JPS6247445A - Pseudoelastic alloy - Google Patents
Pseudoelastic alloyInfo
- Publication number
- JPS6247445A JPS6247445A JP18503785A JP18503785A JPS6247445A JP S6247445 A JPS6247445 A JP S6247445A JP 18503785 A JP18503785 A JP 18503785A JP 18503785 A JP18503785 A JP 18503785A JP S6247445 A JPS6247445 A JP S6247445A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- pseudoelastic
- temperature
- wire
- stress
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Springs (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は擬弾性合金に関し、特にTiNiRu合金から
なる擬弾性バネに関するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a pseudoelastic alloy, and particularly to a pseudoelastic spring made of a TiNiRu alloy.
(従来技術)
従来からr T1Ni合金は熱弾性型マルテンサイト変
態の逆変態に付随して顕著な形状記憶効果を示すことが
知られているとともに所謂擬弾性効果も併せて示すこと
が知られている。(Prior Art) It has been known that rT1Ni alloy exhibits a remarkable shape memory effect accompanying the reverse transformation of thermoelastic martensitic transformation, and it is also known that it also exhibits a so-called pseudoelastic effect. There is.
ところで、擬弾性効果とは、 ’piNi合金の逆変態
完了温度(以下、 Afと略称する。)以上の温度にお
いて、応力負荷をかけると2.マルテンサイト相が誘起
されて、見掛は上数%〜10%の塑性変形を起すが、除
荷と同時に上述の応力誘起マルテンサイト相が母相に戻
ることによシ形状が完全に元に戻る性質のことである。By the way, the pseudoelastic effect means that when a stress load is applied at a temperature higher than the reverse transformation completion temperature (hereinafter abbreviated as Af) of piNi alloy, 2. The martensitic phase is induced, causing an apparent plastic deformation of several to 10%, but upon unloading, the stress-induced martensitic phase returns to the parent phase and the shape is completely restored. It is the property of returning.
T1Ni合金は生体適合性に優れ、かつ、従来のワイヤ
に比べて容易に変形させやすく、また、上記の擬弾性効
果によシ人体等への装着が容易なことから、近年、医療
用として歯列矯正ワイヤ、カテーテル等のバネ用材料と
して注目されている。T1Ni alloy has excellent biocompatibility, is easier to deform than conventional wire, and is easy to attach to the human body due to the above-mentioned pseudoelastic effect, so it has recently been used for medical purposes. It is attracting attention as a spring material for straightening wires, catheters, etc.
カテーテルのガイドワイヤーとしては現在、ピアノ線、
ステンレス線等のヘリカルコイルパネカ用いられている
。カテーテルのガイドワイヤに要求される機能はトルク
伝達性、しなやかさを体温(夕35℃)近傍の温度で示
すことである。更にカテーテルは血管中に挿入されるた
めに、少なくとも1〜1.5mの範囲で直線状を示すこ
とが求められる。Currently, piano wire,
Helical coil panel made of stainless steel wire etc. is used. The functions required of catheter guidewires are torque transmittance and flexibility at temperatures close to body temperature (35° C. in the evening). Furthermore, since the catheter is inserted into a blood vessel, it is required to exhibit a straight line within a range of at least 1 to 1.5 m.
ところで、特A9−20291 ’l〜稈老イよT1N
i合金線が0℃〜40℃の温度範囲で上述のカテーテル
に要求される機能を満足し、ガイドワイヤーとして使用
可能であることが示されている。一般にはカテーテルの
ガイドワイヤーは体温(z35℃)において使用される
ため、上記の’piNi合金によっても充分その機能は
満足される。By the way, special A9-20291 'l ~ culm old iyo T1N
It has been shown that the i-alloy wire satisfies the functions required for the above-mentioned catheter in the temperature range of 0°C to 40°C and can be used as a guidewire. Generally, the guide wire of a catheter is used at body temperature (z35° C.), so the above-mentioned 'piNi alloy also satisfies its function.
(発明が解決しようとする問題点)
一方、ガイドワイヤは0℃以下に冷却された生理食塩水
中に浸すことがあ馬この場合、T1Ni合金は組成を変
化させ、または熱処理条件を変えても0℃以下で完全な
擬弾性特性を得ることが困難であシ、従って、’I!i
Ni合金は上述のガイドワイヤに要求される機能を満足
せず使用に適さない。(Problem to be solved by the invention) On the other hand, it is not possible to immerse the guide wire in physiological saline cooled to below 0°C. It is difficult to obtain perfect pseudoelastic properties below ℃, therefore, 'I! i
Ni alloy does not satisfy the functions required for the above-mentioned guide wire and is not suitable for use.
このため、0℃以下の雰囲気下(冷蔵庫等)で。Therefore, in an atmosphere below 0°C (refrigerator, etc.).
バネ材としてT1Ni合金を用いることができない。T1Ni alloy cannot be used as a spring material.
本発明の目的は0℃以下の温度で完全な擬弾性特性を有
する擬弾性合金製のバネを提供することにある。The object of the present invention is to provide a spring made of a pseudoelastic alloy that has perfect pseudoelastic properties at temperatures below 0°C.
(問題点を解決するだめの手段)
本発明はNiが51〜52 at%、残部Tiよりなる
TiNi合金において、 Niの一部をRuで0.5〜
2at%置換したことを特徴とする擬弾性合金である。(Means for Solving the Problem) The present invention provides a TiNi alloy consisting of 51 to 52 at% Ni and the remainder Ti, in which a portion of the Ni is replaced by 0.5 to 52 at% Ru.
It is a pseudoelastic alloy characterized by 2 at% substitution.
本発明による擬弾性合金の組成を式で示せば。The composition of the pseudoelastic alloy according to the present invention is expressed by the following formula.
次の通シである。This is the following circular.
Ti、。。−xNiX−yRuy ただし 51≦X≦52 0.5≦y≦2.0 (実施例〉 以下本発明について実施例によシ説明する。Ti,. . -xNiX-yRuy However, 51≦X≦52 0.5≦y≦2.0 (Example> The present invention will be explained below using examples.
高周波真空溶解によって得られた下記の表に示すTiN
iRu合金をそれぞれ温度900℃で2時間の均一化処
理の後、熱間ハンマー及び熱間ロールによって直径9.
5 mに加工した。その後、温度700〜800℃で中
間焼鈍を行ない、直径1.3咽まで冷間加工し、さらに
、焼鈍なしで直径1. Ottmまで冷間加工(加工率
40%)して、素線を得た。TiN shown in the table below obtained by high frequency vacuum melting
After each iRu alloy was homogenized at a temperature of 900°C for 2 hours, it was shaped into diameters of 9mm by hot hammer and hot roll.
Processed to 5 m. Thereafter, intermediate annealing is performed at a temperature of 700 to 800°C, cold working is performed to a diameter of 1.3 mm, and then the diameter is 1.3 mm without annealing. The wire was cold-worked to Ottm (working rate: 40%) to obtain a wire.
c丁下余日
上述のようにして得られた素線を温度400℃で30分
間熱処理を施し2合金線を得た。これら得られた合金線
のうちのひとつである
Ti49Ni50.5R” 0.5合金線(上記の表に
示す合金番号2の組成の合金線)を温度変化させて、応
力とひずみとの関係を調べた。その結果を第1図(、)
〜V)の応力−ひすみ線図に示す。第1図(a)〜(4
に示すようにTi49” 50.5RuO,5合金線は
温度−21℃以下では形状記憶効果を示しているが、一
方、温度−12℃以上になると完全な擬弾性効果を示し
ていること(Ti−51at%Ni +上記の表に示す
合金番号グの組成の合金線)を温度を変化させて、応力
とひずみとの関係を調べた。その結果を第2図(a)〜
(f)に示す。第2図(、) 〜(f)から明らかな′
ようにr T 14yNi s1合金線がほぼ完全な擬
弾性を示すのは温度14℃(即ち10℃を越える)を越
えてからである。The strands obtained as described above were heat treated at a temperature of 400° C. for 30 minutes to obtain alloy wire 2. One of these obtained alloy wires, a Ti49Ni50.5R"0.5 alloy wire (alloy wire with the composition of alloy number 2 shown in the table above), was subjected to temperature changes to examine the relationship between stress and strain. The results are shown in Figure 1 (,).
~V) is shown in the stress-strain diagram. Figures 1(a) to (4)
As shown in Figure 2, the Ti49" 50.5RuO,5 alloy wire exhibits a shape memory effect at temperatures below -21°C, but on the other hand, at temperatures above -12°C, it exhibits a complete pseudoelastic effect (Ti The relationship between stress and strain was investigated by varying the temperature of the alloy wire (with the composition of -51 at% Ni + alloy number shown in the table above).The results are shown in Figure 2 (a) -
Shown in (f). ′ which is clear from Figure 2 (,) to (f)
Thus, the r T 14yNi s1 alloy wire exhibits almost complete pseudoelasticity only after the temperature exceeds 14° C. (ie, exceeds 10° C.).
第3図(、)及び(b)にはそれぞれ上記の表に示す組
成の合金線(合金番号1〜5)の加重除荷後の残留ひず
み(チ)と温度(℃)との関係及び降伏応力(kg/W
m2)と温度C℃)との関係を示す。Figures 3 (,) and (b) show the relationship between the residual strain (chi) and temperature (°C) after loading and unloading of alloy wires (alloy numbers 1 to 5) having the composition shown in the above table, respectively, and the yield. Stress (kg/W
The relationship between m2) and temperature C°C is shown.
第3図(、)及び(b)から明らかなように、 Ruが
0.25at%の合金線(A3の合金線)はRuの添加
効果にとぼしく、擬弾性効果が得られない。またNiと
Ruの合計量が51 at%以下の合金線の場合、温度
0℃以下で擬弾性特性が得られない。As is clear from FIGS. 3(a) and (b), the alloy wire containing 0.25 at % Ru (alloy wire A3) has only a small effect of adding Ru, and cannot obtain a pseudoelastic effect. Further, in the case of an alloy wire in which the total amount of Ni and Ru is 51 at% or less, pseudoelastic properties cannot be obtained at a temperature of 0° C. or less.
NiとRuの合計量を52at%までとしたのはNi
+Ru ) 52 at%の合金は加工性に難点があり
。The total amount of Ni and Ru is up to 52 at% due to Ni.
+Ru) 52 at% alloy has difficulty in workability.
一方、 Ruの添加範囲を0.5〜2.0at%とじた
のは0.5at%未満ではRuの添加効果がとぼしくt
2at%を越えて添加しても顕著な添加効果が認め難く
。On the other hand, the reason why the Ru addition range is limited to 0.5 to 2.0 at% is because the effect of Ru addition is poor if it is less than 0.5 at%.
Even if it is added in excess of 2 at%, it is difficult to notice any significant addition effect.
Ruが高価な点を考慮して、上限を2.Oat%とじた
。Considering that Ru is expensive, the upper limit is set to 2. Oat% closed.
このように上述の擬弾性合金はT1Ni合金以上の高い
変形応力(降伏応力)を有し、しかも温度0℃以下にお
いても擬弾性特性を有しておシ、医療用のガイドワイヤ
のみならず、低温下でのバネ材としての応用が期待でき
る。In this way, the above-mentioned pseudoelastic alloy has a higher deformation stress (yield stress) than the T1Ni alloy, and also has pseudoelastic properties even at temperatures below 0°C. It can be expected to be used as a spring material at low temperatures.
(発明の効果)
以上説明したように2本発明による擬弾性合金によれば
、常温においてT1Ni合金同様に良好な擬弾性特性を
示すとともに、温度0℃以下においても良好な擬弾性特
性を示すという効果がある。(Effects of the Invention) As explained above, the two pseudoelastic alloys according to the present invention exhibit good pseudoelastic properties at room temperature like the T1Ni alloy, and also exhibit good pseudoelastic properties at temperatures below 0°C. effective.
第1図(、) 〜(1)はそれぞれT’49N’ 50
.5RuO,5合金線を温度一定として応力とひずみと
の関係を示す応力−ひすみ線図、第2図(、) 〜(f
)はTi −51at%Ni合金線を温度一定として応
力とひずみとの関係を示す応力−ひすみ線図、第3図(
、)及び(b)はそれぞれ表に示す組成の合金線の残留
ひずみ及び降伏応力の温度依存性を示す図である。
代理人(7783)弁理士池田憲保
伸び(1%) 1甲 び (%)
V4状応力(Kg/’mm2)
残留ひずみ(%)Figure 1 (,) to (1) are each T'49N' 50
.. Stress-strain diagram showing the relationship between stress and strain for 5RuO, 5 alloy wire at a constant temperature, Figure 2 (,) ~ (f
) is a stress-strain diagram showing the relationship between stress and strain for a Ti-51at%Ni alloy wire at a constant temperature, Figure 3 (
, ) and (b) are diagrams showing the temperature dependence of residual strain and yield stress of alloy wires having the compositions shown in the table, respectively. Agent (7783) Patent Attorney Noriyasu Ikeda Elongation (1%) 1-layer (%) V4 shape stress (Kg/'mm2) Residual strain (%)
Claims (1)
りなるTiNi合金において、前記Niのうち0.5〜
2.0原子濃度(at%)をRuで置換したことを特徴
とする擬弾性合金。1. In a TiNi alloy consisting of Ni at 51-52 atomic concentration (at%) and the balance being Ti, 0.5-52 of the Ni
A pseudoelastic alloy characterized in that 2.0 atomic concentration (at%) is replaced with Ru.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18503785A JPS6247445A (en) | 1985-08-24 | 1985-08-24 | Pseudoelastic alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18503785A JPS6247445A (en) | 1985-08-24 | 1985-08-24 | Pseudoelastic alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6247445A true JPS6247445A (en) | 1987-03-02 |
Family
ID=16163682
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18503785A Pending JPS6247445A (en) | 1985-08-24 | 1985-08-24 | Pseudoelastic alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6247445A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5238004A (en) * | 1990-04-10 | 1993-08-24 | Boston Scientific Corporation | High elongation linear elastic guidewire |
CN111647939A (en) * | 2020-04-28 | 2020-09-11 | 营口理工学院 | Method for manufacturing novel 2% Ru nickel-based single crystal superalloy |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5928548A (en) * | 1982-08-06 | 1984-02-15 | Kazuhiro Otsuka | Superelastic shape-memory ni-ti base alloy and manufacture thereof |
JPS6026648A (en) * | 1983-07-21 | 1985-02-09 | Furukawa Electric Co Ltd:The | Manufacture of shape memory ni-ti alloy plate |
-
1985
- 1985-08-24 JP JP18503785A patent/JPS6247445A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5928548A (en) * | 1982-08-06 | 1984-02-15 | Kazuhiro Otsuka | Superelastic shape-memory ni-ti base alloy and manufacture thereof |
JPS6026648A (en) * | 1983-07-21 | 1985-02-09 | Furukawa Electric Co Ltd:The | Manufacture of shape memory ni-ti alloy plate |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5238004A (en) * | 1990-04-10 | 1993-08-24 | Boston Scientific Corporation | High elongation linear elastic guidewire |
CN111647939A (en) * | 2020-04-28 | 2020-09-11 | 营口理工学院 | Method for manufacturing novel 2% Ru nickel-based single crystal superalloy |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7083687B2 (en) | Super-elastic titanium alloy for medical uses | |
KR20010041604A (en) | Pseudoelastic beta titanium alloy and uses therefor | |
JPS63171844A (en) | Ti-ni-v shape memory alloy | |
JP4302604B2 (en) | Superelastic titanium alloy for living body | |
JPS6247445A (en) | Pseudoelastic alloy | |
JPS6184361A (en) | Manufacture of pseudoelastic spring | |
US9889278B2 (en) | Methods for manufacturing a guide wire utilizing a cold worked nickel-titanium-niobium ternary alloy | |
JP2006089826A (en) | Superelastic titanium alloy for living body | |
JP2004197112A (en) | Method of producing biological superelastic titanium alloy | |
JPS63235444A (en) | Ti-ni-al based shape memory alloy and its production | |
JP2541802B2 (en) | Shape memory TiNiV alloy and manufacturing method thereof | |
WO2006082682A1 (en) | Ti-Nb-Zr BASED ALLOY | |
WO1999049091A1 (en) | Ti-V-Al BASED SUPERELASTICITY ALLOY | |
JP2005290512A (en) | Biological superelastic titanium alloy | |
JP3141328B2 (en) | Manufacturing method of super elastic spring alloy | |
JP3933623B2 (en) | Method for producing superelastic titanium alloy for living body and titanium alloy for superelasticity | |
JPH01268835A (en) | Super elastic alloy material and super elastic element | |
JPH0288737A (en) | Super elastic ni-ti-cu alloy and its manufacture | |
JPH0762506A (en) | Production of superelastic spring | |
JPS59145744A (en) | Shape memory cu-zn-al alloy | |
JPS6289847A (en) | High-strength two-phase stainless steel for rolling stock excellent in young's modulus and corrosion resistance | |
JPH0222437A (en) | Super elastic ti-ni-v-cr alloy, super elastic element and manufacture of super elastic element | |
JPH062059A (en) | Superelastic material low in residual strain | |
JPH0551682A (en) | Superelastic material and its production | |
JP2005105404A6 (en) | Method for producing superelastic titanium alloy for living body and titanium alloy for superelasticity |