodiment has the following composition and cross-sectional structure.
  • the composition of the aluminum alloy of the embodiment contains silicon, magnesium, copper, and manganese within the ranges described later, with the balance being aluminum and unavoidable impurities.
  • the aluminum alloy of the embodiment may further contain one or more elements selected from the group consisting of iron, chromium, zinc, titanium, and zirconium within the range described below.
  • the cross-sectional structure of the aluminum alloy of the embodiment includes subgrain boundaries 61 to some extent in the state where the solution treatment and aging treatment are performed as shown in the upper diagram of FIG. 3 . The composition and structure will be described in order below.
  • Silicon, magnesium, copper, and manganese are collectively referred to as primary elements. Iron, chromium, zinc, titanium, and zirconium are collectively referred to as secondary elements. Each element is indicated by an element symbol.
  • Si means silicon.
  • Mg means magnesium.
  • Cu means copper.
  • Mn means manganese.
  • Al means aluminum.
  • Fe means iron.
  • Cr means chromium.
  • Zn means zinc.
  • Ti means titanium.
  • Zr means zirconium.
  • a state in which the aluminum alloy is subjected to solution treatment and aging treatment is referred to as a state after heat treatment.
  • the first element is an essential element and the second element is an optional element.
  • the aluminum alloy of the embodiment contains 0.6% by mass or more and 1.5% by mass or less of silicon, 0.5% by mass or more and 1.3% by mass or less of magnesium, and more than 0.3% by mass of copper.
  • the content of iron in the aluminum alloy of the embodiment containing one or more secondary elements is more than 0% by mass and 0.8% by mass or less.
  • the content of chromium is more than 0% by mass and 0.35% by mass or less.
  • the zinc content is more than 0% by mass and 0.5% by mass or less.
  • the content of titanium is more than 0% by mass and 0.2% by mass or less.
  • the content of zirconium is more than 0% by mass and 0.2% by mass or less.
  • the content of the first element is equal to or higher than the above-mentioned lower limit, compounds containing the first element are precipitated in the state after heat treatment. Since precipitates such as the above compounds are present in a dispersed state, an effect of improving strength by precipitation hardening can be obtained. When part of the first element is dissolved in aluminum, which is the main constituent of the matrix phase, the effect of improving strength by solid solution strengthening is also obtained.
  • the content of the first element is equal to or less than the above-described upper limit, grain boundary embrittlement due to segregation of the first element is suppressed, and compounds containing the first element are less likely to coarsen. Particles such as coarse compounds can be starting points of cracks.
  • the aluminum alloy of the embodiment is excellent in strength after heat treatment. The excellent strength makes it difficult for the aluminum alloy of the embodiment to undergo creep deformation. In the manufacturing process, cracks due to the coarse particles are less likely to occur, so cold plastic working such as cold wire drawing can be performed satisfactorily. From this point, the aluminum alloy of the embodiment is also excellent in manufacturability.
  • the aluminum alloy of the embodiment containing the second element in addition to the first element is less prone to creep deformation after heat treatment.
  • the content ratio of the second element satisfies the upper limit range described above, the compound or the like containing the second element is less likely to become coarse.
  • the cast material can have a fine structure. From these points, the aluminum alloy of the embodiment containing the second element in addition to the first element is excellent in workability when plastic working is included in the manufacturing process. The casting temperature can be lowered depending on the type of the second element. From these points, the aluminum alloy of the embodiment containing the second element in addition to the first element is superior in manufacturability.
  • composition containing the second element in addition to the first element include the following composition ⁇ and composition ⁇ .
  • ⁇ Composition ⁇ > The composition ⁇ is 0.9% by mass to 1.3% by mass of silicon, 0.8% by mass to 1.2% by mass of magnesium, more than 0% by mass and 0.4% by mass or less of iron, and 0% by mass of copper. 0.65 mass % or more and 1.1 mass % or less, manganese of 0.55 mass % or more and 1.15 mass % or less, chromium of 0 mass % or more and 0.35 mass % or less, zinc of 0.12 mass % or more and 0.12 mass % or less.
  • composition ⁇ roughly corresponds to the composition of the alloy indicated by the international alloy symbol A6056.
  • Composition ⁇ contains 0.6% by mass to 1.5% by mass of silicon, 0.7% by mass to 1.3% by mass of magnesium, 0.02% by mass to 0.4% by mass of iron, and copper 0.5% by mass to 1.2% by mass, manganese 0.5% by mass to 1.1% by mass, chromium more than 0% by mass and 0.3% by mass or less, zinc 0.005% by mass or more It contains 0.5 mass % or less, 0.01 mass % or more and 0.2 mass % or less of titanium, 0.05 mass % or more and 0.2 mass % or less of zirconium, and the balance consists of aluminum and unavoidable impurities. Composition ⁇ may further contain 0.005 mass % or more and 0.05 mass % or less of strontium.
  • the content range of the first element and the content range of the second element are exemplified below in the composition ⁇ and the composition ⁇ .
  • ⁇ Composition ⁇ > The silicon content may be 0.9% by mass or more and 1.2% by mass or less.
  • the content of magnesium may be 0.8% by mass or more and 1.0% by mass or less.
  • the content of iron may be 0.10% by mass or more and 0.25% by mass or less.
  • the content of copper may be 0.65% by mass or more and 0.85% by mass or less.
  • the content of manganese may be 0.55% by mass or more and 0.80% by mass or less, or 0.55% by mass or more and 0.65% by mass or less.
  • the content of chromium may be 0.01% by mass or more and 0.10% by mass or less, or 0.02% by mass or more and 0.05% by mass or less.
  • the content of zinc may be 0.13% by mass or more and 0.25% by mass or less.
  • the content of titanium may be 0.001% by mass or more and 0.075% by mass or less, or 0.01% by mass or more and 0.075% by mass or less.
  • the content of zirconium may be 0.10% by mass or more and 0.17% by mass or less.
  • the total content of titanium and zirconium may be 0.11% by mass or more and 0.20% by mass or less.
  • the content of silicon may be 0.8% by mass or more and 1.4% by mass or less, or 1.1% by mass or more and 1.3% by mass or less.
  • the content of magnesium may be 0.8% by mass or more and 1.3% by mass or less, or 0.8% by mass or more and 1.0% by mass or less.
  • the iron content may be 0.05% by mass or more and 0.40% by mass or less.
  • the content of copper may be 0.8% by mass or more and 1.2% by mass or less.
  • the manganese content may be 0.7% by mass or more and 1.1% by mass or less.
  • the content of chromium may be 0.01% by mass or more and 0.30% by mass or less, or 0.05% by mass or more and 0.30% by mass or less.
  • the content of zinc may be 0.05% by mass or more and 0.25% by mass or less.
  • the content of titanium may be 0.01% by mass or more and 0.15% by mass or less.
  • the content of zirconium may be 0.08% by mass or more and 0.2% by mass or less.
  • the total content of titanium and zirconium may be 0.10% by mass or more and 0.20% by mass or less.
  • strontium When strontium is included, the content of strontium may be 0.005% by mass or more and 0.04% by mass or less.
  • the aluminum alloy of the embodiment may further include boron in the range of 50 ppm by mass or less.
  • an aluminum alloy having excellent creep properties after heat treatment preferably has a structure containing subgrain boundaries to some extent.
  • the existence ratio of subgrain boundaries obtained by crystallographic analysis of the cross section by the SEM-EBSD method in the state after heat treatment is 15% or more.
  • a known device and known image analysis software can be used for crystal analysis by the SEM-EBSD method.
  • the aluminum alloy of the embodiment contains grain boundaries that act as resistance to dislocation movement to some extent.
  • Subgrain boundaries suppress creep deformation caused by atomic diffusion and dislocation movement in aluminum alloys in the post-heat treatment state.
  • the aluminum alloy of such an embodiment is less prone to creep deformation in the state after heat treatment. Creep deformation is suppressed as the existence ratio of subgrain boundaries increases. That is, creep characteristics are improved.
  • the proportion of subgrain boundaries may be 17% or more, 20% or more, or even 30% or more.
  • the upper limit of the existence ratio of subgrain boundaries is 99%. That is, the existence ratio of subgrain boundaries is 15% or more and 99% or less. Considering manufacturability, the existence ratio of subgrain boundaries may be 90% or less, or 80% or less.
  • the cross section for evaluating the existence ratio of subgrain boundaries is not the cross section cut along the plane perpendicular to the longitudinal direction of the wire, but the plane along the longitudinal direction. Use the cut cross section.
  • a cross section cut along a plane along the longitudinal direction of the wire made of the aluminum alloy of the embodiment, that is, the aluminum alloy wire 1 of the embodiment may be referred to as a longitudinal section.
  • the existence ratio of subgrain boundaries is evaluated. If the aluminum alloy wire 1 of such an embodiment has a length equal to or greater than the following predetermined length, the subgrain boundaries surely exist.
  • the predetermined length is the length of the observation field of view of the longitudinal section used for evaluating the existence ratio of the subgrain boundaries.
  • the predetermined length is, for example, 2 mm or more.
  • the length of the observation field is the length along the longitudinal direction of the aluminum alloy wire 1 . If the aluminum alloy wire 1 having a length equal to or longer than the predetermined length is used as a raw material for an aluminum alloy member, an aluminum alloy member having excellent creep properties can be obtained.
  • the existence ratio of the subgrain boundaries is 15% or more even in a state in which the aging treatment is not performed. That is, it is considered that the existence ratio of subgrain boundaries does not substantially change before and after the aging treatment.
  • the product of the average steady creep rate and the cube of the average grain size of the cross section is 80 ⁇ m 3 /h or less.
  • the present inventors adopted the steady creep rate of grain boundary diffusion creep as an index for evaluating the creep properties of aluminum alloys. In grain boundary diffusion creep, grain deformation occurs due to the diffusion of atoms along grain boundaries.
  • the steady creep rate (%/h) in the grain boundary diffusion creep is obtained by the constitutive equation shown below (Equation 1).
  • dot ⁇ is the steady creep rate.
  • A is a material constant.
  • D is the diffusion coefficient.
  • G is the stiffness modulus.
  • b is the magnitude of the Burgers vector.
  • k is the Boltzmann constant.
  • T is temperature.
  • d is the grain size.
  • is the applied stress.
  • the larger the grain size d the smaller the steady creep rate.
  • the creep evaluation value obtained by the product of the steady creep rate (%/h) and the cube of the grain size d reflects the effect of the grain size d described above. It is considered that such a creep evaluation value can appropriately evaluate factors other than grain size d, such as atomic diffusion and dislocation movement, as factors of creep deformation.
  • the aluminum alloy of the embodiment having a creep evaluation value of 80 ⁇ m 3 /h or less is less prone to creep deformation after heat treatment.
  • the creep evaluation value may be 70 ⁇ m 3 /h or less, 60 ⁇ m 3 /h or less, or even 50 ⁇ m 3 /h or less.
  • the creep evaluation value is, for example, 0.1 ⁇ m 3 /h or more.
  • An aluminum alloy having a creep evaluation value of 0.1 ⁇ m 3 /h or more and 80 ⁇ m 3 /h or less does not require excessive plastic working in the manufacturing process and is easy to manufacture.
  • the aluminum alloy of the embodiment has an average grain size of 10 ⁇ m or more and 200 ⁇ m or less in a cross section after heat treatment. If the average crystal grain size is 10 ⁇ m or more, the steady creep rate represented by the above-mentioned (Equation 1) tends to become small. If the average crystal grain size is 200 ⁇ m or less, the crystal grains are small to some extent, and the strength tends to be high. Therefore, the aluminum alloy of the embodiment in which the average crystal grain size is within the above range has excellent creep properties and excellent strength. From the viewpoint of providing good creep property and high strength in a well-balanced manner, the average crystal grain size may be 15 ⁇ m or more and 190 ⁇ m or less, or 20 ⁇ m or more and 180 ⁇ m or less.
  • the above average grain size is a value obtained by averaging the grain size of each grain obtained by crystallographic analysis of the cross section of the aluminum alloy of the embodiment by the SEM-EBSD method.
  • the grain size of each grain is the diameter of a circle having an area equal to the cross-sectional area of each grain in the cross section.
  • the aluminum alloys of embodiments can have various shapes.
  • the aluminum alloys of the embodiments have somewhat long shapes.
  • the aluminum alloy of such an embodiment has an end surface which is a plane perpendicular to its longitudinal direction and an extension extending in the longitudinal direction.
  • the length of the extension along the longitudinal direction is greater than the diameter of a circle having an area equal to the area of the outer contour of the end face.
  • the cross section to be measured for the existence ratio of subgrain boundaries is obtained by cutting the stretched portion along the plane along the longitudinal direction.
  • the aluminum alloy of the embodiment having an extended portion is, for example, a wire rod, a pipe, a plate material, or the like. That is, the extending portion may be a solid body such as a wire rod or a plate material, or a hollow body such as a pipe.
  • An aluminum alloy wire 1 of the embodiment is made of the aluminum alloy of the embodiment.
  • the aluminum alloy wire 1 of the embodiment has an end surface 10 and an extension portion 11 as shown in FIG.
  • the end surface 10 here is a surface perpendicular to the longitudinal direction of the aluminum alloy wire 1 .
  • the extending portion 11 extends in the longitudinal direction.
  • the aluminum alloy wire 1 of the embodiment typically has the same outer contour and the same wire diameter over the entire length of the extended portion 11 as shown in FIG.
  • the wire diameter here is the diameter of a circle having the same area as the area of the end face 10 or the area of a cross section cut along a plane perpendicular to the longitudinal direction.
  • the wire diameter of the aluminum alloy wire 1 of the embodiment is not particularly limited.
  • the wire diameter is, for example, about 3 mm or more and 15 mm or less.
  • the cross section to be measured for the existence ratio of subgrain boundaries is the vertical cross section.
  • the proportion of existence of subgrain boundaries in the longitudinal section is 15% or more.
  • the creep evaluation value obtained by multiplying the average value of the steady creep rate by the cube of the average grain size of the longitudinal section is, for example, 80 ⁇ m 3 /h or less.
  • the average grain size of the longitudinal section is, for example, 10 ⁇ m or more and 200 ⁇ m or less.
  • the aluminum alloy of the embodiment can constitute an aluminum alloy member.
  • the aluminum alloy member is made of the aluminum alloy of the embodiment and subjected to solution treatment and aging treatment.
  • a specific example is an aluminum alloy member obtained by subjecting the aluminum alloy wire 1 of the embodiment to plastic working, followed by solution treatment and aging treatment.
  • Another example is an aluminum alloy member obtained by subjecting a plate material made of the aluminum alloy of the embodiment to plastic working, followed by solution treatment and aging treatment.
  • Plastic processing here includes, for example, extrusion processing, forging processing, wire drawing processing, and the like.
  • Still another example is an aluminum alloy member obtained by subjecting the aluminum alloy wire 1 of the embodiment to solution treatment and aging treatment. That is, the aluminum alloy member may be linear or bar-shaped. Alternatively, the aluminum alloy member may be tubular.
  • the aluminum alloy wire 1 of the embodiment can thus be used as a raw material for aluminum alloy members.
  • the aluminum alloy member described above is excellent in creep properties because it is made of an aluminum alloy having the above-described specific composition and the above-described specific structure. Moreover, this aluminum alloy member is lighter than a metal member made of an iron-based alloy such as steel. Such aluminum alloy members can be used in applications where light weight and excellent creep properties are desired, such as automobile parts and various structural members.
  • the present inventors have investigated a method for producing an aluminum alloy having the specific composition described above and exhibiting excellent creep properties in the state of solution heat treatment and aging treatment. As a result, the inventors have found that it is preferable to satisfy the following conditions. Based on this finding, the method of manufacturing the aluminum alloy of the embodiment includes, for example, the following first step, second step, third step, fourth step, and fifth step. ⁇ conditions> Cold plastic working. The material to be subjected to this plastic working is subjected to a softening treatment, and the softening treatment is also performed during the plastic working. These softening treatments are performed at relatively low temperatures. The plastic working before and after the softening treatment is performed with a large degree of working.
  • the first step is a step of producing a hot-worked material by subjecting a cast material of an aluminum alloy containing the above-mentioned first element within the above-described range and the balance being aluminum and unavoidable impurities to hot plastic working.
  • the aluminum alloy forming the cast material may further contain the second element within the range described above.
  • the second step is a step of producing a first softened material by subjecting the hot-worked material to a first softening treatment.
  • the third step is a step of producing a first plastically worked material by subjecting the first softened material to cold first plastic working.
  • the fourth step is a step of manufacturing a second softened material by subjecting the first plastically worked material to a second softening treatment.
  • the fifth step is a step of producing a second plastically worked material by subjecting the second softened material to cold second plastic working.
  • the heating temperature of the first softening treatment and the second softening treatment is 300°C or higher and lower than 500°C.
  • the workability of the first plastic working is 30% or more.
  • the workability of the second plastic working is 20% or more.
  • the aluminum alloy produced by the above-described production method has a structure that includes subgrain boundaries to some extent in the state of being subjected to solution treatment and aging treatment.
  • the reason why such an organization is provided is considered as follows.
  • FIGS. 2 and 3 show the progress of recrystallization from the top of FIG. 2 to the bottom of FIG.
  • Dashed lines and thick solid lines in FIGS. 2 and 3 indicate large-angle boundaries 51 and 52 .
  • a thin solid line indicates a subgrain boundary 61 .
  • dislocation cells are rearranged by performing solution treatment after the second plastic working.
  • a dislocation cell becomes a subgrain
  • a subgrain boundary 61 is formed if the orientation difference between adjacent cells is small.
  • large-angle boundaries 51 are formed in some subgrains.
  • Large-angle boundaries 51 mainly move in the subsequent growth of subgrains.
  • Subgrains can grow due to the movement of the large-angle boundary 51 .
  • a subgrain boundary 61 is formed between the two subgrains. As a result, the movement of subgrains stops.
  • the large-angle boundary 52 moves in the state where the large-angle boundary 52 is formed between the recovery tissues. Movement of the large-angle boundary 52 causes some restorative tissue to erode other restorative tissue as shown in the upper diagram of FIG. As a result, the subgrains 60 grow while being held inside the structure surrounded by the large-angle boundaries 52 . That is, a structure containing many subgrains 60 and subgrain boundaries 61 is formed.
  • softening treatment releases at least part of the strain, ie, dislocations introduced into the aluminum alloy by plastic working before softening treatment.
  • the heating temperature is relatively low as described above. Therefore, it is considered that the solid solution of the element having a smaller diffusion coefficient than that of Al is maintained even when the softening treatment is performed. As a result, it is considered that the recovery of dislocations is hindered during the solution treatment, that is, the recovery phenomenon hardly progresses.
  • the plastic workability of the softened material is enhanced by performing the first softening treatment and the second softening treatment. Therefore, the working ratio of the first plastic working and the working ratio of the second plastic working can be increased. Dislocations can be accumulated in the aluminum alloy by the plastic working because the working degree of the plastic working is large. In particular, cold plastic working tends to accumulate dislocations in an aluminum alloy as compared with warm working or hot working. That is, in the above-described manufacturing method, an aluminum alloy in which dislocations are accumulated after the second plastic working is obtained. Dislocations are released more easily in hot working and warm working than in cold working.
  • the cast material is manufactured using, for example, a die casting method, a continuous casting method, or the like.
  • the hot plastic working is, for example, hot rolling
  • the hot worked material is, for example, continuously cast and rolled material. If the hot-worked material is a continuously cast and rolled material, for example, a continuous long aluminum alloy wire can be produced.
  • the aluminum alloy wire 1 of the embodiment can be mass-produced in a form in which the hot-worked material is a continuously cast and rolled material.
  • the conditions for the first softening treatment in the second step and the conditions for the second softening treatment in the fourth step, which will be described later, are as follows.
  • the heating temperature is a temperature selected from the range of 300°C or higher and lower than 500°C.
  • the retention time is a time selected from the range of 1 hour or more and 100 hours or less.
  • the softening atmosphere is, for example, an air atmosphere or a non-oxidizing atmosphere.
  • the non-oxidizing atmosphere is, for example, a reduced pressure atmosphere, an inert gas atmosphere, a reducing gas atmosphere, or the like.
  • the heating temperature of the softening treatment By setting the heating temperature of the softening treatment to 300°C or higher, the degree of processing of the first plastic working and the degree of working of the second plastic working can be increased.
  • the heating temperature of the softening treatment is less than 500° C., the recovery phenomenon hardly progresses during the solution treatment as described above.
  • the heating temperature may be 350° C. or higher and 480° C. or lower, further 350° C. or higher and 460° C. or lower, from the viewpoint of increasing the workability and suppressing the progress of the recovery phenomenon.
  • the first plastic working is, for example, wire drawing, rolling, or forging.
  • the degree of working of the first plastic working in the third step is 30% or more, even if some of the dislocations introduced by the first plastic working are released by the second softening treatment, the dislocations tend to remain to some extent. .
  • the workability of the first plastic working may be 35% or more and 40% or more.
  • the working ratio of the first plastic working depends on the final size such as the final wire diameter, but is selected from a range of, for example, 30% or more and 80% or less.
  • the working degree of the first plastic working is a ratio obtained by dividing the difference between the cross-sectional area before the first plastic working and the cross-sectional area after the first plastic working by the cross-sectional area before the first plastic working.
  • the working degree of the first plastic working in the third step is larger than the working degree of the second plastic working in the fifth step described later, for example.
  • the second plastic working is, for example, wire drawing, rolling, or forging.
  • the kind of the second plastic working may be the same as or different from the kind of the first plastic working in the third step. If the workability of the second plastic working in the fifth step is 20% or more, it is easy to finally obtain an aluminum alloy in which many dislocations are accumulated.
  • the working ratio of the second plastic working may be 23% or more, and may be 25% or more.
  • the working ratio of the second plastic working is selected from a range of, for example, 20% or more and less than 80% so that a second plastic working material having a predetermined final size such as a final wire diameter can be obtained.
  • the working degree of the second plastic working is a ratio obtained by dividing the difference between the cross-sectional area before the second plastic working and the cross-sectional area after the second plastic working by the cross-sectional area before the second plastic working.
  • the method of manufacturing the aluminum alloy wire of the embodiment can be used.
  • the following replacements are made in the method for manufacturing an aluminum alloy described above.
  • the first plastic working is read as the first wire drawing.
  • the first plastically worked material is read as the first drawn wire material.
  • the second plastic working is read as the second wire drawing.
  • the second plastically worked material is read as the second drawn wire material.
  • a material made of an aluminum alloy having a specific composition is excellent in cold wire drawability.
  • the aluminum alloy wire manufacturing method of the embodiment using such a material can mass-produce the aluminum alloy wire 1 of the embodiment.
  • a method for manufacturing the aluminum alloy member described above includes, for example, the following processing steps and heat treatment steps.
  • the working step is a step of manufacturing a third worked material by applying a third plastic working to the second plastic worked material subjected to the second plastic working or the second drawn wire material to which the second wire drawing has been performed.
  • the heat treatment step is a step of sequentially subjecting the third processed material to solution treatment and aging treatment to produce an aged material.
  • the third plastic processing includes, for example, extrusion processing, forging processing, wire drawing processing, and the like. The conditions for solution treatment and aging treatment are as described above.
  • the aluminum alloy according to the embodiment and the aluminum alloy wire 1 according to the embodiment are excellent in creep properties in a state of being subjected to solution treatment and aging treatment.
  • Test Example 1 the above effect will be specifically described by taking the aluminum alloy wire 1 of the embodiment as an example.
  • the method for manufacturing an aluminum alloy wire according to the embodiment can manufacture the aluminum alloy wire 1 according to the embodiment which has excellent creep properties in a state in which solution treatment and aging treatment have been performed.
  • Test Example 1 Microstructural observation and creep properties were investigated in the state where the aluminum alloy wires having the compositions shown in Table 1 were subjected to solution treatment and aging treatment. Tables 2 and 3 show the conditions for manufacturing the aluminum alloy wires and the results of the investigation.
  • the aluminum alloy wire of each sample is manufactured by subjecting a continuously cast and rolled material to the first softening treatment and then to cold drawing.
  • a continuously cast rolled material can be produced by, for example, a known Propertit type continuous casting and rolling mill.
  • a second softening treatment is performed during the wire drawing process.
  • the wire drawing process before the second softening treatment is called the first wire drawing process.
  • the wire drawing after the second softening treatment is called second wire drawing.
  • the aluminum alloy wire of each sample is manufactured by subjecting a continuously cast rolled material to first softening treatment, first wire drawing, second softening treatment and second wire drawing in this order.
  • composition ⁇ and composition ⁇ in the item of composition correspond to composition ⁇ and composition ⁇ shown in Table 1, respectively.
  • the item of softening treatment indicates heating temperature (° C.) and holding time (hour). For example, "380° C. ⁇ 10 h" means that the heating temperature is 380° C. and the holding time is 10 hours.
  • the first wire drawing and the second wire drawing are performed at the degree of working (%) shown in Tables 2 and 3, respectively.
  • the wire diameter of the continuously cast rolled material is selected from the range of 5 mm or more and 30 mm or less.
  • the wire diameter of the second drawn wire manufactured after the second wire drawing is a value selected from the range of approximately 1.0 mm or more and 21 mm or less depending on the degree of working.
  • the obtained aluminum alloy wire of each sample is subjected to solution treatment and aging treatment under the conditions described above to produce a heat treated wire.
  • the obtained heat-treated wire is cut along a plane along the longitudinal direction of the heat-treated wire to obtain a longitudinal section. This longitudinal section is smoothed by mechanical polishing. Crystallographic analysis of the polished longitudinal section is performed by the SEM-EBSD method.
  • the observation field of view has a size of 1 mm along the radial direction of the heat-treated wire and a size of 2.5 mm along the longitudinal direction of the heat-treated wire.
  • An EBSD pattern is obtained by irradiating an electron beam at a pitch of 1.0 ⁇ m to the rectangular observation field.
  • Image analysis of the EBSD pattern provides crystal orientation data. Based on the crystal orientation data, the crystal grains are identified and the misorientation of the crystal grain boundary is analyzed. Acquisition of crystal orientation data and image analysis can be automatically performed using a known device. Here, OIM6.2.0 by TSL Solutions Co., Ltd. is used as image analysis software. In addition, image analysis is performed using data points having a confidence value coefficient CI value of 0.1 or more in this image analysis software.
  • ⁇ Average grain size The grain size of each crystal grain is determined using the result of the image analysis described above. Here, the grain sizes of all crystal grains included in one observation field are obtained.
  • the average crystal grain size ( ⁇ m) shown in Tables 2 and 3 is a value obtained by averaging the grain sizes of all the above crystal grains.
  • ⁇ Average steady-state creep rate> the steady creep rate is determined every 5 hours over the holding time range of 35 hours to 135 hours. In other words, a total of 21 steady creep rates are obtained. Steady creep rate is determined according to JIS Z 2271:2010.
  • the average value (%/h) of the steady creep rate shown in Tables 2 and 3 is the average value of the total 21 steady creep rates described above. Tables 2 and 3 index the average steady creep rate. For example, "1.09E-04" means “1.09 ⁇ 10 -4 ".
  • composition of the aluminum alloy wire of each sample obtained is the same as the composition in Table 1. That is, the aluminum alloy constituting the aluminum alloy wire of each sample contains the elements shown in Table 1 within the range shown in Table 1, and the balance is Al and unavoidable impurities.
  • a known method can be used to analyze the composition of the aluminum alloy wire. For example, an energy dispersive X-ray spectrometer or the like can be used to analyze the composition.
  • sample No. 1 to No. 4, No. 11 to No. 14 may be collectively referred to as the first sample group.
  • Sample no. 101 to No. 104 may be collectively referred to as a second sample group.
  • the aluminum alloy wires of the first sample group have smaller creep evaluation values than the aluminum alloy wires of the second sample group.
  • the creep evaluation value of the aluminum alloy wire of the first sample group is 80 ⁇ m 3 /h or less, and further 50 ⁇ m 3 /h or less. Some samples have a creep evaluation value of 20 ⁇ m 3 /h or less. A small creep evaluation value indicates that the aluminum alloy wire of the first sample group is less prone to creep deformation than the aluminum alloy wire of the second sample group.
  • the aluminum alloy wire of the first sample group which has a small creep evaluation value, has a larger proportion of subgrain boundaries than the aluminum alloy wire of the second sample group.
  • the existence ratio of subgrain boundaries in the aluminum alloy wire of the first sample group is 15% or more, and further 17% or more.
  • Many samples have a subgrain boundary existence ratio of 20% or more. It is believed that the presence of a large subgrain boundary suppresses the creep deformation caused by the diffusion of atoms and movement of dislocations in the aluminum alloy.
  • the average crystal grain size of the aluminum alloy wire of the first sample group is smaller than the average crystal grain size of the aluminum alloy wire of the second sample group.
  • the average steady creep rate of the aluminum alloy wires of the first sample group tends to be higher than the average steady creep rate of the aluminum alloy wires of the second sample group.
  • the creep property is evaluated by the creep evaluation value that reflects the influence of the grain size, the aluminum alloy wire of the first sample group is superior in creep property to the aluminum alloy wire of the second sample group. shown.
  • this test shows the following.
  • An aluminum alloy wire having a composition ⁇ tends to have a larger proportion of subgrain boundaries than an aluminum alloy wire having a composition ⁇ . From this point of view, the aluminum alloy wire having the composition ⁇ is superior in creep properties.
  • the average grain size of the aluminum alloy wire of the first sample group is 10 ⁇ m or more and 200 ⁇ m or less. From this point of view, the aluminum alloy wires of the first sample group are excellent in creep property and also in strength.
  • An aluminum alloy wire having a large proportion of subgrain boundaries in the state of being subjected to solution treatment and aging treatment can be produced by a production method that satisfies the above ⁇ conditions>.
  • the temperature of the first softening treatment is higher than that of the aluminum alloy wires of the first sample group. Therefore, it is considered that the existence ratio of the subgrain boundaries decreased in the aluminum alloy wires of the second sample group.
  • Test Example 1 it is possible to change the composition of the aluminum alloy, or to change the manufacturing conditions such as the workability of wire drawing and the conditions of softening treatment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

This aluminum alloy has a composition containing 0.6-1.5 mass% of silicon, 0.5-1.3 mass% of magnesium, 0.3-1.2 (exclusive of 0.3) mass% of copper, and 0.2-1.15 mass% of manganese, with the remainder consisting of aluminum and inevitable impurities, wherein the abundance ratio of subgrain boundaries, as determined through crystal analysis of the cross section of the aluminum alloy, which has been subjected to a solution heat treatment and an aging treatment, by means of the SEM-EBSD method, is at least 15%.

Description

アルミニウム合金、アルミニウム合金線、及びアルミニウム合金線の製造方法Aluminum alloy, aluminum alloy wire, and method for producing aluminum alloy wire
 本開示は、アルミニウム合金、アルミニウム合金線、及びアルミニウム合金線の製造方法に関する。
 本出願は、2021年5月27日付の日本国出願の特願2021-089505に基づく優先権を主張し、前記日本国出願に記載された全ての記載内容を援用するものである。
The present disclosure relates to aluminum alloys, aluminum alloy wires, and methods of manufacturing aluminum alloy wires.
This application claims priority based on Japanese Patent Application No. 2021-089505 filed in Japan on May 27, 2021, and incorporates all the content described in the Japanese application.
 特許文献1は、シリコンとマグネシウムとを含むアルミニウム合金からなる線材であって溶体化処理及び時効処理が施された後に高い引張強さを有するアルミニウム合金線を開示する。上記アルミニウム合金線はアルミニウム合金部材の原料に利用できる。上記アルミニウム合金部材は上記アルミニウム合金線に所定の塑性加工が施された後に溶体化処理及び時効処理が施されることで製造される。 Patent Document 1 discloses an aluminum alloy wire made of an aluminum alloy containing silicon and magnesium and having high tensile strength after solution treatment and aging treatment. The above aluminum alloy wire can be used as a raw material for aluminum alloy members. The aluminum alloy member is manufactured by subjecting the aluminum alloy wire to predetermined plastic working, followed by solution treatment and aging treatment.
特開2015-124409号公報JP 2015-124409 A
 本開示のアルミニウム合金は、シリコンを0.6質量%以上1.5質量%以下、マグネシウムを0.5質量%以上1.3質量%以下、銅を0.3質量%超1.2質量%以下、マンガンを0.2質量%以上1.15質量%以下含み、残部がアルミニウム及び不可避不純物からなる組成を備える。溶体化処理及び時効処理が施された状態において断面をSEM-EBSD法によって結晶解析して求められた亜結晶粒界の存在割合が15%以上である。
 SEM-EBSD法は走査電子顕微鏡(Scanning Electron Microscope、SEM)に後方散乱電子回折パターン(Electron Back Scattering Diffraction Pattern、EBSDパターン)を利用した結晶方位解析法である。
The aluminum alloy of the present disclosure contains 0.6% to 1.5% by mass of silicon, 0.5% to 1.3% by mass of magnesium, and more than 0.3% by mass to 1.2% by mass of copper. Hereinafter, the composition includes 0.2% by mass or more and 1.15% by mass or less of manganese, and the balance is aluminum and unavoidable impurities. The existence ratio of subgrain boundaries obtained by crystallographic analysis of a cross section by the SEM-EBSD method in the state of being subjected to solution treatment and aging treatment is 15% or more.
The SEM-EBSD method is a crystal orientation analysis method using a scanning electron microscope (SEM) and an electron back scattering diffraction pattern (EBSD pattern).
 本開示のアルミニウム合金線は、本開示のアルミニウム合金からなる。 The aluminum alloy wire of the present disclosure is made of the aluminum alloy of the present disclosure.
 本開示のアルミニウム合金線の製造方法は、シリコンを0.6質量%以上1.5質量%以下、マグネシウムを0.5質量%以上1.3質量%以下、銅を0.3質量%超1.2質量%以下、マンガンを0.2質量%以上1.15質量%以下含み、残部がアルミニウム及び不可避不純物からなる組成を有するアルミニウム合金の鋳造材に熱間塑性加工を施すことで熱間加工材を製造する工程と、前記熱間加工材に第一軟化処理を施すことで第一軟化材を製造する工程と、前記第一軟化材に冷間で第一伸線加工を施すことで第一伸線材を製造する工程と、前記第一伸線材に第二軟化処理を施すことで第二軟化材を製造する工程と、前記第二軟化材に冷間で第二伸線加工を施すことで第二伸線材を製造する工程とを備える。前記第一軟化処理及び前記第二軟化処理の加熱温度は300℃以上500℃未満である。前記第一伸線加工の加工度は30%以上である。前記第二伸線加工の加工度は20%以上である。 The method for producing an aluminum alloy wire of the present disclosure contains silicon in an amount of 0.6% by mass or more and 1.5% by mass or less, magnesium in an amount of 0.5% by mass or more and 1.3% by mass or less, and copper in an amount of more than 0.3% by mass1. .2% by mass or less, containing 0.2% by mass or more and 1.15% by mass or less of manganese, and the balance being aluminum and unavoidable impurities. a step of producing a first softened material by subjecting the hot-worked material to a first softening treatment; and a process of subjecting the first softened material to a first cold drawing process to obtain a first a step of manufacturing a first drawn wire material; a step of subjecting the first drawn wire material to a second softening treatment to manufacture a second softened material; and a second cold drawing process performed on the second softened material. and a step of manufacturing a second wire drawn material. The heating temperature of the first softening treatment and the second softening treatment is 300°C or higher and lower than 500°C. The working ratio of the first wire drawing is 30% or more. The working ratio of the second wire drawing is 20% or more.
図1は、実施形態のアルミニウム合金線の一例を示す斜視図である。FIG. 1 is a perspective view showing an example of an aluminum alloy wire of an embodiment. 図2は、アルミニウム合金において亜結晶粒界を含む組織が形成される過程を説明する模式図である。FIG. 2 is a schematic diagram illustrating the process of forming a structure containing subgrain boundaries in an aluminum alloy. 図3は、アルミニウム合金において亜結晶粒界を含む組織が形成される過程を説明する模式図である。FIG. 3 is a schematic diagram illustrating the process of forming a structure containing subgrain boundaries in an aluminum alloy.
[本開示が解決しようとする課題]
 上述のように溶体化処理及び時効処理が施された状態で使用されるアルミニウム合金部材にはクリープ特性に優れることが望まれている。また、クリープ特性に優れるアルミニウム合金部材を構成することができるアルミニウム合金が望まれている。
[Problems to be Solved by the Present Disclosure]
As described above, it is desired that aluminum alloy members used after solution treatment and aging treatment have excellent creep properties. Further, an aluminum alloy is desired that can constitute an aluminum alloy member having excellent creep properties.
 特許文献1に記載されるアルミニウム合金線は溶体化処理及び時効処理が施された状態において耐熱試験後に高い引張強さを有する。このようなアルミニウム合金線をアルミニウム合金部材の原料に用いれば、高温下で使用された場合でも高い引張強さを有するアルミニウム合金部材が得られる。しかし、従来、クリープ特性に優れるアルミニウム合金部材が得られるアルミニウム合金線について言及されていない。 The aluminum alloy wire described in Patent Document 1 has a high tensile strength after a heat resistance test in a state of solution treatment and aging treatment. If such an aluminum alloy wire is used as a raw material for an aluminum alloy member, an aluminum alloy member having high tensile strength even when used at high temperatures can be obtained. However, conventionally, no mention has been made of an aluminum alloy wire from which an aluminum alloy member having excellent creep properties can be obtained.
 そこで、本開示は溶体化処理及び時効処理が施された状態においてクリープ特性に優れるアルミニウム合金を提供することを目的の一つとする。本開示は上記のアルミニウム合金からなるアルミニウム合金線を提供することを別の目的の一つとする。本開示は上記のアルミニウム合金線を製造することができるアルミニウム合金線の製造方法を提供することを別の目的の一つとする。 Therefore, one of the objects of the present disclosure is to provide an aluminum alloy that has excellent creep properties in a state of being subjected to solution treatment and aging treatment. Another object of the present disclosure is to provide an aluminum alloy wire made of the above aluminum alloy. Another object of the present disclosure is to provide an aluminum alloy wire manufacturing method capable of manufacturing the aluminum alloy wire described above.
[本開示の効果]
 本開示のアルミニウム合金及び本開示のアルミニウム合金線は溶体化処理及び時効処理が施された状態においてクリープ特性に優れる。本開示のアルミニウム合金線の製造方法は、本開示のアルミニウム合金線を製造できる。
[Effect of the present disclosure]
The aluminum alloy of the present disclosure and the aluminum alloy wire of the present disclosure have excellent creep properties in the state of solution heat treatment and aging treatment. The aluminum alloy wire manufacturing method of the present disclosure can manufacture the aluminum alloy wire of the present disclosure.
[本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。
(1)本開示の一態様に係るアルミニウム合金は、シリコンを0.6質量%以上1.5質量%以下、マグネシウムを0.5質量%以上1.3質量%以下、銅を0.3質量%超1.2質量%以下、マンガンを0.2質量%以上1.15質量%以下含み、残部がアルミニウム及び不可避不純物からなる組成を備える。このアルミニウム合金では溶体化処理及び時効処理が施された状態において断面をSEM-EBSD法によって結晶解析して求められた亜結晶粒界の存在割合が15%以上である。
[Description of Embodiments of the Present Disclosure]
First, the embodiments of the present disclosure are listed and described.
(1) The aluminum alloy according to one aspect of the present disclosure contains 0.6% by mass or more and 1.5% by mass or less of silicon, 0.5% by mass or more and 1.3% by mass or less of magnesium, and 0.3% by mass of copper. % and 1.2% by mass or less, 0.2% by mass or more and 1.15% by mass or less of manganese, and the balance being aluminum and unavoidable impurities. In this aluminum alloy, the existence ratio of subgrain boundaries obtained by crystallographic analysis of the cross section by the SEM-EBSD method in the state of being subjected to solution treatment and aging treatment is 15% or more.
 本開示における亜結晶粒界は隣り合う結晶粒において結晶方位の差が2°以上15°以下である結晶粒の間に存在する粒界を意味する。本開示では隣り合う結晶粒において結晶方位の差が15°超180°以下である結晶粒の間に存在する粒界を大角境界と呼ぶ。本開示における亜結晶粒界の存在割合はアルミニウム合金の断面において亜結晶粒界の長さと大角境界の長さとの合計長さに対する亜結晶粒界の長さの割合である。亜結晶粒界の長さ及び大角境界の長さの測定方法は後述する。
 本開示においてアルミニウム合金の断面は例えば以下の断面である。アルミニウム合金が線、パイプ、板等のようにある程度長い形状を有する場合、上記断面はアルミニウム合金の長手方向に沿った平面で切断した断面である。
 本開示において溶体化処理の条件及び時効処理の条件は以下の通りである。
(溶体化処理の条件)
 加熱温度は530℃以上580℃以下の範囲から選択される温度である。加熱時間は15分以上120分以下の範囲から選択される時間である。
(時効処理の条件)
 加熱温度は150℃以上180℃以下の範囲から選択される温度である。加熱時間は4時間以上100時間以下の範囲から選択される時間である。
A subgrain boundary in the present disclosure means a grain boundary existing between adjacent crystal grains having a crystal orientation difference of 2° or more and 15° or less. In the present disclosure, a grain boundary existing between adjacent crystal grains having a crystal orientation difference of more than 15° and less than or equal to 180° is called a large-angle boundary. The existence ratio of subgrain boundaries in the present disclosure is the ratio of the length of subgrain boundaries to the total length of the length of subgrain boundaries and the length of large-angle boundaries in a cross section of an aluminum alloy. A method for measuring the length of the subgrain boundary and the length of the large angle boundary will be described later.
In the present disclosure, the cross section of the aluminum alloy is, for example, the following cross sections. When the aluminum alloy has a somewhat long shape such as a wire, pipe, plate, etc., the cross section is taken along a plane along the longitudinal direction of the aluminum alloy.
In the present disclosure, the conditions for the solution treatment and the conditions for the aging treatment are as follows.
(Conditions for solution treatment)
The heating temperature is a temperature selected from the range of 530°C or higher and 580°C or lower. The heating time is selected from the range of 15 minutes or more and 120 minutes or less.
(Conditions for aging treatment)
The heating temperature is a temperature selected from the range of 150°C or higher and 180°C or lower. The heating time is selected from the range of 4 hours or more and 100 hours or less.
 本開示のアルミニウム合金は上述の特定の組成を備えることで溶体化処理及び時効処理が施された状態では析出硬化によって強度が高められる。この点から、本開示のアルミニウム合金は溶体化処理及び時効処理が施された状態においてクリープ変形し難い。また、本開示のアルミニウム合金は断面において亜結晶粒界を上記の範囲で含む特定の組織を有する。亜結晶粒界はアルミニウム合金において転位運動に対する抵抗になると考えられる。亜結晶粒界の存在割合が大きいほどアルミニウム合金において原子の拡散や転位の移動に起因するクリープ変形が抑制される。この点から、本開示のアルミニウム合金は溶体化処理及び時効処理が施された状態においてクリープ変形し難い。以上のことから本開示のアルミニウム合金は溶体化処理及び時効処理が施された状態においてクリープ特性に優れる。 The aluminum alloy of the present disclosure has the above-described specific composition, so that its strength is increased by precipitation hardening in the state of being subjected to solution treatment and aging treatment. From this point, the aluminum alloy of the present disclosure is less prone to creep deformation in the state of being subjected to solution treatment and aging treatment. In addition, the aluminum alloy of the present disclosure has a specific structure including subgrain boundaries in the above range in cross section. Subgrain boundaries are thought to provide resistance to dislocation motion in aluminum alloys. Creep deformation caused by diffusion of atoms and movement of dislocations is suppressed in aluminum alloys as the proportion of subgrain boundaries increases. From this point, the aluminum alloy of the present disclosure is less prone to creep deformation in the state of being subjected to solution treatment and aging treatment. As described above, the aluminum alloy of the present disclosure has excellent creep properties in the state of solution heat treatment and aging treatment.
 また、本開示のアルミニウム合金は溶体化処理及び時効処理が施された状態では国際合金記号で6000系合金と呼ばれる合金と同様に耐熱性、耐食性、強度をバランスよく備える。このような本開示のアルミニウム合金は耐熱性、耐食性、強度に加えてクリープ特性に優れることが求められるアルミニウム合金部材やこのアルミニウム合金部材の原料に好適に利用できる。アルミニウム合金部材は例えば自動車部品や各種の構造部材等である。自動車部品や各種の構造部材は線材、棒材、パイプ等の形態をとり得る。上記原料は例えばアルミニウム合金線、アルミニウム合金板等である。 In addition, the aluminum alloy of the present disclosure has well-balanced heat resistance, corrosion resistance, and strength in the state of solution heat treatment and aging treatment, similar to alloys called 6000 series alloys in the international alloy symbol. Such an aluminum alloy of the present disclosure can be suitably used as an aluminum alloy member that is required to have excellent creep properties in addition to heat resistance, corrosion resistance, and strength, and as a raw material for this aluminum alloy member. Examples of aluminum alloy members include automobile parts and various structural members. Automobile parts and various structural members can take the form of wires, bars, pipes, and the like. The raw material is, for example, an aluminum alloy wire, an aluminum alloy plate, or the like.
(2)本開示のアルミニウム合金は、更に、鉄、クロム、亜鉛、チタン、及びジルコニウムからなる群より選択される1種以上の元素を含んでもよい。鉄の含有割合は0質量%超0.8質量%以下である。クロムの含有割合は0質量%超0.35質量%以下である。亜鉛の含有割合は0質量%超0.5質量%以下である。チタンの含有割合は0質量%超0.2質量%以下である。ジルコニウムの含有割合は0質量%超0.2質量%以下である。 (2) The aluminum alloy of the present disclosure may further contain one or more elements selected from the group consisting of iron, chromium, zinc, titanium, and zirconium. The iron content is more than 0% by mass and 0.8% by mass or less. The content of chromium is more than 0% by mass and 0.35% by mass or less. The zinc content is more than 0% by mass and 0.5% by mass or less. The content of titanium is more than 0% by mass and 0.2% by mass or less. The content of zirconium is more than 0% by mass and 0.2% by mass or less.
 上記のアルミニウム合金では亜結晶粒界の存在割合がより大きくなり易い。 In the above aluminum alloy, the existence ratio of subgrain boundaries tends to increase.
(3)上記(2)のアルミニウム合金は、シリコンを0.9質量%以上1.3質量%以下、マグネシウムを0.8質量%以上1.2質量%以下、鉄を0質量%超0.4質量%以下、銅を0.65質量%以上1.1質量%以下、マンガンを0.55質量%以上1.15質量%以下、クロムを0質量%超0.35質量%以下、亜鉛を0.12質量%以上0.25質量%以下、チタンを0質量%超0.075質量%以下、ジルコニウムを0.05質量%以上0.17質量%以下含み、残部がアルミニウム及び不可避不純物からなる組成を備えてもよい。 (3) The aluminum alloy of (2) above contains 0.9 mass % or more and 1.3 mass % or less of silicon, 0.8 mass % or more and 1.2 mass % or less of magnesium, and more than 0 mass % of iron. 4% by mass or less, 0.65% by mass or more and 1.1% by mass or less of copper, 0.55% by mass or more and 1.15% by mass or less of manganese, more than 0% by mass of chromium and 0.35% by mass or less, zinc 0.12% by mass or more and 0.25% by mass or less, more than 0% by mass and 0.075% by mass or less of titanium, 0.05% by mass or more and 0.17% by mass or less of zirconium, and the balance being aluminum and inevitable impurities composition.
 上記のアルミニウム合金では亜結晶粒界の存在割合がより大きくなり易い。 In the above aluminum alloy, the existence ratio of subgrain boundaries tends to increase.
(4)上記(2)のアルミニウム合金は、シリコンを0.6質量%以上1.5質量%以下、マグネシウムを0.7質量%以上1.3質量%以下、鉄を0.02質量%以上0.4質量%以下、銅を0.5質量%以上1.2質量%以下、マンガンを0.5質量%以上1.1質量%以下、クロムを0質量%超0.3質量%以下、亜鉛を0.005質量%以上0.5質量%以下、チタンを0.01質量%以上0.2質量%以下、ジルコニウムを0.05質量%以上0.2質量%以下含み、残部がアルミニウム及び不可避不純物からなる組成を備えてもよい。 (4) The aluminum alloy of (2) above contains 0.6% by mass or more and 1.5% by mass or less of silicon, 0.7% by mass or more and 1.3% by mass or less of magnesium, and 0.02% by mass or more of iron. 0.4% by mass or less, 0.5% by mass or more and 1.2% by mass or less of copper, 0.5% by mass or more and 1.1% by mass or less of manganese, 0% by mass or more and 0.3% by mass or less of chromium, 0.005 mass% or more and 0.5 mass% or less of zinc, 0.01 mass% or more and 0.2 mass% or less of titanium, 0.05 mass% or more and 0.2 mass% or less of zirconium, and the balance being aluminum and It may have a composition consisting of unavoidable impurities.
 上記のアルミニウム合金では亜結晶粒界の存在割合がより大きくなり易い。 In the above aluminum alloy, the existence ratio of subgrain boundaries tends to increase.
(5)本開示のアルミニウム合金は、溶体化処理及び時効処理が施された状態において定常クリープ速度の平均値と前記断面の平均結晶粒径の3乗との積で求められる値が80μm/h以下でもよい。以下、上記の定常クリープ速度の平均値と上記断面の平均結晶粒径の3乗との積で求められる値をクリープ評価値と呼ぶことがある。定常クリープ速度の平均値及び平均結晶粒径の測定方法は後述する。 (5) In the aluminum alloy of the present disclosure, the product of the average value of the steady creep rate and the cube of the average grain size of the cross section in the state of solution treatment and aging treatment is 80 μm 3 / h or less. Hereinafter, the value obtained by multiplying the average value of the steady creep rate by the cube of the average grain size of the cross section is sometimes referred to as the creep evaluation value. The method for measuring the average value of the steady creep rate and the average grain size will be described later.
 上記のアルミニウム合金はクリープ特性により優れる。 The above aluminum alloys are superior in creep properties.
(6)本開示のアルミニウム合金は、溶体化処理及び時効処理が施された状態において前記断面の平均結晶粒径が10μm以上200μm以下でもよい。 (6) The aluminum alloy of the present disclosure may have an average crystal grain size of 10 μm or more and 200 μm or less in the cross section after solution treatment and aging treatment.
 上記のアルミニウム合金はクリープ特性に優れると共に強度にも優れる。 The above aluminum alloy has excellent creep properties and strength.
(7)本開示の一態様に係るアルミニウム合金線は、上記(1)から(6)のいずれか1つに記載のアルミニウム合金からなる。 (7) An aluminum alloy wire according to an aspect of the present disclosure is made of the aluminum alloy according to any one of (1) to (6) above.
 本開示のアルミニウム合金線は本開示のアルミニウム合金からなることで溶体化処理及び時効処理が施された状態ではクリープ特性に優れる。このような本開示のアルミニウム合金線はアルミニウム合金部材の原料に利用できる。本開示のアルミニウム合金線は例えば後述するアルミニウム合金線の製造方法を利用すれば量産可能であることから製造性にも優れる。 Since the aluminum alloy wire of the present disclosure is made of the aluminum alloy of the present disclosure, it has excellent creep properties in a state in which solution treatment and aging treatment have been performed. Such an aluminum alloy wire of the present disclosure can be used as a raw material for aluminum alloy members. The aluminum alloy wire of the present disclosure is excellent in manufacturability because it can be mass-produced by using, for example, the method for producing an aluminum alloy wire described later.
(8)本開示の一態様に係るアルミニウム合金線の製造方法は、シリコンを0.6質量%以上1.5質量%以下、マグネシウムを0.5質量%以上1.3質量%以下、銅を0.3質量%超1.2質量%以下、マンガンを0.2質量%以上1.15質量%以下含み、残部がアルミニウム及び不可避不純物からなる組成を有するアルミニウム合金の鋳造材に熱間塑性加工を施すことで熱間加工材を製造する工程と、前記熱間加工材に第一軟化処理を施すことで第一軟化材を製造する工程と、前記第一軟化材に冷間で第一伸線加工を施すことで第一伸線材を製造する工程と、前記第一伸線材に第二軟化処理を施すことで第二軟化材を製造する工程と、前記第二軟化材に冷間で第二伸線加工を施すことで第二伸線材を製造する工程とを備える。前記第一軟化処理及び前記第二軟化処理の加熱温度は300℃以上500℃未満である。前記第一伸線加工の加工度は30%以上である。前記第二伸線加工の加工度は20%以上である。 (8) A method for manufacturing an aluminum alloy wire according to one aspect of the present disclosure includes silicon of 0.6% by mass or more and 1.5% by mass or less, magnesium of 0.5% by mass or more and 1.3% by mass or less, and copper. Hot plastic working of an aluminum alloy cast material having a composition of more than 0.3% by mass and 1.2% by mass or less, containing 0.2% by mass or more and 1.15% by mass or less of manganese, and the balance being aluminum and inevitable impurities a step of producing a hot-worked material by applying a first softening treatment to the hot-worked material to produce a first softened material; and a first cold stretching of the first softened material. a step of producing a first drawn wire material by wire working; a step of producing a second softened material by subjecting the first drawn wire material to a second softening treatment; and a step of manufacturing a second drawn wire material by performing a second wire drawing process. The heating temperature of the first softening treatment and the second softening treatment is 300°C or higher and lower than 500°C. The working ratio of the first wire drawing is 30% or more. The working ratio of the second wire drawing is 20% or more.
 本開示のアルミニウム合金線の製造方法は、溶体化処理及び時効処理が施された状態においてクリープ特性に優れるアルミニウム合金線を製造できる。この理由は後述する。 The method for producing an aluminum alloy wire of the present disclosure can produce an aluminum alloy wire that has excellent creep properties in a state in which solution treatment and aging treatment have been performed. The reason for this will be described later.
(9)本開示のアルミニウム合金線の製造方法では、前記アルミニウム合金は、更に、鉄、クロム、亜鉛、チタン、及びジルコニウムからなる群より選択される1種以上の元素を含んでもよい。鉄の含有割合は0質量%超0.8質量%以下である。クロムの含有割合は0質量%超0.35質量%以下である。亜鉛の含有割合は0質量%超0.5質量%以下である。チタンの含有割合は0質量%超0.2質量%以下である。ジルコニウムの含有割合は0質量%超0.2質量%以下である。 (9) In the aluminum alloy wire manufacturing method of the present disclosure, the aluminum alloy may further contain one or more elements selected from the group consisting of iron, chromium, zinc, titanium, and zirconium. The iron content is more than 0% by mass and 0.8% by mass or less. The content of chromium is more than 0% by mass and 0.35% by mass or less. The zinc content is more than 0% by mass and 0.5% by mass or less. The content of titanium is more than 0% by mass and 0.2% by mass or less. The content of zirconium is more than 0% by mass and 0.2% by mass or less.
 上記のアルミニウム合金線の製造方法は、クリープ特性により優れるアルミニウム合金線を製造できる。 The above method for producing an aluminum alloy wire can produce an aluminum alloy wire with better creep properties.
 [本開示の実施形態の詳細]
 以下、図面を適宜参照して、本開示の実施形態を具体的に説明する。
[Details of the embodiment of the present disclosure]
Hereinafter, embodiments of the present disclosure will be specifically described with reference to the drawings as appropriate.
[アルミニウム合金]
(概要)
 実施形態のアルミニウム合金は以下の組成と以下の断面組織とを備える。実施形態のアルミニウム合金の組成は、シリコンとマグネシウムと銅とマンガンとをそれぞれ後述する範囲で含み、残部がアルミニウム及び不可避不純物からなる。実施形態のアルミニウム合金は更に鉄、クロム、亜鉛、チタン、及びジルコニウムからなる群より選択される1種以上の元素を後述する範囲で含んでもよい。実施形態のアルミニウム合金の断面組織は、図3の上段の図に示すように溶体化処理及び時効処理が施された状態において亜結晶粒界61をある程度含む。以下、組成、組織を順に説明する。
[Aluminum alloy]
(Overview)
The aluminum alloy of the embodiment has the following composition and cross-sectional structure. The composition of the aluminum alloy of the embodiment contains silicon, magnesium, copper, and manganese within the ranges described later, with the balance being aluminum and unavoidable impurities. The aluminum alloy of the embodiment may further contain one or more elements selected from the group consisting of iron, chromium, zinc, titanium, and zirconium within the range described below. The cross-sectional structure of the aluminum alloy of the embodiment includes subgrain boundaries 61 to some extent in the state where the solution treatment and aging treatment are performed as shown in the upper diagram of FIG. 3 . The composition and structure will be described in order below.
 以下の説明では、以下のように表記することがある。
 シリコン、マグネシウム、銅、及びマンガンをまとめて第一元素と示す。鉄、クロム、亜鉛、チタン、及びジルコニウムをまとめて第二元素と示す。
 各元素を元素記号によって示す。Siはシリコンを意味する。Mgはマグネシウムを意味する。Cuは銅を意味する。Mnはマンガンを意味する。Alはアルミニウムを意味する。Feは鉄を意味する。Crはクロムを意味する。Znは亜鉛を意味する。Tiはチタンを意味する。Zrはジルコニウムを意味する。
 アルミニウム合金に溶体化処理及び時効処理が施された状態を熱処理後の状態と示す。
In the following description, the following notation may be used.
Silicon, magnesium, copper, and manganese are collectively referred to as primary elements. Iron, chromium, zinc, titanium, and zirconium are collectively referred to as secondary elements.
Each element is indicated by an element symbol. Si means silicon. Mg means magnesium. Cu means copper. Mn means manganese. Al means aluminum. Fe means iron. Cr means chromium. Zn means zinc. Ti means titanium. Zr means zirconium.
A state in which the aluminum alloy is subjected to solution treatment and aging treatment is referred to as a state after heat treatment.
(組成)
 実施形態のアルミニウム合金では第一元素は必須元素であり、第二元素は任意元素である。定量的には実施形態のアルミニウム合金はシリコンを0.6質量%以上1.5質量%以下、マグネシウムを0.5質量%以上1.3質量%以下、銅を0.3質量%超1.2質量%以下、マンガンを0.2質量%以上1.15質量%以下、鉄を0質量%以上0.8質量%以下、クロムを0質量%以上0.35質量%以下、亜鉛を0質量%以上0.5質量%以下、チタンを0質量%以上0.2質量%以下、ジルコニウムを0質量%以上0.2質量%以下含み、残部がアルミニウム及び不可避不純物からなる組成を備える。1種以上の第二元素を含む実施形態のアルミニウム合金において鉄の含有割合は0質量%超0.8質量%以下である。クロムの含有割合は0質量%超0.35質量%以下である。亜鉛の含有割合は0質量%超0.5質量%以下である。チタンの含有割合は0質量%超0.2質量%以下である。ジルコニウムの含有割合は0質量%超0.2質量%以下である。
(composition)
In the aluminum alloy of the embodiment, the first element is an essential element and the second element is an optional element. Quantitatively, the aluminum alloy of the embodiment contains 0.6% by mass or more and 1.5% by mass or less of silicon, 0.5% by mass or more and 1.3% by mass or less of magnesium, and more than 0.3% by mass of copper. 2% by mass or less, 0.2% to 1.15% by mass of manganese, 0% to 0.8% by mass of iron, 0% to 0.35% by mass of chromium, 0% by mass of zinc % or more and 0.5 mass % or less, 0 mass % or more and 0.2 mass % or less of titanium, 0 mass % or more and 0.2 mass % or less of zirconium, and the balance being aluminum and unavoidable impurities. The content of iron in the aluminum alloy of the embodiment containing one or more secondary elements is more than 0% by mass and 0.8% by mass or less. The content of chromium is more than 0% by mass and 0.35% by mass or less. The zinc content is more than 0% by mass and 0.5% by mass or less. The content of titanium is more than 0% by mass and 0.2% by mass or less. The content of zirconium is more than 0% by mass and 0.2% by mass or less.
 第一元素の含有割合が上述の下限値以上であることで、熱処理後の状態では第一元素を含む化合物等が析出されている。上記化合物等の析出物が分散して存在していることで析出硬化による強度向上効果が得られる。第一元素の一部が母相の主体であるアルミニウムに固溶している場合には固溶強化による強度向上効果も得られる。第一元素の含有割合が上述の上限値以下であることで、第一元素の偏析による粒界脆化が抑制されたり、第一元素を含む化合物等が粗大になり難かったりする。粗大な化合物等の粒子は割れの起点になり得る。上記の粗大な粒子が少なければ上記粗大な粒子に起因する割れが生じ難い。これらの点から、実施形態のアルミニウム合金は熱処理後の状態では強度に優れる。強度に優れることで実施形態のアルミニウム合金はクリープ変形し難い。製造過程では上記粗大な粒子に起因する割れが生じ難いことで冷間伸線加工等の冷間での塑性加工が良好に行える。この点から、実施形態のアルミニウム合金は製造性にも優れる。 Because the content of the first element is equal to or higher than the above-mentioned lower limit, compounds containing the first element are precipitated in the state after heat treatment. Since precipitates such as the above compounds are present in a dispersed state, an effect of improving strength by precipitation hardening can be obtained. When part of the first element is dissolved in aluminum, which is the main constituent of the matrix phase, the effect of improving strength by solid solution strengthening is also obtained. When the content of the first element is equal to or less than the above-described upper limit, grain boundary embrittlement due to segregation of the first element is suppressed, and compounds containing the first element are less likely to coarsen. Particles such as coarse compounds can be starting points of cracks. If the number of coarse particles is small, cracks due to the coarse particles are less likely to occur. From these points, the aluminum alloy of the embodiment is excellent in strength after heat treatment. The excellent strength makes it difficult for the aluminum alloy of the embodiment to undergo creep deformation. In the manufacturing process, cracks due to the coarse particles are less likely to occur, so cold plastic working such as cold wire drawing can be performed satisfactorily. From this point, the aluminum alloy of the embodiment is also excellent in manufacturability.
 第一元素に加えて第二元素を含む場合には、析出硬化、固溶強化、粒界脆化の抑制、及び結晶粒の粗大化の抑制からなる群より選択される一つ以上の効果が期待できる。このような効果によって第一元素に加えて第二元素を含む実施形態のアルミニウム合金は熱処理後の状態ではよりクリープ変形し難い。第二元素の含有割合が上述の上限範囲を満たすことで第二元素を含む化合物等が粗大になり難い。その他、第二元素の種類によっては鋳造材を微細な組織とすることができる。これらの点から、第一元素に加えて第二元素を含む実施形態のアルミニウム合金は製造過程に塑性加工を含む場合に加工性に優れる。第二元素の種類によっては鋳込み温度を低くすることができる。これらの点から、第一元素に加えて第二元素を含む実施形態のアルミニウム合金は製造性により優れる。 When the second element is contained in addition to the first element, one or more effects selected from the group consisting of precipitation hardening, solid solution strengthening, suppression of grain boundary embrittlement, and suppression of grain coarsening are exhibited. I can expect it. Due to such an effect, the aluminum alloy of the embodiment containing the second element in addition to the first element is less prone to creep deformation after heat treatment. When the content ratio of the second element satisfies the upper limit range described above, the compound or the like containing the second element is less likely to become coarse. In addition, depending on the type of the second element, the cast material can have a fine structure. From these points, the aluminum alloy of the embodiment containing the second element in addition to the first element is excellent in workability when plastic working is included in the manufacturing process. The casting temperature can be lowered depending on the type of the second element. From these points, the aluminum alloy of the embodiment containing the second element in addition to the first element is superior in manufacturability.
 第一元素に加えて第二元素を含む組成の具体例として、以下の組成α、組成βが挙げられる。
〈組成α〉
 組成αは、シリコンを0.9質量%以上1.3質量%以下、マグネシウムを0.8質量%以上1.2質量%以下、鉄を0質量%超0.4質量%以下、銅を0.65質量%以上1.1質量%以下、マンガンを0.55質量%以上1.15質量%以下、クロムを0質量%超0.35質量%以下、亜鉛を0.12質量%以上0.25質量%以下、チタンを0質量%超0.075質量%以下、ジルコニウムを0.05質量%以上0.17質量%以下含み、残部がアルミニウム及び不可避不純物からなる。組成αは国際合金記号A6056で示される合金の組成に概ね相当する。
Specific examples of the composition containing the second element in addition to the first element include the following composition α and composition β.
<Composition α>
The composition α is 0.9% by mass to 1.3% by mass of silicon, 0.8% by mass to 1.2% by mass of magnesium, more than 0% by mass and 0.4% by mass or less of iron, and 0% by mass of copper. 0.65 mass % or more and 1.1 mass % or less, manganese of 0.55 mass % or more and 1.15 mass % or less, chromium of 0 mass % or more and 0.35 mass % or less, zinc of 0.12 mass % or more and 0.12 mass % or less. It contains 25 mass % or less, more than 0 mass % and 0.075 mass % or less of titanium, 0.05 mass % or more and 0.17 mass % or less of zirconium, and the balance consists of aluminum and unavoidable impurities. The composition α roughly corresponds to the composition of the alloy indicated by the international alloy symbol A6056.
〈組成β〉
 組成βは、シリコンを0.6質量%以上1.5質量%以下、マグネシウムを0.7質量%以上1.3質量%以下、鉄を0.02質量%以上0.4質量%以下、銅を0.5質量%以上1.2質量%以下、マンガンを0.5質量%以上1.1質量%以下、クロムを0質量%超0.3質量%以下、亜鉛を0.005質量%以上0.5質量%以下、チタンを0.01質量%以上0.2質量%以下、ジルコニウムを0.05質量%以上0.2質量%以下含み、残部がアルミニウム及び不可避不純物からなる。組成βは更にストロンチウムを0.005質量%以上0.05質量%以下含んでもよい。
<Composition β>
Composition β contains 0.6% by mass to 1.5% by mass of silicon, 0.7% by mass to 1.3% by mass of magnesium, 0.02% by mass to 0.4% by mass of iron, and copper 0.5% by mass to 1.2% by mass, manganese 0.5% by mass to 1.1% by mass, chromium more than 0% by mass and 0.3% by mass or less, zinc 0.005% by mass or more It contains 0.5 mass % or less, 0.01 mass % or more and 0.2 mass % or less of titanium, 0.05 mass % or more and 0.2 mass % or less of zirconium, and the balance consists of aluminum and unavoidable impurities. Composition β may further contain 0.005 mass % or more and 0.05 mass % or less of strontium.
 以下、組成α、組成βにおいて第一元素の含有範囲と第二元素の含有範囲を例示する。
〈組成α〉
 シリコンの含有割合は0.9質量%以上1.2質量%以下でもよい。
 マグネシウムの含有割合は0.8質量%以上1.0質量%以下でもよい。
 鉄の含有割合は0.10質量%以上0.25質量%以下でもよい。
 銅の含有割合は0.65質量%以上0.85質量%以下でもよい。
 マンガンの含有割合は0.55質量%以上0.80質量%以下、0.55質量%以上0.65質量%以下でもよい。
 クロムの含有割合は0.01質量%以上0.10質量%以下、0.02質量%以上0.05質量%以下でもよい。
 亜鉛の含有割合は0.13質量%以上0.25質量%以下でもよい。
 チタンの含有割合は0.001質量%以上0.075質量%以下、0.01質量%以上0.075質量%以下でもよい。
 ジルコニウムの含有割合は0.10質量%以上0.17質量%以下でもよい。
 チタンとジルコニウムとの合計の含有割合は0.11質量%以上0.20質量%以下でもよい。
The content range of the first element and the content range of the second element are exemplified below in the composition α and the composition β.
<Composition α>
The silicon content may be 0.9% by mass or more and 1.2% by mass or less.
The content of magnesium may be 0.8% by mass or more and 1.0% by mass or less.
The content of iron may be 0.10% by mass or more and 0.25% by mass or less.
The content of copper may be 0.65% by mass or more and 0.85% by mass or less.
The content of manganese may be 0.55% by mass or more and 0.80% by mass or less, or 0.55% by mass or more and 0.65% by mass or less.
The content of chromium may be 0.01% by mass or more and 0.10% by mass or less, or 0.02% by mass or more and 0.05% by mass or less.
The content of zinc may be 0.13% by mass or more and 0.25% by mass or less.
The content of titanium may be 0.001% by mass or more and 0.075% by mass or less, or 0.01% by mass or more and 0.075% by mass or less.
The content of zirconium may be 0.10% by mass or more and 0.17% by mass or less.
The total content of titanium and zirconium may be 0.11% by mass or more and 0.20% by mass or less.
〈組成β〉
 シリコンの含有割合は0.8質量%以上1.4質量%以下、1.1質量%以上1.3質量%以下でもよい。
 マグネシウムの含有割合は0.8質量%以上1.3質量%以下、0.8質量%以上1.0質量%以下でもよい。
 鉄の含有割合は0.05質量%以上0.40質量%以下でもよい。
 銅の含有割合は0.8質量%以上1.2質量%以下でもよい。
 マンガンの含有割合は0.7質量%以上1.1質量%以下でもよい。
 クロムの含有割合は0.01質量%以上0.30質量%以下、0.05質量%以上0.30質量%以下でもよい。
 亜鉛の含有割合は0.05質量%以上0.25質量%以下でもよい。
 チタンの含有割合は0.01質量%以上0.15質量%以下でもよい。
 ジルコニウムの含有割合は0.08質量%以上0.2質量%以下でもよい。
 チタンとジルコニウムとの合計の含有割合は0.10質量%以上0.20質量%以下でもよい。
 ストロンチウムを含む場合にはストロンチウムの含有割合は0.005質量%以上0.04質量%以下でもよい。
<Composition β>
The content of silicon may be 0.8% by mass or more and 1.4% by mass or less, or 1.1% by mass or more and 1.3% by mass or less.
The content of magnesium may be 0.8% by mass or more and 1.3% by mass or less, or 0.8% by mass or more and 1.0% by mass or less.
The iron content may be 0.05% by mass or more and 0.40% by mass or less.
The content of copper may be 0.8% by mass or more and 1.2% by mass or less.
The manganese content may be 0.7% by mass or more and 1.1% by mass or less.
The content of chromium may be 0.01% by mass or more and 0.30% by mass or less, or 0.05% by mass or more and 0.30% by mass or less.
The content of zinc may be 0.05% by mass or more and 0.25% by mass or less.
The content of titanium may be 0.01% by mass or more and 0.15% by mass or less.
The content of zirconium may be 0.08% by mass or more and 0.2% by mass or less.
The total content of titanium and zirconium may be 0.10% by mass or more and 0.20% by mass or less.
When strontium is included, the content of strontium may be 0.005% by mass or more and 0.04% by mass or less.
〈その他の元素〉
 チタンを含む場合には実施形態のアルミニウム合金は更に硼素を50質量ppm以下の範囲で含んでもよい。
<Other elements>
When titanium is included, the aluminum alloy of the embodiment may further include boron in the range of 50 ppm by mass or less.
(組織)
 本発明者らは、熱処理後の状態においてクリープ特性に優れるアルミニウム合金は亜結晶粒界をある程度含んだ組織を有することが好ましいとの知見を得た。つまり実質的に再結晶粒から構成される組織ではなく、再結晶粒となっていない亜結晶粒をある程度含む組織が好ましい。定量的には実施形態のアルミニウム合金では、熱処理後の状態において断面をSEM-EBSD法によって結晶解析して求められた亜結晶粒界の存在割合が15%以上である。SEM-EBSD法による結晶解析には公知の装置及び公知の画像解析ソフトウエアを利用することができる。
(organization)
The present inventors have found that an aluminum alloy having excellent creep properties after heat treatment preferably has a structure containing subgrain boundaries to some extent. In other words, it is preferable not to have a structure substantially composed of recrystallized grains, but to have a structure containing a certain amount of subgrains that are not recrystallized grains. Quantitatively, in the aluminum alloy of the embodiment, the existence ratio of subgrain boundaries obtained by crystallographic analysis of the cross section by the SEM-EBSD method in the state after heat treatment is 15% or more. A known device and known image analysis software can be used for crystal analysis by the SEM-EBSD method.
 亜結晶粒界の存在割合が15%以上であれば、実施形態のアルミニウム合金は転位運動に対する抵抗になる結晶粒界をある程度含む。亜結晶粒界によって、熱処理後の状態ではアルミニウム合金における原子の拡散や転位の移動に起因するクリープ変形が抑制される。このような実施形態のアルミニウム合金は熱処理後の状態においてクリープ変形し難い。亜結晶粒界の存在割合が大きいほどクリープ変形が抑制される。即ちクリープ特性が向上される。クリープ特性の向上の観点から、亜結晶粒界の存在割合は17%以上、20%以上、更に30%以上でもよい。なお、亜結晶粒界の存在割合の上限は99%である。即ち亜結晶粒界の存在割合は15%以上99%以下である。製造性を考慮すると、亜結晶粒界の存在割合は90%以下、80%以下でもよい。 If the existence ratio of subgrain boundaries is 15% or more, the aluminum alloy of the embodiment contains grain boundaries that act as resistance to dislocation movement to some extent. Subgrain boundaries suppress creep deformation caused by atomic diffusion and dislocation movement in aluminum alloys in the post-heat treatment state. The aluminum alloy of such an embodiment is less prone to creep deformation in the state after heat treatment. Creep deformation is suppressed as the existence ratio of subgrain boundaries increases. That is, creep characteristics are improved. From the viewpoint of improving creep properties, the proportion of subgrain boundaries may be 17% or more, 20% or more, or even 30% or more. The upper limit of the existence ratio of subgrain boundaries is 99%. That is, the existence ratio of subgrain boundaries is 15% or more and 99% or less. Considering manufacturability, the existence ratio of subgrain boundaries may be 90% or less, or 80% or less.
 実施形態のアルミニウム合金が線材を構成する場合には亜結晶粒界の存在割合を評価する断面は、線材の長手方向に垂直な平面で切断した断面ではなく、上記長手方向に沿った平面で切断した断面を利用する。以下、実施形態のアルミニウム合金からなる線材、即ち実施形態のアルミニウム合金線1の長手方向に沿った平面で切断した断面を縦断面と示す場合がある。実施形態のアルミニウム合金線1は縦断面において亜結晶粒界の存在割合が評価されている。このような実施形態のアルミニウム合金線1は以下の所定の長さ以上の長さを有すれば亜結晶粒界が確実に存在する。上記所定の長さは亜結晶粒界の存在割合の評価に用いられる縦断面の観察視野の長さである。上記所定の長さは例えば2mm以上である。上記観察視野の長さはアルミニウム合金線1の長手方向に沿った長さである。上記所定の長さ以上の長さを有するアルミニウム合金線1をアルミニウム合金部材の原料に用いれば、クリープ特性に優れるアルミニウム合金部材が得られる。 When the aluminum alloy of the embodiment constitutes a wire, the cross section for evaluating the existence ratio of subgrain boundaries is not the cross section cut along the plane perpendicular to the longitudinal direction of the wire, but the plane along the longitudinal direction. Use the cut cross section. Hereinafter, a cross section cut along a plane along the longitudinal direction of the wire made of the aluminum alloy of the embodiment, that is, the aluminum alloy wire 1 of the embodiment may be referred to as a longitudinal section. In the longitudinal section of the aluminum alloy wire 1 of the embodiment, the existence ratio of subgrain boundaries is evaluated. If the aluminum alloy wire 1 of such an embodiment has a length equal to or greater than the following predetermined length, the subgrain boundaries surely exist. The predetermined length is the length of the observation field of view of the longitudinal section used for evaluating the existence ratio of the subgrain boundaries. The predetermined length is, for example, 2 mm or more. The length of the observation field is the length along the longitudinal direction of the aluminum alloy wire 1 . If the aluminum alloy wire 1 having a length equal to or longer than the predetermined length is used as a raw material for an aluminum alloy member, an aluminum alloy member having excellent creep properties can be obtained.
 なお、実施形態のアルミニウム合金では、溶体化処理のみが施されており、時効処理が施されていない状態であっても、亜結晶粒界の存在割合が15%以上である。即ち亜結晶粒界の存在割合は時効処理の前後において実質的に変わらないと考えられる。 In addition, in the aluminum alloy of the embodiment, only the solution treatment is performed, and the existence ratio of the subgrain boundaries is 15% or more even in a state in which the aging treatment is not performed. That is, it is considered that the existence ratio of subgrain boundaries does not substantially change before and after the aging treatment.
(クリープ評価値)
 実施形態のアルミニウム合金は例えば熱処理後の状態において定常クリープ速度の平均値と断面の平均結晶粒径の3乗との積で求められる値が80μm/h以下である。本発明者らはアルミニウム合金のクリープ特性を評価する指標として粒界拡散クリープの定常クリープ速度を採用した。粒界拡散クリープでは結晶粒界に沿った原子の拡散によって結晶粒の変形が生じる。粒界拡散クリープにおける定常クリープ速度(%/h)は以下の(式1)に示す構成方程式によって求められる。
(creep evaluation value)
In the aluminum alloy of the embodiment, for example, after heat treatment, the product of the average steady creep rate and the cube of the average grain size of the cross section is 80 μm 3 /h or less. The present inventors adopted the steady creep rate of grain boundary diffusion creep as an index for evaluating the creep properties of aluminum alloys. In grain boundary diffusion creep, grain deformation occurs due to the diffusion of atoms along grain boundaries. The steady creep rate (%/h) in the grain boundary diffusion creep is obtained by the constitutive equation shown below (Equation 1).
Figure JPOXMLDOC01-appb-M000001
 (式1)において、ドットεは定常クリープ速度である。Aは材料定数である。Dは拡散係数である。Gは剛性率である。bはバーガースベクトルの大きさである。kはボルツマン定数である。Tは温度である。dは結晶粒径である。σは印加応力である。
Figure JPOXMLDOC01-appb-M000001
In (Equation 1), dot ε is the steady creep rate. A is a material constant. D is the diffusion coefficient. G is the stiffness modulus. b is the magnitude of the Burgers vector. k is the Boltzmann constant. T is temperature. d is the grain size. σ is the applied stress.
 一般に金属は定常クリープ速度が小さいほどクリープ変形し難い。上記(式1)によれば結晶粒径dが大きいほど定常クリープ速度が小さい。上記(式1)の両辺に結晶粒径dの3乗を掛けることで、結晶粒径dによる影響を上記(式1)の左辺にも反映させる。つまり、定常クリープ速度(%/h)と結晶粒径dの3乗との積で求められるクリープ評価値は上述の結晶粒径dによる影響が反映されている。このようなクリープ評価値はクリープ変形の要因として結晶粒径d以外の要因、即ち原子の拡散や転位の移動等の要因を適切に評価できると考えられる。 In general, the smaller the steady creep rate of a metal, the less likely it is to undergo creep deformation. According to the above (Formula 1), the larger the grain size d, the smaller the steady creep rate. By multiplying both sides of the above (Equation 1) by the cube of the crystal grain size d, the effect of the crystal grain size d is also reflected on the left side of the above (Equation 1). That is, the creep evaluation value obtained by the product of the steady creep rate (%/h) and the cube of the grain size d reflects the effect of the grain size d described above. It is considered that such a creep evaluation value can appropriately evaluate factors other than grain size d, such as atomic diffusion and dislocation movement, as factors of creep deformation.
 クリープ評価値が80μm/h以下である実施形態のアルミニウム合金は熱処理後の状態においてクリープ変形し難い。クリープ評価値が小さいほどアルミニウム合金はクリープ変形し難い。クリープ特性の向上の観点から、クリープ評価値は70μm/h以下、60μm/h以下、更に50μm/h以下でもよい。 The aluminum alloy of the embodiment having a creep evaluation value of 80 μm 3 /h or less is less prone to creep deformation after heat treatment. The smaller the creep evaluation value, the more difficult it is for the aluminum alloy to undergo creep deformation. From the viewpoint of improving the creep property, the creep evaluation value may be 70 μm 3 /h or less, 60 μm 3 /h or less, or even 50 μm 3 /h or less.
 クリープ評価値の下限値は特に問わない。クリープ評価値は例えば0.1μm/h以上である。クリープ評価値が0.1μm/h以上80μm/h以下であるアルミニウム合金は製造過程において過度な塑性加工が不要であることで製造し易い。 There is no particular lower limit for the creep evaluation value. The creep evaluation value is, for example, 0.1 μm 3 /h or more. An aluminum alloy having a creep evaluation value of 0.1 μm 3 /h or more and 80 μm 3 /h or less does not require excessive plastic working in the manufacturing process and is easy to manufacture.
(平均結晶粒径)
 実施形態のアルミニウム合金は例えば熱処理後の状態において断面の平均結晶粒径が10μm以上200μm以下である。上記平均結晶粒径が10μm以上であれば上述の(式1)で示される定常クリープ速度が小さくなり易い。上記平均結晶粒径が200μm以下であれば結晶粒がある程度小さいことで強度が高くなり易い。そのため、上記平均結晶粒径が上記の範囲である実施形態のアルミニウム合金はクリープ特性に優れる上に強度にも優れる。良好なクリープ特性と高い強度とをバランスよく備える観点から、上記平均結晶粒径は15μm以上190μm以下、20μm以上180μm以下でもよい。
(Average grain size)
For example, the aluminum alloy of the embodiment has an average grain size of 10 μm or more and 200 μm or less in a cross section after heat treatment. If the average crystal grain size is 10 μm or more, the steady creep rate represented by the above-mentioned (Equation 1) tends to become small. If the average crystal grain size is 200 μm or less, the crystal grains are small to some extent, and the strength tends to be high. Therefore, the aluminum alloy of the embodiment in which the average crystal grain size is within the above range has excellent creep properties and excellent strength. From the viewpoint of providing good creep property and high strength in a well-balanced manner, the average crystal grain size may be 15 μm or more and 190 μm or less, or 20 μm or more and 180 μm or less.
 上記の平均結晶粒径は実施形態のアルミニウム合金の断面をSEM-EBSD法によって結晶解析することで求められた各結晶粒の粒径を平均した値である。各結晶粒の粒径は上記断面における各結晶粒の断面積と等しい面積を有する円の直径である。 The above average grain size is a value obtained by averaging the grain size of each grain obtained by crystallographic analysis of the cross section of the aluminum alloy of the embodiment by the SEM-EBSD method. The grain size of each grain is the diameter of a circle having an area equal to the cross-sectional area of each grain in the cross section.
(利用形態)
 実施形態のアルミニウム合金は種々の形状を有することができる。例えば、実施形態のアルミニウム合金はある程度長い形状を有する。このような実施形態のアルミニウム合金はその長手方向に垂直な平面からなる端面と上記長手方向に延びた延伸部とを備える。延伸部における上記長手方向に沿った長さは、端面の外周輪郭の面積と等しい面積を有する円の直径よりも長い。上記延伸部を有する実施形態のアルミニウム合金では、亜結晶粒界の存在割合を測定する対象となる断面は、上記長手方向に沿った平面で延伸部を切断することで得られる。
(Usage form)
The aluminum alloys of embodiments can have various shapes. For example, the aluminum alloys of the embodiments have somewhat long shapes. The aluminum alloy of such an embodiment has an end surface which is a plane perpendicular to its longitudinal direction and an extension extending in the longitudinal direction. The length of the extension along the longitudinal direction is greater than the diameter of a circle having an area equal to the area of the outer contour of the end face. In the aluminum alloy of the embodiment having the stretched portion, the cross section to be measured for the existence ratio of subgrain boundaries is obtained by cutting the stretched portion along the plane along the longitudinal direction.
 延伸部を有する実施形態のアルミニウム合金は例えば線材、パイプ、板材等である。つまり延伸部は線材、板材のような中実体でもよいしパイプのような中空体でもよい。  The aluminum alloy of the embodiment having an extended portion is, for example, a wire rod, a pipe, a plate material, or the like. That is, the extending portion may be a solid body such as a wire rod or a plate material, or a hollow body such as a pipe.
〈線材〉
 実施形態のアルミニウム合金線1は実施形態のアルミニウム合金からなる。実施形態のアルミニウム合金線1は図1に示すように端面10と延伸部11とを備える。ここでの端面10はアルミニウム合金線1の長手方向に垂直な面である。延伸部11は上記長手方向に延びている。実施形態のアルミニウム合金線1は代表的には図1に示すように延伸部11の全長にわたって外周輪郭が同じであると共に線径が同じである。ここでの線径は端面10の面積又は上記長手方向に垂直な平面で切断した断面の面積と同じ面積を有する円の直径とする。図1は端面10の外周輪郭及び上記長手方向に垂直な平面で切断した任意の断面の外周輪郭が円形である場合を例示する。端面10の外周輪郭及び上記断面の外周輪郭は四角等の多角形でもよいし楕円等の曲面形状でもよい。実施形態のアルミニウム合金線1の線径は特に問わない。上記線径は例えば3mm以上15mm以下程度である。
<wire>
An aluminum alloy wire 1 of the embodiment is made of the aluminum alloy of the embodiment. The aluminum alloy wire 1 of the embodiment has an end surface 10 and an extension portion 11 as shown in FIG. The end surface 10 here is a surface perpendicular to the longitudinal direction of the aluminum alloy wire 1 . The extending portion 11 extends in the longitudinal direction. The aluminum alloy wire 1 of the embodiment typically has the same outer contour and the same wire diameter over the entire length of the extended portion 11 as shown in FIG. The wire diameter here is the diameter of a circle having the same area as the area of the end face 10 or the area of a cross section cut along a plane perpendicular to the longitudinal direction. FIG. 1 exemplifies the case where the outer peripheral contour of the end face 10 and the outer peripheral contour of an arbitrary cross section cut along a plane perpendicular to the longitudinal direction are circular. The outer contour of the end face 10 and the outer contour of the cross section may be polygonal such as square, or may be curved such as elliptical. The wire diameter of the aluminum alloy wire 1 of the embodiment is not particularly limited. The wire diameter is, for example, about 3 mm or more and 15 mm or less.
 実施形態のアルミニウム合金線1では上述のように亜結晶粒界の存在割合を測定する対象となる断面は縦断面である。実施形態のアルミニウム合金線1では縦断面において亜結晶粒界の存在割合が15%以上である。また、実施形態のアルミニウム合金線1では定常クリープ速度の平均値と上記縦断面の平均結晶粒径の3乗との積で求められるクリープ評価値が例えば80μm/h以下である。上記縦断面の平均結晶粒径が例えば10μm以上200μm以下である。 In the aluminum alloy wire 1 of the embodiment, as described above, the cross section to be measured for the existence ratio of subgrain boundaries is the vertical cross section. In the aluminum alloy wire 1 of the embodiment, the proportion of existence of subgrain boundaries in the longitudinal section is 15% or more. Further, in the aluminum alloy wire 1 of the embodiment, the creep evaluation value obtained by multiplying the average value of the steady creep rate by the cube of the average grain size of the longitudinal section is, for example, 80 μm 3 /h or less. The average grain size of the longitudinal section is, for example, 10 μm or more and 200 μm or less.
〈アルミニウム合金部材〉
 実施形態のアルミニウム合金は、アルミニウム合金部材を構成することができる。例えばアルミニウム合金部材は、実施形態のアルミニウム合金からなり、溶体化処理及び時効処理が施されたものである。具体例は、実施形態のアルミニウム合金線1に塑性加工が施された後に溶体化処理及び時効処理が施されたアルミニウム合金部材である。別例は、実施形態のアルミニウム合金からなる板材に塑性加工が施された後に溶体化処理及び時効処理が施されたアルミニウム合金部材である。ここでの塑性加工は例えば押出加工、鍛造加工、伸線加工等である。更に別例は、実施形態のアルミニウム合金線1に溶体化処理及び時効処理が施されたアルミニウム合金部材である。つまりアルミニウム合金部材は線状、又は棒状でもよい。その他、アルミニウム合金部材は筒状でもよい。実施形態のアルミニウム合金線1はこのようにアルミニウム合金部材の原料として利用することができる。
<Aluminum alloy member>
The aluminum alloy of the embodiment can constitute an aluminum alloy member. For example, the aluminum alloy member is made of the aluminum alloy of the embodiment and subjected to solution treatment and aging treatment. A specific example is an aluminum alloy member obtained by subjecting the aluminum alloy wire 1 of the embodiment to plastic working, followed by solution treatment and aging treatment. Another example is an aluminum alloy member obtained by subjecting a plate material made of the aluminum alloy of the embodiment to plastic working, followed by solution treatment and aging treatment. Plastic processing here includes, for example, extrusion processing, forging processing, wire drawing processing, and the like. Still another example is an aluminum alloy member obtained by subjecting the aluminum alloy wire 1 of the embodiment to solution treatment and aging treatment. That is, the aluminum alloy member may be linear or bar-shaped. Alternatively, the aluminum alloy member may be tubular. The aluminum alloy wire 1 of the embodiment can thus be used as a raw material for aluminum alloy members.
 上述のアルミニウム合金部材は、上述の特定の組成と上述の特定の組織とを有するアルミニウム合金からなるためクリープ特性に優れる。また、このアルミニウム合金部材は、鋼等の鉄系合金からなる金属部材に比較して軽量である。このようなアルミニウム合金部材は、軽量でクリープ特性に優れることが望まれる用途、例えば自動車部品、各種の構造部材等に利用できる。 The aluminum alloy member described above is excellent in creep properties because it is made of an aluminum alloy having the above-described specific composition and the above-described specific structure. Moreover, this aluminum alloy member is lighter than a metal member made of an iron-based alloy such as steel. Such aluminum alloy members can be used in applications where light weight and excellent creep properties are desired, such as automobile parts and various structural members.
(アルミニウム合金の製造方法)
 本発明者らは上述の特定の組成を有するアルミニウム合金であって溶体化処理及び時効処理が施された状態においてクリープ特性に優れるアルミニウム合金の製造方法を検討した。その結果、本発明者らは、以下の条件を満たすことが好ましいとの知見を得た。この知見から、実施形態のアルミニウム合金を製造する方法は例えば以下の第一工程と第二工程と第三工程と第四工程と第五工程とを備える。
〈条件〉
 冷間で塑性加工を行う。この塑性加工に供する素材に軟化処理を行うと共に塑性加工の途中にも軟化処理を行う。これらの軟化処理は比較的低温で行う。軟化処理前後の塑性加工は大きい加工度で行う。
(Method for producing aluminum alloy)
The present inventors have investigated a method for producing an aluminum alloy having the specific composition described above and exhibiting excellent creep properties in the state of solution heat treatment and aging treatment. As a result, the inventors have found that it is preferable to satisfy the following conditions. Based on this finding, the method of manufacturing the aluminum alloy of the embodiment includes, for example, the following first step, second step, third step, fourth step, and fifth step.
<conditions>
Cold plastic working. The material to be subjected to this plastic working is subjected to a softening treatment, and the softening treatment is also performed during the plastic working. These softening treatments are performed at relatively low temperatures. The plastic working before and after the softening treatment is performed with a large degree of working.
 第一工程は、上述の第一元素を上述の範囲で含み残部がアルミニウム及び不可避不純物からなるアルミニウム合金の鋳造材に熱間塑性加工を施すことで熱間加工材を製造する工程である。鋳造材を構成するアルミニウム合金は第一元素に加えて更に第二元素を上述の範囲で含んでもよい。
 第二工程は、上記熱間加工材に第一軟化処理を施すことで第一軟化材を製造する工程である。
 第三工程は、上記第一軟化材に冷間で第一塑性加工を施すことで第一塑性加工材を製造する工程である。
 第四工程は、上記第一塑性加工材に第二軟化処理を施すことで第二軟化材を製造する工程である。
 第五工程は、上記第二軟化材に冷間で第二塑性加工を施すことで第二塑性加工材を製造する工程である。
 上記第一軟化処理及び上記第二軟化処理の加熱温度は300℃以上500℃未満である。
 上記第一塑性加工の加工度は30%以上である。
 上記第二塑性加工の加工度は20%以上である。
The first step is a step of producing a hot-worked material by subjecting a cast material of an aluminum alloy containing the above-mentioned first element within the above-described range and the balance being aluminum and unavoidable impurities to hot plastic working. In addition to the first element, the aluminum alloy forming the cast material may further contain the second element within the range described above.
The second step is a step of producing a first softened material by subjecting the hot-worked material to a first softening treatment.
The third step is a step of producing a first plastically worked material by subjecting the first softened material to cold first plastic working.
The fourth step is a step of manufacturing a second softened material by subjecting the first plastically worked material to a second softening treatment.
The fifth step is a step of producing a second plastically worked material by subjecting the second softened material to cold second plastic working.
The heating temperature of the first softening treatment and the second softening treatment is 300°C or higher and lower than 500°C.
The workability of the first plastic working is 30% or more.
The workability of the second plastic working is 20% or more.
 上述の製造方法によって製造されたアルミニウム合金は、溶体化処理及び時効処理が施された状態において亜結晶粒界をある程度含む組織を備える。このような組織を備える理由は以下のように考えられる。以下、図2及び図3を参照して、上述の第二塑性加工後に溶体化処理及び時効処理が施された際に亜結晶粒界を含む組織が形成される過程を説明する。図2及び図3は図2の上段から図3の下段に向かって再結晶化が進行した状態を示す。図2及び図3において破線及び太い実線は大角境界51,52を示す。細い実線は亜結晶粒界61を示す。 The aluminum alloy produced by the above-described production method has a structure that includes subgrain boundaries to some extent in the state of being subjected to solution treatment and aging treatment. The reason why such an organization is provided is considered as follows. Hereinafter, with reference to FIGS. 2 and 3, the process of forming a structure including subgrain boundaries when solution treatment and aging treatment are performed after the above-described second plastic working will be described. 2 and 3 show the progress of recrystallization from the top of FIG. 2 to the bottom of FIG. Dashed lines and thick solid lines in FIGS. 2 and 3 indicate large- angle boundaries 51 and 52 . A thin solid line indicates a subgrain boundary 61 .
 図2の上段の図に示すように、第二塑性加工後に溶体化処理が施されることで転位セルの再配列が行われる。転位セルが亜結晶粒となる際に隣接するセル間の方位差が小さい場合には亜結晶粒界61が形成される。隣接するセル間の方位差が大きい場合には亜結晶粒の一部に大角境界51が形成される。続く亜結晶粒の成長では主に大角境界51が移動する。大角境界51の移動によって亜結晶粒が成長できる。また、亜結晶粒の成長に伴って方位が近い別の亜結晶粒に出会うと、両亜結晶粒の間に亜結晶粒界61が形成される。その結果、亜結晶粒の移動が止まる。 As shown in the upper diagram of FIG. 2, dislocation cells are rearranged by performing solution treatment after the second plastic working. When a dislocation cell becomes a subgrain, a subgrain boundary 61 is formed if the orientation difference between adjacent cells is small. When the orientation difference between adjacent cells is large, large-angle boundaries 51 are formed in some subgrains. Large-angle boundaries 51 mainly move in the subsequent growth of subgrains. Subgrains can grow due to the movement of the large-angle boundary 51 . Further, when a subgrain meets another subgrain having a similar orientation as the subgrain grows, a subgrain boundary 61 is formed between the two subgrains. As a result, the movement of subgrains stops.
 図2の中段の図に示すように、亜結晶粒界61で囲まれた亜結晶粒60がいくつか集まると、大角境界52がこれらの全体の外周を囲んだ組織が形成される。上記組織は「回復組織」と呼ばれる。図2及び図3はわかり易いように大角境界52を太い実線で示す。 As shown in the middle diagram of FIG. 2, when several subgrains 60 surrounded by subgrain boundaries 61 are gathered, a structure is formed in which the large-angle boundary 52 surrounds the entire periphery of these grains. The tissue is called "recovery tissue". 2 and 3 show the large-angle boundary 52 with a thick solid line for easy understanding.
 図2の下段の図に示すように、上述の回復組織の間に大角境界52が形成された状態において大角境界52が移動する。大角境界52の移動によって、図3の上段の図に示すようにある回復組織が他の回復組織を侵食する。その結果、大角境界52で囲まれた組織の内部に亜結晶粒60が保持されたまま、亜結晶粒60が成長する。即ち亜結晶粒60及び亜結晶粒界61を多く含む組織が形成される。 As shown in the lower diagram of FIG. 2, the large-angle boundary 52 moves in the state where the large-angle boundary 52 is formed between the recovery tissues. Movement of the large-angle boundary 52 causes some restorative tissue to erode other restorative tissue as shown in the upper diagram of FIG. As a result, the subgrains 60 grow while being held inside the structure surrounded by the large-angle boundaries 52 . That is, a structure containing many subgrains 60 and subgrain boundaries 61 is formed.
 一方、回復現象が進行すると、図3の下段の図に示すように亜結晶粒60及び亜結晶粒界61がほとんど残存せず、再結晶粒50から構成される組織が形成される。なお、このような組織の形成は主として溶体化処理が施されている際になされると考えられる。溶体化処理後に時効処理が施されても、溶体化処理後時効処理前の組織が実質的に維持されると考えられる。 On the other hand, as the recovery phenomenon progresses, almost no subgrains 60 and subgrain boundaries 61 remain, and a structure composed of recrystallized grains 50 is formed as shown in the lower part of FIG. In addition, it is considered that such a structure is mainly formed during the solution treatment. Even if the aging treatment is performed after the solution treatment, it is considered that the structure after the solution treatment but before the aging treatment is substantially maintained.
 一般に軟化処理を行うと、軟化処理前の塑性加工によってアルミニウム合金に導入されたひずみ即ち転位の少なくとも一部が解放される。上述の製造方法では、第一軟化処理及び第二軟化処理を行うものの、上述のように加熱温度が比較的低い。そのため、軟化処理が施されても、Alに比較して拡散係数が小さい元素の固溶が維持されると考えられる。その結果、溶体化処理が施されている際に転位の回復が妨げられる、即ち回復現象が進行し難いと考えられる。 In general, softening treatment releases at least part of the strain, ie, dislocations introduced into the aluminum alloy by plastic working before softening treatment. In the manufacturing method described above, although the first softening treatment and the second softening treatment are performed, the heating temperature is relatively low as described above. Therefore, it is considered that the solid solution of the element having a smaller diffusion coefficient than that of Al is maintained even when the softening treatment is performed. As a result, it is considered that the recovery of dislocations is hindered during the solution treatment, that is, the recovery phenomenon hardly progresses.
 また、第一軟化処理及び第二軟化処理を行うことで軟化材の塑性加工性が高められる。そのため、第一塑性加工の加工度及び第二塑性加工の加工度を大きくすることができる。塑性加工の加工度が大きいことで、塑性加工によってアルミニウム合金に転位を蓄積することができる。特に冷間で塑性加工を行うことで温間加工や熱間加工を行う場合に比較してアルミニウム合金に転位が蓄積され易い。即ち上述の製造方法では、第二塑性加工後において転位が蓄積されたアルミニウム合金が得られる。なお、熱間加工及び温間加工は冷間加工に比較して転位が解放され易い。転位が蓄積されたアルミニウム合金は溶体化処理及び時効処理が施されても上述の回復現象が進行し難いと考えられる。このように回復現象が進行し難いことで、亜結晶粒界をある程度含む組織が得られ易い。 In addition, the plastic workability of the softened material is enhanced by performing the first softening treatment and the second softening treatment. Therefore, the working ratio of the first plastic working and the working ratio of the second plastic working can be increased. Dislocations can be accumulated in the aluminum alloy by the plastic working because the working degree of the plastic working is large. In particular, cold plastic working tends to accumulate dislocations in an aluminum alloy as compared with warm working or hot working. That is, in the above-described manufacturing method, an aluminum alloy in which dislocations are accumulated after the second plastic working is obtained. Dislocations are released more easily in hot working and warm working than in cold working. It is considered that aluminum alloys in which dislocations have accumulated are less susceptible to the above-described recovery phenomenon even if they are subjected to solution treatment and aging treatment. Since the recovery phenomenon is difficult to progress in this manner, a structure containing subgrain boundaries to some extent is likely to be obtained.
 以下、上述のアルミニウム合金の製造方法を具体的に説明する。
〈第一工程〉
 第一工程において鋳造材は例えば金型鋳造法、連続鋳造法等を利用して製造する。第一工程において熱間塑性加工は例えば熱間圧延加工であり、熱間加工材は例えば連続鋳造圧延材である。熱間加工材が連続鋳造圧延材であれば、例えば連続した長いアルミニウム合金線を製造することができる。この点で、熱間加工材が連続鋳造圧延材である形態は実施形態のアルミニウム合金線1を量産できる。
A method for producing the aluminum alloy described above will be specifically described below.
<First step>
In the first step, the cast material is manufactured using, for example, a die casting method, a continuous casting method, or the like. In the first step, the hot plastic working is, for example, hot rolling, and the hot worked material is, for example, continuously cast and rolled material. If the hot-worked material is a continuously cast and rolled material, for example, a continuous long aluminum alloy wire can be produced. In this respect, the aluminum alloy wire 1 of the embodiment can be mass-produced in a form in which the hot-worked material is a continuously cast and rolled material.
〈第二工程〉
 第二工程における第一軟化処理の条件及び後述する第四工程の第二軟化処理の条件は以下の通りである。
《軟化処理の条件》
 加熱温度が300℃以上500℃未満の範囲から選択される温度である。保持時間は1時間以上100時間以下の範囲から選択される時間である。軟化時の雰囲気は例えば大気雰囲気、非酸化性雰囲気である。非酸化性雰囲気は例えば減圧雰囲気、不活性ガス雰囲気、還元ガス雰囲気等である。
<Second process>
The conditions for the first softening treatment in the second step and the conditions for the second softening treatment in the fourth step, which will be described later, are as follows.
《Conditions for softening treatment》
The heating temperature is a temperature selected from the range of 300°C or higher and lower than 500°C. The retention time is a time selected from the range of 1 hour or more and 100 hours or less. The softening atmosphere is, for example, an air atmosphere or a non-oxidizing atmosphere. The non-oxidizing atmosphere is, for example, a reduced pressure atmosphere, an inert gas atmosphere, a reducing gas atmosphere, or the like.
 軟化処理の加熱温度が300℃以上であることで、第一塑性加工の加工度及び第二塑性加工の加工度を大きくすることができる。軟化処理の加熱温度が500℃未満であることで、上述のように溶体化処理時に回復現象が進行し難い。加工度の増大と回復現象の進行抑制との観点から、加熱温度は350℃以上480℃以下、更に350℃以上460℃以下でもよい。 By setting the heating temperature of the softening treatment to 300°C or higher, the degree of processing of the first plastic working and the degree of working of the second plastic working can be increased. When the heating temperature of the softening treatment is less than 500° C., the recovery phenomenon hardly progresses during the solution treatment as described above. The heating temperature may be 350° C. or higher and 480° C. or lower, further 350° C. or higher and 460° C. or lower, from the viewpoint of increasing the workability and suppressing the progress of the recovery phenomenon.
〈第三工程〉
 第三工程において第一塑性加工は例えば伸線加工、圧延加工、鍛造加工等である。第三工程において第一塑性加工の加工度が30%以上であることで、第一塑性加工によって導入された転位の一部が第二軟化処理によって解放されても、上記転位がある程度残存し易い。結果として、最終的に転位が多く蓄積されたアルミニウム合金が得られ易い。第一塑性加工の加工度は35%以上、40%以上でもよい。第一塑性加工の加工度は最終線径等の最終的なサイズにもよるが例えば30%以上80%以下の範囲から選択する。第一塑性加工の加工度は、第一塑性加工前の断面積と第一塑性加工後の断面積との差を第一塑性加工前の断面積で除した割合である。第三工程における第一塑性加工の加工度は例えば後述する第五工程における第二塑性加工の加工度よりも大きい。
<Third process>
In the third step, the first plastic working is, for example, wire drawing, rolling, or forging. When the degree of working of the first plastic working in the third step is 30% or more, even if some of the dislocations introduced by the first plastic working are released by the second softening treatment, the dislocations tend to remain to some extent. . As a result, it is easy to finally obtain an aluminum alloy in which many dislocations are accumulated. The workability of the first plastic working may be 35% or more and 40% or more. The working ratio of the first plastic working depends on the final size such as the final wire diameter, but is selected from a range of, for example, 30% or more and 80% or less. The working degree of the first plastic working is a ratio obtained by dividing the difference between the cross-sectional area before the first plastic working and the cross-sectional area after the first plastic working by the cross-sectional area before the first plastic working. The working degree of the first plastic working in the third step is larger than the working degree of the second plastic working in the fifth step described later, for example.
〈第四工程〉
 第四工程における第二軟化処理の条件及び効果は上述の通りである。
<Fourth step>
The conditions and effects of the second softening treatment in the fourth step are as described above.
〈第五工程〉
 第五工程において第二塑性加工は例えば伸線加工、圧延加工、鍛造加工等である。第二塑性加工の種類は第三工程の第一塑性加工の種類と同じでもよいし異なってもよい。第五工程における第二塑性加工の加工度が20%以上であれば、最終的に転位が多く蓄積されたアルミニウム合金が得られ易い。第二塑性加工の加工度は23%以上、更に25%以上でもよい。第二塑性加工の加工度は最終線径等の最終的なサイズが所定のサイズを有する第二塑性加工材が得られるように例えば20%以上80%未満の範囲から選択する。第二塑性加工の加工度は、第二塑性加工前の断面積と第二塑性加工後の断面積との差を第二塑性加工前の断面積で除した割合である。
<Fifth step>
In the fifth step, the second plastic working is, for example, wire drawing, rolling, or forging. The kind of the second plastic working may be the same as or different from the kind of the first plastic working in the third step. If the workability of the second plastic working in the fifth step is 20% or more, it is easy to finally obtain an aluminum alloy in which many dislocations are accumulated. The working ratio of the second plastic working may be 23% or more, and may be 25% or more. The working ratio of the second plastic working is selected from a range of, for example, 20% or more and less than 80% so that a second plastic working material having a predetermined final size such as a final wire diameter can be obtained. The working degree of the second plastic working is a ratio obtained by dividing the difference between the cross-sectional area before the second plastic working and the cross-sectional area after the second plastic working by the cross-sectional area before the second plastic working.
(アルミニウム合金線の製造方法)
 実施形態のアルミニウム合金線1を製造するには実施形態のアルミニウム合金線の製造方法を利用することができる。実施形態のアルミニウム合金線の製造方法は、上述のアルミニウム合金の製造方法において以下の読み替えを行う。第一塑性加工は第一伸線加工に読み替える。第一塑性加工材は第一伸線材に読み替える。第二塑性加工は第二伸線加工に読み替える。第二塑性加工材は第二伸線材に読み替える。上述のように特定の組成を備えるアルミニウム合金からなる素材は冷間での伸線加工性に優れる。このような素材を用いる実施形態のアルミニウム合金線の製造方法は、実施形態のアルミニウム合金線1を量産できる。なお、実施形態のアルミニウム合金線の製造方法における基本的な操作は公知のアルミニウム合金線の製造方法を参照することができる。
(Manufacturing method of aluminum alloy wire)
In order to manufacture the aluminum alloy wire 1 of the embodiment, the method of manufacturing the aluminum alloy wire of the embodiment can be used. In the method for manufacturing an aluminum alloy wire of the embodiment, the following replacements are made in the method for manufacturing an aluminum alloy described above. The first plastic working is read as the first wire drawing. The first plastically worked material is read as the first drawn wire material. The second plastic working is read as the second wire drawing. The second plastically worked material is read as the second drawn wire material. As described above, a material made of an aluminum alloy having a specific composition is excellent in cold wire drawability. The aluminum alloy wire manufacturing method of the embodiment using such a material can mass-produce the aluminum alloy wire 1 of the embodiment. For basic operations in the method for manufacturing an aluminum alloy wire of the embodiment, reference can be made to a known method for manufacturing an aluminum alloy wire.
(アルミニウム合金部材の製造方法)
 上述のアルミニウム合金部材を製造する方法は例えば以下の加工工程と熱処理工程とを備える。
 加工工程は、上述の第二塑性加工が施された第二塑性加工材又は第二伸線加工が施された第二伸線材に第三塑性加工を施すことで第三加工材を製造する工程である。
 熱処理工程は、上記第三加工材に溶体化処理及び時効処理を順に施して時効材を製造する工程である。
 第三塑性加工は例えば押出加工、鍛造加工、伸線加工等である。溶体化処理及び時効処理の条件は上述の通りである。
(Manufacturing method of aluminum alloy member)
A method for manufacturing the aluminum alloy member described above includes, for example, the following processing steps and heat treatment steps.
The working step is a step of manufacturing a third worked material by applying a third plastic working to the second plastic worked material subjected to the second plastic working or the second drawn wire material to which the second wire drawing has been performed. is.
The heat treatment step is a step of sequentially subjecting the third processed material to solution treatment and aging treatment to produce an aged material.
The third plastic processing includes, for example, extrusion processing, forging processing, wire drawing processing, and the like. The conditions for solution treatment and aging treatment are as described above.
[実施形態の主な作用効果]
 実施形態のアルミニウム合金及び実施形態のアルミニウム合金線1は溶体化処理及び時効処理が施された状態においてクリープ特性に優れる。以下の試験例1では実施形態のアルミニウム合金線1を例にして上記の効果を具体的に説明する。
[Main effects of the embodiment]
The aluminum alloy according to the embodiment and the aluminum alloy wire 1 according to the embodiment are excellent in creep properties in a state of being subjected to solution treatment and aging treatment. In Test Example 1 below, the above effect will be specifically described by taking the aluminum alloy wire 1 of the embodiment as an example.
 実施形態のアルミニウム合金線の製造方法は、溶体化処理及び時効処理が施された状態においてクリープ特性に優れる実施形態のアルミニウム合金線1を製造できる。 The method for manufacturing an aluminum alloy wire according to the embodiment can manufacture the aluminum alloy wire 1 according to the embodiment which has excellent creep properties in a state in which solution treatment and aging treatment have been performed.
[試験例1]
 表1に示す組成を有するアルミニウム合金線に溶体化処理及び時効処理を施した状態において組織観察を行うと共にクリープ特性を調べた。アルミニウム合金線の製造条件及び調べた結果を表2及び表3に示す。
[Test Example 1]
Microstructural observation and creep properties were investigated in the state where the aluminum alloy wires having the compositions shown in Table 1 were subjected to solution treatment and aging treatment. Tables 2 and 3 show the conditions for manufacturing the aluminum alloy wires and the results of the investigation.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(試料の作製)
 各試料のアルミニウム合金線は連続鋳造圧延材に第一軟化処理を施した後、冷間で伸線加工を施すことで製造する。連続鋳造圧延材は例えば公知のプロペルチ式連続鋳造圧延機によって製造することができる。上記の伸線加工の途中には第二軟化処理を行う。第二軟化処理前の伸線加工を第一伸線加工と呼ぶ。第二軟化処理後の伸線加工を第二伸線加工と呼ぶ。各試料のアルミニウム合金線は、連続鋳造圧延材に第一軟化処理、第一伸線加工、第二軟化処理、第二伸線加工が順に施されることで製造される。
 表2及び表3において組成の項目における組成α、組成βは表1に示す組成α、組成βにそれぞれ相当する。
 表2及び表3において軟化処理の項目は加熱温度(℃)と保持時間(時間)とを示す。例えば「380℃×10h」は加熱温度が380℃であり、保持時間が10時間であることを意味する。
 第一伸線加工及び第二伸線加工はそれぞれ表2及び表3に示す加工度(%)で行う。
 連続鋳造圧延材の線径は5mm以上30mm以下の範囲から選択される。第二伸線加工後に製造される第二伸線材の線径は加工度によって概ね1.0mm以上21mm以下の範囲から選択される値である。
(Preparation of sample)
The aluminum alloy wire of each sample is manufactured by subjecting a continuously cast and rolled material to the first softening treatment and then to cold drawing. A continuously cast rolled material can be produced by, for example, a known Propertit type continuous casting and rolling mill. A second softening treatment is performed during the wire drawing process. The wire drawing process before the second softening treatment is called the first wire drawing process. The wire drawing after the second softening treatment is called second wire drawing. The aluminum alloy wire of each sample is manufactured by subjecting a continuously cast rolled material to first softening treatment, first wire drawing, second softening treatment and second wire drawing in this order.
In Tables 2 and 3, composition α and composition β in the item of composition correspond to composition α and composition β shown in Table 1, respectively.
In Tables 2 and 3, the item of softening treatment indicates heating temperature (° C.) and holding time (hour). For example, "380° C.×10 h" means that the heating temperature is 380° C. and the holding time is 10 hours.
The first wire drawing and the second wire drawing are performed at the degree of working (%) shown in Tables 2 and 3, respectively.
The wire diameter of the continuously cast rolled material is selected from the range of 5 mm or more and 30 mm or less. The wire diameter of the second drawn wire manufactured after the second wire drawing is a value selected from the range of approximately 1.0 mm or more and 21 mm or less depending on the degree of working.
(組織観察)
〈亜結晶粒界の存在割合〉
 得られた各試料のアルミニウム合金線に上述の条件で溶体化処理及び時効処理を施して熱処理線を製造する。得られた熱処理線を熱処理線の長手方向に沿った平面で切断して縦断面をとる。この縦断面を機械研磨によって平滑にする。研磨した縦断面をSEM-EBSD法によって結晶解析する。観察視野は熱処理線の径方向に沿った大きさが1mmであり、熱処理線の長手方向に沿った大きさが2.5mmである。上記の長方形の観察視野に対して1.0μmのピッチで電子線を照射してEBSDパターンを取得する。EBSDパターンを画像解析することで結晶方位データが得られる。結晶方位データに基づいて結晶粒を判別すると共に結晶粒界の方位差を解析する。結晶方位データの取得及び画像解析は公知の装置を利用することで自動的に行うことができる。ここでは画像解析ソフトウエアは株式会社TSLソリューションズ、OIM6.2.0を用いる。また、この画像解析ソフトウエアにおける信頼値係数CI値が0.1以上のデータ点を用いて画像解析を行う。
(Organization observation)
<Ratio of existence of subgrain boundaries>
The obtained aluminum alloy wire of each sample is subjected to solution treatment and aging treatment under the conditions described above to produce a heat treated wire. The obtained heat-treated wire is cut along a plane along the longitudinal direction of the heat-treated wire to obtain a longitudinal section. This longitudinal section is smoothed by mechanical polishing. Crystallographic analysis of the polished longitudinal section is performed by the SEM-EBSD method. The observation field of view has a size of 1 mm along the radial direction of the heat-treated wire and a size of 2.5 mm along the longitudinal direction of the heat-treated wire. An EBSD pattern is obtained by irradiating an electron beam at a pitch of 1.0 μm to the rectangular observation field. Image analysis of the EBSD pattern provides crystal orientation data. Based on the crystal orientation data, the crystal grains are identified and the misorientation of the crystal grain boundary is analyzed. Acquisition of crystal orientation data and image analysis can be automatically performed using a known device. Here, OIM6.2.0 by TSL Solutions Co., Ltd. is used as image analysis software. In addition, image analysis is performed using data points having a confidence value coefficient CI value of 0.1 or more in this image analysis software.
 上述の画像解析の結果を用いて亜結晶粒界の長さ及び大角境界の長さを求める。更に、亜結晶粒界の長さと大角境界の長さとの合計長さを求める。亜結晶粒界の長さ(μm)を上記合計長さ(μm)で除した割合を求める。ここでは1つの観察視野において上記の割合を求める。表2及び表3に示す亜結晶粒界の存在割合(%)は上記の割合である。 Using the results of the above image analysis, determine the length of the subgrain boundary and the length of the large angle boundary. Furthermore, the total length of the length of the subgrain boundary and the length of the large angle boundary is obtained. The ratio obtained by dividing the subgrain boundary length (μm) by the total length (μm) is obtained. Here, the above ratio is obtained in one observation field of view. The existence ratio (%) of subgrain boundaries shown in Tables 2 and 3 is the above ratio.
〈平均結晶粒径〉
 上述の画像解析の結果を用いて各結晶粒の粒径を求める。ここでは1つの観察視野に含まれる全ての結晶粒の粒径を求める。表2及び表3に示す平均結晶粒径(μm)は上記の全ての結晶粒の粒径を平均した値である。
<Average grain size>
The grain size of each crystal grain is determined using the result of the image analysis described above. Here, the grain sizes of all crystal grains included in one observation field are obtained. The average crystal grain size (μm) shown in Tables 2 and 3 is a value obtained by averaging the grain sizes of all the above crystal grains.
(クリープ特性)
 以下の条件でクリープ試験を行うと共に定常クリープ速度の平均値を求める。
〈クリープ試験の条件〉
 印加圧力が250MPaである。加熱温度が150℃である。保持時間が150時間である。
(creep property)
A creep test is performed under the following conditions, and an average steady creep rate is obtained.
<Conditions of creep test>
The applied pressure is 250 MPa. The heating temperature is 150°C. The retention time is 150 hours.
〈定常クリープ速度の平均値〉
 上記クリープ試験において保持時間が35時間から135時間の範囲について5時間ごとに定常クリープ速度を求める。つまり合計21の定常クリープ速度を求める。定常クリープ速度はJIS Z 2271:2010に準拠して求める。表2及び表3に示す定常クリープ速度の平均値(%/h)は上述の合計21の定常クリープ速度を平均した値である。表2及び表3は定常クリープ速度の平均値を指数表記している。例えば「1.09E-04」は「1.09×10-4」を意味する。
<Average steady-state creep rate>
In the above creep test, the steady creep rate is determined every 5 hours over the holding time range of 35 hours to 135 hours. In other words, a total of 21 steady creep rates are obtained. Steady creep rate is determined according to JIS Z 2271:2010. The average value (%/h) of the steady creep rate shown in Tables 2 and 3 is the average value of the total 21 steady creep rates described above. Tables 2 and 3 index the average steady creep rate. For example, "1.09E-04" means "1.09×10 -4 ".
〈クリープ評価値〉
 表2及び表3に示すクリープ評価値は上記の定常クリープ速度の平均値(%/h)と上述の平均結晶粒径(μm)の3乗との積である。
<Creep evaluation value>
The creep evaluation values shown in Tables 2 and 3 are the product of the average steady creep rate (%/h) and the cube of the average crystal grain size (μm).
〈成分分析〉
 得られた各試料のアルミニウム合金線の組成は表1の組成と同じである。即ち各試料のアルミニウム合金線を構成するアルミニウム合金は表1に示す元素を表1に示す範囲で含み残部がAl及び不可避不純物からなる。アルミニウム合金線の組成の分析には公知の手法が利用できる。上記組成の分析には例えばエネルギー分散型X線分析装置等が利用できる。
<Component analysis>
The composition of the aluminum alloy wire of each sample obtained is the same as the composition in Table 1. That is, the aluminum alloy constituting the aluminum alloy wire of each sample contains the elements shown in Table 1 within the range shown in Table 1, and the balance is Al and unavoidable impurities. A known method can be used to analyze the composition of the aluminum alloy wire. For example, an energy dispersive X-ray spectrometer or the like can be used to analyze the composition.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 以下の説明では試料No.1からNo.4、No.11からNo.14をまとめて第一試料群と呼ぶことがある。試料No.101からNo.104をまとめて第二試料群と呼ぶことがある。 In the explanation below, sample No. 1 to No. 4, No. 11 to No. 14 may be collectively referred to as the first sample group. Sample no. 101 to No. 104 may be collectively referred to as a second sample group.
 表2及び表3に示すように第一試料群のアルミニウム合金線は第二試料群のアルミニウム合金線に比較してクリープ評価値が小さい。定量的には第一試料群のアルミニウム合金線のクリープ評価値は80μm/h以下であり、更に50μm/h以下である。クリープ評価値が20μm/h以下である試料もある。クリープ評価値が小さいことは第一試料群のアルミニウム合金線が第二試料群のアルミニウム合金線に比較してクリープ変形し難いことを示す。 As shown in Tables 2 and 3, the aluminum alloy wires of the first sample group have smaller creep evaluation values than the aluminum alloy wires of the second sample group. Quantitatively, the creep evaluation value of the aluminum alloy wire of the first sample group is 80 μm 3 /h or less, and further 50 μm 3 /h or less. Some samples have a creep evaluation value of 20 μm 3 /h or less. A small creep evaluation value indicates that the aluminum alloy wire of the first sample group is less prone to creep deformation than the aluminum alloy wire of the second sample group.
 上述のような結果が得られた理由の一つとして、亜結晶粒界の存在割合の相違が考えられる。クリープ評価値が小さい第一試料群のアルミニウム合金線では第二試料群のアルミニウム合金線に比較して亜結晶粒界の存在割合が大きい。定量的には第一試料群のアルミニウム合金線における亜結晶粒界の存在割合は15%以上であり、更に17%以上である。多くの試料は亜結晶粒界の存在割合が20%以上である。亜結晶粒界の存在割合が大きいことで、亜結晶粒界によってアルミニウム合金の原子の拡散や転位の移動に起因するクリープ変形が抑制されると考えられる。 One of the reasons why the above results were obtained is thought to be the difference in the existence ratio of subgrain boundaries. The aluminum alloy wire of the first sample group, which has a small creep evaluation value, has a larger proportion of subgrain boundaries than the aluminum alloy wire of the second sample group. Quantitatively, the existence ratio of subgrain boundaries in the aluminum alloy wire of the first sample group is 15% or more, and further 17% or more. Many samples have a subgrain boundary existence ratio of 20% or more. It is believed that the presence of a large subgrain boundary suppresses the creep deformation caused by the diffusion of atoms and movement of dislocations in the aluminum alloy.
 なお、同じ組成で比較すると、第一試料群のアルミニウム合金線の平均結晶粒径は第二試料群のアルミニウム合金線の平均結晶粒径よりも小さい。この点で、第一試料群のアルミニウム合金線における定常クリープ速度の平均値は第二試料群のアルミニウム合金線における定常クリープ速度の平均値よりも大きい傾向にある。しかし、結晶粒径の大きさによる影響が反映されたクリープ評価値によってクリープ特性を評価すれば、第一試料群のアルミニウム合金線は第二試料群のアルミニウム合金線よりもクリープ特性に優れることが示される。 It should be noted that, when compared with the same composition, the average crystal grain size of the aluminum alloy wire of the first sample group is smaller than the average crystal grain size of the aluminum alloy wire of the second sample group. In this respect, the average steady creep rate of the aluminum alloy wires of the first sample group tends to be higher than the average steady creep rate of the aluminum alloy wires of the second sample group. However, if the creep property is evaluated by the creep evaluation value that reflects the influence of the grain size, the aluminum alloy wire of the first sample group is superior in creep property to the aluminum alloy wire of the second sample group. shown.
 その他、この試験から以下のことが示される。
(1)組成βを有するアルミニウム合金線は組成αを有するアルミニウム合金線よりも亜結晶粒界の存在割合が大きい傾向にある。この点から、組成βを有するアルミニウム合金線はクリープ特性により優れる。
(2)第一試料群のアルミニウム合金線の平均結晶粒径は10μm以上200μm以下である。この点から、第一試料群のアルミニウム合金線はクリープ特性に優れる上に強度にも優れる。
(3)溶体化処理及び時効処理が施された状態において亜結晶粒界の存在割合が大きいアルミニウム合金線は上述の〈条件〉を満たす製造方法によって製造することができる。第二試料群のアルミニウム合金線では第一試料群のアルミニウム合金線に比較して第一軟化処理の温度が高い。そのため、第二試料群のアルミニウム合金線では亜結晶粒界の存在割合が小さくなったと考えられる。
In addition, this test shows the following.
(1) An aluminum alloy wire having a composition β tends to have a larger proportion of subgrain boundaries than an aluminum alloy wire having a composition α. From this point of view, the aluminum alloy wire having the composition β is superior in creep properties.
(2) The average grain size of the aluminum alloy wire of the first sample group is 10 μm or more and 200 μm or less. From this point of view, the aluminum alloy wires of the first sample group are excellent in creep property and also in strength.
(3) An aluminum alloy wire having a large proportion of subgrain boundaries in the state of being subjected to solution treatment and aging treatment can be produced by a production method that satisfies the above <conditions>. In the aluminum alloy wires of the second sample group, the temperature of the first softening treatment is higher than that of the aluminum alloy wires of the first sample group. Therefore, it is considered that the existence ratio of the subgrain boundaries decreased in the aluminum alloy wires of the second sample group.
 本開示はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。例えば試験例1においてアルミニウム合金の組成を変更したり、伸線加工の加工度、軟化処理の条件等の製造条件を変更したりすることができる。 The present disclosure is not limited to these examples, but is indicated by the scope of the claims, and is intended to include all modifications within the meaning and scope of equivalents of the scope of the claims. For example, in Test Example 1, it is possible to change the composition of the aluminum alloy, or to change the manufacturing conditions such as the workability of wire drawing and the conditions of softening treatment.
1 アルミニウム合金線、10 端面、11 延伸部
50 再結晶粒、51,52 大角境界
60 亜結晶粒、61 亜結晶粒界
1 aluminum alloy wire, 10 end face, 11 extension part 50 recrystallized grain, 51, 52 large angle boundary 60 subgrain, 61 subgrain boundary

Claims (9)

  1.  シリコンを0.6質量%以上1.5質量%以下、
     マグネシウムを0.5質量%以上1.3質量%以下、
     銅を0.3質量%超1.2質量%以下、
     マンガンを0.2質量%以上1.15質量%以下含み、残部がアルミニウム及び不可避不純物からなる組成を備え、
     溶体化処理及び時効処理が施された状態において断面をSEM-EBSD法によって結晶解析して求められた亜結晶粒界の存在割合が15%以上である、
    アルミニウム合金。
    0.6% by mass or more and 1.5% by mass or less of silicon,
    0.5% by mass or more and 1.3% by mass or less of magnesium,
    More than 0.3% by mass of copper and 1.2% by mass or less,
    A composition containing 0.2% by mass or more and 1.15% by mass or less of manganese, with the balance being aluminum and inevitable impurities,
    The existence ratio of subgrain boundaries obtained by crystallographic analysis of the cross section by the SEM-EBSD method in the state where solution treatment and aging treatment are performed is 15% or more.
    aluminum alloy.
  2.  更に、鉄、クロム、亜鉛、チタン、及びジルコニウムからなる群より選択される1種以上の元素を含み、
     鉄の含有割合は0質量%超0.8質量%以下であり、
     クロムの含有割合は0質量%超0.35質量%以下であり、
     亜鉛の含有割合は0質量%超0.5質量%以下であり、
     チタンの含有割合は0質量%超0.2質量%以下であり、
     ジルコニウムの含有割合は0質量%超0.2質量%以下である、請求項1に記載のアルミニウム合金。
    Furthermore, containing one or more elements selected from the group consisting of iron, chromium, zinc, titanium, and zirconium,
    The iron content is more than 0% by mass and 0.8% by mass or less,
    The content of chromium is more than 0% by mass and 0.35% by mass or less,
    The content of zinc is more than 0% by mass and 0.5% by mass or less,
    The content of titanium is more than 0% by mass and 0.2% by mass or less,
    2. The aluminum alloy according to claim 1, wherein the content of zirconium is more than 0% by mass and 0.2% by mass or less.
  3.  シリコンを0.9質量%以上1.3質量%以下、
     マグネシウムを0.8質量%以上1.2質量%以下、
     鉄を0質量%超0.4質量%以下、
     銅を0.65質量%以上1.1質量%以下、
     マンガンを0.55質量%以上1.15質量%以下、
     クロムを0質量%超0.35質量%以下、
     亜鉛を0.12質量%以上0.25質量%以下、
     チタンを0質量%超0.075質量%以下、
     ジルコニウムを0.05質量%以上0.17質量%以下含み、残部がアルミニウム及び不可避不純物からなる組成を備える、請求項2に記載のアルミニウム合金。
    0.9% by mass or more and 1.3% by mass or less of silicon,
    0.8% by mass or more and 1.2% by mass or less of magnesium,
    More than 0% by mass and 0.4% by mass or less of iron,
    0.65% by mass or more and 1.1% by mass or less of copper,
    0.55% by mass or more and 1.15% by mass or less of manganese,
    More than 0% by mass and 0.35% by mass or less of chromium,
    0.12% by mass or more and 0.25% by mass or less of zinc,
    More than 0% by mass and 0.075% by mass or less of titanium,
    3. The aluminum alloy according to claim 2, comprising 0.05% by mass or more and 0.17% by mass or less of zirconium, with the balance being aluminum and unavoidable impurities.
  4.  シリコンを0.6質量%以上1.5質量%以下、
     マグネシウムを0.7質量%以上1.3質量%以下、
     鉄を0.02質量%以上0.4質量%以下、
     銅を0.5質量%以上1.2質量%以下、
     マンガンを0.5質量%以上1.1質量%以下、
     クロムを0質量%超0.3質量%以下、
     亜鉛を0.005質量%以上0.5質量%以下、
     チタンを0.01質量%以上0.2質量%以下、
     ジルコニウムを0.05質量%以上0.2質量%以下含み、残部がアルミニウム及び不可避不純物からなる組成を備える、請求項2に記載のアルミニウム合金。
    0.6% by mass or more and 1.5% by mass or less of silicon,
    0.7% by mass or more and 1.3% by mass or less of magnesium,
    0.02% by mass or more and 0.4% by mass or less of iron,
    0.5% by mass or more and 1.2% by mass or less of copper,
    0.5% by mass or more and 1.1% by mass or less of manganese,
    More than 0% by mass and 0.3% by mass or less of chromium,
    0.005% by mass or more and 0.5% by mass or less of zinc,
    0.01% by mass or more and 0.2% by mass or less of titanium,
    3. The aluminum alloy according to claim 2, comprising 0.05% by mass or more and 0.2% by mass or less of zirconium, with the balance being aluminum and unavoidable impurities.
  5.  溶体化処理及び時効処理が施された状態において定常クリープ速度の平均値と前記断面の平均結晶粒径の3乗との積で求められる値が80μm/h以下である、請求項1から請求項4のいずれか1項に記載のアルミニウム合金。 The product of the average value of the steady creep rate and the cube of the average grain size of the cross section in the state of solution treatment and aging treatment is 80 μm 3 /h or less. 5. The aluminum alloy according to any one of items 4.
  6.  溶体化処理及び時効処理が施された状態において前記断面の平均結晶粒径が10μm以上200μm以下である、請求項1から請求項5のいずれか1項に記載のアルミニウム合金。 The aluminum alloy according to any one of claims 1 to 5, wherein the average crystal grain size of the cross section is 10 µm or more and 200 µm or less in a state in which solution treatment and aging treatment have been performed.
  7.  請求項1から請求項6のいずれか1項に記載のアルミニウム合金からなる、
    アルミニウム合金線。
    Made of the aluminum alloy according to any one of claims 1 to 6,
    aluminum alloy wire.
  8.  シリコンを0.6質量%以上1.5質量%以下、マグネシウムを0.5質量%以上1.3質量%以下、銅を0.3質量%超1.2質量%以下、マンガンを0.2質量%以上1.15質量%以下含み、残部がアルミニウム及び不可避不純物からなる組成を有するアルミニウム合金の鋳造材に熱間塑性加工を施すことで熱間加工材を製造する工程と、
     前記熱間加工材に第一軟化処理を施すことで第一軟化材を製造する工程と、
     前記第一軟化材に冷間で第一伸線加工を施すことで第一伸線材を製造する工程と、
     前記第一伸線材に第二軟化処理を施すことで第二軟化材を製造する工程と、
     前記第二軟化材に冷間で第二伸線加工を施すことで第二伸線材を製造する工程とを備え、
     前記第一軟化処理及び前記第二軟化処理の加熱温度は300℃以上500℃未満であり、
     前記第一伸線加工の加工度は30%以上であり、
     前記第二伸線加工の加工度は20%以上である、
    アルミニウム合金線の製造方法。
    0.6 mass % to 1.5 mass % of silicon, 0.5 mass % to 1.3 mass % of magnesium, more than 0.3 mass % to 1.2 mass % of copper, and 0.2 mass % of manganese A step of producing a hot-worked material by subjecting a cast material of an aluminum alloy having a composition containing not less than 1.15% by mass and the balance consisting of aluminum and inevitable impurities to hot plastic working;
    a step of subjecting the hot-worked material to a first softening treatment to produce a first softened material;
    a step of subjecting the first softened material to cold first wire drawing to produce a first drawn wire;
    a step of subjecting the first wire drawn material to a second softening treatment to produce a second softened material;
    a step of manufacturing a second wire drawn material by subjecting the second softened material to cold second wire drawing,
    The heating temperature of the first softening treatment and the second softening treatment is 300° C. or more and less than 500° C.,
    The working degree of the first wire drawing is 30% or more,
    The working degree of the second wire drawing is 20% or more,
    A method for producing an aluminum alloy wire.
  9.  前記アルミニウム合金は、更に、鉄、クロム、亜鉛、チタン、及びジルコニウムからなる群より選択される1種以上の元素を含み、
     鉄の含有割合は0質量%超0.8質量%以下であり、
     クロムの含有割合は0質量%超0.35質量%以下であり、
     亜鉛の含有割合は0質量%超0.5質量%以下であり、
     チタンの含有割合は0質量%超0.2質量%以下であり、
     ジルコニウムの含有割合は0質量%超0.2質量%以下である、請求項8に記載のアルミニウム合金線の製造方法。
    The aluminum alloy further contains one or more elements selected from the group consisting of iron, chromium, zinc, titanium, and zirconium,
    The iron content is more than 0% by mass and 0.8% by mass or less,
    The content of chromium is more than 0% by mass and 0.35% by mass or less,
    The content of zinc is more than 0% by mass and 0.5% by mass or less,
    The content of titanium is more than 0% by mass and 0.2% by mass or less,
    The method for producing an aluminum alloy wire according to claim 8, wherein the content of zirconium is more than 0% by mass and 0.2% by mass or less.
PCT/JP2022/011699 2021-05-27 2022-03-15 Aluminum alloy, aluminum alloy wire, and method for manufacturing aluminum alloy wire WO2022249665A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022543189A JPWO2022249665A1 (en) 2021-05-27 2022-03-15

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-089505 2021-05-27
JP2021089505 2021-05-27

Publications (1)

Publication Number Publication Date
WO2022249665A1 true WO2022249665A1 (en) 2022-12-01

Family

ID=84229806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011699 WO2022249665A1 (en) 2021-05-27 2022-03-15 Aluminum alloy, aluminum alloy wire, and method for manufacturing aluminum alloy wire

Country Status (2)

Country Link
JP (1) JPWO2022249665A1 (en)
WO (1) WO2022249665A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007177308A (en) * 2005-12-28 2007-07-12 Sumitomo Light Metal Ind Ltd High strength and high toughness aluminum alloy extruded material and forged material having excellent corrosion resistance, and methods for producing the extruded material and forged material
JP2012097321A (en) * 2010-11-02 2012-05-24 Furukawa-Sky Aluminum Corp High-strength aluminum alloy forged product excellent in stress corrosion cracking resistance and forging method for the same
JP2013104122A (en) * 2011-11-16 2013-05-30 Sumitomo Electric Ind Ltd Aluminum alloy wire for bolt, the bolt and methods for manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5476452B2 (en) * 2012-11-27 2014-04-23 トヨタ自動車株式会社 High strength, high toughness aluminum alloy forging material with excellent corrosion resistance, its manufacturing method, and suspension parts
JP6368087B2 (en) * 2013-12-26 2018-08-01 住友電気工業株式会社 Aluminum alloy wire, method for producing aluminum alloy wire, and aluminum alloy member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007177308A (en) * 2005-12-28 2007-07-12 Sumitomo Light Metal Ind Ltd High strength and high toughness aluminum alloy extruded material and forged material having excellent corrosion resistance, and methods for producing the extruded material and forged material
JP2012097321A (en) * 2010-11-02 2012-05-24 Furukawa-Sky Aluminum Corp High-strength aluminum alloy forged product excellent in stress corrosion cracking resistance and forging method for the same
JP2013104122A (en) * 2011-11-16 2013-05-30 Sumitomo Electric Ind Ltd Aluminum alloy wire for bolt, the bolt and methods for manufacturing the same

Also Published As

Publication number Publication date
JPWO2022249665A1 (en) 2022-12-01

Similar Documents

Publication Publication Date Title
EP3118338B1 (en) Rod made of cu-al-mn-based alloy and method for producing same
EP3023508B1 (en) Expanded member comprising cu-al-mn alloy material and exhibiting superior anti-stress corrosion properties, and use therefor
US10351939B2 (en) Cu—Al—Mn-based alloy exhibiting stable superelasticity and method of producing the same
EP2481823B1 (en) Nanocrystal titanium alloy and production method for same
RU2759814C1 (en) WIRE FROM α+β-TYPE TITANIUM ALLOY AND METHOD FOR PRODUCING WIRE FROM α+β-TYPE TITANIUM ALLOY
EP2679694B1 (en) Ti-mo alloy and method for producing same
EP2995694A1 (en) Cu-Al-Mn-BASED BAR MATERIAL AND PLATE MATERIAL DEMONSTRATING STABLE SUPERELASTICITY, METHOD FOR MANUFACTURING SAID BAR MATERIAL AND PLATE MATERIAL, SEISMIC CONTROL MEMBER IN WHICH SAID BAR MATERIAL AND PLATE MATERIAL ARE USED, AND SEISMIC CONTROL STRUCTURE IN WHICH SEISMIC CONTROL MEMBER IS USED
JPH10306335A (en) Alpha plus beta titanium alloy bar and wire rod, and its production
WO2018193810A1 (en) High strength and low thermal expansion alloy wire
JP7448776B2 (en) Titanium alloy thin plate and method for producing titanium alloy thin plate
JP2009074104A (en) Alloy with high elasticity
JP7144840B2 (en) Titanium alloy, method for producing the same, and engine parts using the same
WO2022249665A1 (en) Aluminum alloy, aluminum alloy wire, and method for manufacturing aluminum alloy wire
JP4865174B2 (en) Manufacturing method of aluminum alloy sheet with excellent bending workability and drawability
JP6673121B2 (en) α + β type titanium alloy rod and method for producing the same
JP7303434B2 (en) Titanium alloy plates and automotive exhaust system parts
JP2020090727A (en) Manufacturing method of heat resistant aluminum alloy material
JP7256337B1 (en) Aluminum alloy, aluminum alloy wire, and method for producing aluminum alloy wire
JP4987640B2 (en) Titanium alloy bar wire for machine parts or decorative parts suitable for manufacturing cold-worked parts and method for manufacturing the same
WO2023145050A1 (en) Titanium alloy plate
JP2001152277A (en) Co BASE ALLOY AND PRODUCING METHOD THEREFOR
TW202229572A (en) Titanium alloy plate, titanium alloy coil, method for producing titanium alloy plate and method for producing titanium alloy coil
JP2020090726A (en) Manufacturing method of heat resistant aluminum alloy material
KR20230080695A (en) Commercially pure titanium having high strength and high uniform ductility and method of manufacturing the same
JP2023157505A (en) β-TYPE TITANIUM ALLOY WIRE

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022543189

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810943

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22810943

Country of ref document: EP

Kind code of ref document: A1