JPS6026648A - Manufacture of shape memory ni-ti alloy plate - Google Patents

Manufacture of shape memory ni-ti alloy plate

Info

Publication number
JPS6026648A
JPS6026648A JP13330083A JP13330083A JPS6026648A JP S6026648 A JPS6026648 A JP S6026648A JP 13330083 A JP13330083 A JP 13330083A JP 13330083 A JP13330083 A JP 13330083A JP S6026648 A JPS6026648 A JP S6026648A
Authority
JP
Japan
Prior art keywords
shape memory
cold rolling
alloy
plate
final
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13330083A
Other languages
Japanese (ja)
Inventor
Hisashi Mogi
久 茂木
Yuichi Suzuki
雄一 鈴木
Koichiro Araida
新井田 耕一郎
Masayuki Nakamura
雅之 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP13330083A priority Critical patent/JPS6026648A/en
Publication of JPS6026648A publication Critical patent/JPS6026648A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Abstract

PURPOSE:To obtain an Ni-Ti alloy plate showing satisfactory shape memory characteristics by subjecting an Ni-Ti alloy having a specified composition to process annealing and cold rolling under specified conditions. CONSTITUTION:An Ni-Ti alloy ingot consisting of 49.0-52.0atom% Ni and the balance Ti or further contg. <=3.0atom% in total of one or more among V, Cr, Mn, Fe, Co, Cu, Zr, Nb, Mo, Pd, Ag, Ru, Ta and W is hot rolled. The hot rolled plate is subjected to final in-process annealing at 400-700 deg.C and final cold rolling at 15-60% draft. By cold rolling the Ni-Ti alloy at said draft, the shape memory characteristics are improved, and the resulting plate can be worked without causing cracking.

Description

【発明の詳細な説明】 本発明は良好な形状記憶特性及び超弾性特性を示すNi
 Ti系合金板の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a Ni
The present invention relates to a method for manufacturing a Ti-based alloy plate.

N i 49.0〜52.Oat%又はN i’49.
0〜52.Oat%とV、Cr 、Mn 、Fe 、G
o 、Cu 、Zr 、Nb、Mo 、Pd 、/’l
 、Ru 、Ta 、Wの14 (iiJ tL ′I
Js 1種又は2種以上を合計3.Oat%以下を含み
、残&ST1からなるNiTi系合金は、顕茗なH3状
君己憶特性及び超弾性を示し、その特性を利用して各種
用途が検討され、一部では実用化されて0る。しかしな
がらこの合金は加工硬化が著しく11こめ、良好な形状
記憶特性及び超弾性特性を示づ−もの(よ線材に限られ
、板材としては一旦線材に(Ill線IJ[+工したも
のを圧延加工によりつぶしたテープ4人のものか又は熱
間圧延によるもので、冷間又tま温間圧延は板の形状及
び寸法の修正に用いられる程度であった。
Ni 49.0-52. Oat% or Ni'49.
0-52. Oat% and V, Cr, Mn, Fe, G
o, Cu, Zr, Nb, Mo, Pd, /'l
, Ru, Ta, W (iiJ tL ′I
Js 1 or 2 or more types in total 3. NiTi-based alloys containing Oat% or less and remaining &ST1 exhibit remarkable H3-like self-memory properties and superelasticity, and various uses have been investigated using these properties, and some have been put into practical use. Ru. However, this alloy undergoes significant work hardening and exhibits good shape memory and superelastic properties (limited to straight wire rods, and as plate materials it is once processed into wire rods (Ill wire IJ [+ The tape was crushed by four people or hot rolled, and cold or warm rolling was only used to modify the shape and dimensions of the plate.

本発明はこれに鑑み、種々IQ ii”lの結果、Ni
Ti系合金にある程度以上の冷間ハロエをIJllえる
と、その形状記憶特性が向上づることを知見し、これに
基いて冷間圧延方法及び焼鈍条件を核晶」の8果、良好
な形状記憶特性及び超弾性特性を示gNITj系合金板
の製造法を開発したもので、N149.0〜52.Oa
t%又はN i 49,0〜52.Oat%と■、Or
、Mn、Fe、Co、Cu、Zr、Nl+、Mo 、P
d 、A(1、Ru 、Ta 、Wの内何れか1種又は
2種以上を合計3.Oat%以下を含み、残部Tiから
なるNi Ti系合金素板を中間焼鈍と冷間圧延加工す
るNi Ti系合金板の製造において、圧延板を400
〜700℃で最終中間焼鈍後、加工率15〜60%の最
終冷間圧延加工を施すことを特徴とするものである。
In view of this, the present invention provides various IQ ii"l results, Ni
It was discovered that when a certain amount of cold halo is applied to a Ti-based alloy, its shape memory properties are improved. Based on this, the cold rolling method and annealing conditions were changed to improve the shape memory properties and good shape memory properties of Ti-based alloys. We have developed a manufacturing method for gNITj-based alloy plates that exhibit superelastic properties, with N149.0 to 52. Oa
t% or Ni 49.0-52. Oat% and ■, Or
, Mn, Fe, Co, Cu, Zr, Nl+, Mo, P
d, A(1) A NiTi-based alloy blank containing one or more of Ru, Ta, and W in a total content of 3.0 at% or less, with the remainder being Ti, is subjected to intermediate annealing and cold rolling. In the production of Ni Ti alloy plates, rolled plates are
It is characterized in that after final intermediate annealing at ~700°C, final cold rolling is performed at a processing rate of 15 to 60%.

即ら本発明は上記組成範囲のNi l’−i系合金を常
法に従って溶解鋳造し、これを熱間圧延した素板を用い
、これに冷間圧延と中間焼鈍を繰返して所望の板厚に仕
上げる工程において、最終中間焼鈍を400〜700℃
で行ない、しかる後加工率15〜60%の最終冷間圧延
加工を行なうものである。このようにして製造したNi
Ti系合金板は、常法により形状記憶処理することによ
り良好な形状記憶特性を示す。
That is, the present invention uses a blank plate obtained by melting and casting a Ni l'-i alloy having the above composition range in accordance with a conventional method and hot rolling it, and repeating cold rolling and intermediate annealing to obtain the desired plate thickness. In the finishing process, the final intermediate annealing is performed at 400 to 700℃.
After that, a final cold rolling process is performed at a working rate of 15 to 60%. Ni produced in this way
A Ti-based alloy plate exhibits good shape memory properties when subjected to shape memory treatment using a conventional method.

しかして本発明においてNi l”i系合金の組成を上
記の如く限定したのは、良好な形状記憶特性を得るため
であり、この範囲より外れると良好な形状記憶特性は得
られない。また最終中間焼鈍温度を400〜700 ’
Cと限定したのは、最終圧延加工により表面状況の良好
な圧延を可能にするためで、400℃未満では冷間圧延
により良好な形状記憶特性を得るのに必要な加工を行な
うことができず、700℃を越えると表面の酸化皮膜が
厚くなり、冷間圧延後の表面状態が悪く、歩留りを低下
するためである。尚最終中間焼鈍の保持日間は板厚によ
っても異なるが、形状記憶特性にはあまり影響せず、数
分乃至数十分で十分である。更に最終中間焼鈍後の冷間
圧延における加工率を15〜60%と限定したのは良好
な形状記憶特性を得るためであり、加工率が15%末渦
では形状記憶特性が不十分となり、60%を越えると加
工硬化が著しく、板が割れるなど良好な加工を行なうこ
とができないためである。
However, in the present invention, the reason why the composition of the Ni l''i alloy is limited as described above is to obtain good shape memory properties, and if it deviates from this range, good shape memory properties cannot be obtained. Intermediate annealing temperature 400~700'
The reason why it was limited to C was to enable rolling with a good surface condition in the final rolling process, as it is not possible to perform the processing necessary to obtain good shape memory properties by cold rolling at temperatures below 400°C. This is because if the temperature exceeds 700°C, the oxide film on the surface becomes thick, resulting in poor surface condition after cold rolling and lowering yield. The holding period for the final intermediate annealing varies depending on the plate thickness, but it does not affect the shape memory properties much, and a few minutes to several tens of minutes is sufficient. Furthermore, the processing rate in the cold rolling after the final intermediate annealing was limited to 15 to 60% in order to obtain good shape memory properties, and if the processing rate was 15%, the shape memory properties would be insufficient. This is because if it exceeds %, work hardening will be significant and the plate will not be able to be processed well, such as cracking.

以下本発明を実施例について詳細に説明する。The present invention will be described in detail below with reference to Examples.

N i 49.6at%、残部T+からなるNi’li
系合金を秤量し、カーボンルツボを用いて高周波真空溶
解炉(真空度10−41−orr 、周波数10KHz
)により溶解し、水冷銅鋳型に鋳込み、厚さ30mm、
幅100mm、長さ200mmの鋳塊とした。この鋳塊
を面削りしだ後1000℃に加熱して熱間圧延し、板厚
が薄くなるにつれて温度を下げ、7oo℃で厚さ2mm
の板とした。
Ni'li consisting of N i 49.6 at% and the remainder T+
Weigh the alloy and place it in a high frequency vacuum melting furnace (degree of vacuum 10-41-orr, frequency 10KHz) using a carbon crucible.
) and cast into a water-cooled copper mold to a thickness of 30 mm.
The ingot had a width of 100 mm and a length of 200 mm. After face-shaving this ingot, it was heated to 1000℃ and hot-rolled. As the thickness of the ingot became thinner, the temperature was lowered until it was rolled to a thickness of 2mm at 7oo℃.
It was made into a board.

この熱間圧延した板の表面酸化スケールを除去した後、
冷間圧延と中間焼鈍を繰返して厚さ1 mmの板とし、
これについて種々の温度で10分間最終中間焼鈍し、焼
鈍温度と表面酸化スケールの厚さ及び良好な冷間加■が
可能な最大加工率の関係を試べた。その結果を第1表に
示す。
After removing the surface oxidation scale of this hot rolled plate,
Cold rolling and intermediate annealing were repeated to form a plate with a thickness of 1 mm.
This was subjected to a final intermediate annealing for 10 minutes at various temperatures to examine the relationship between the annealing temperature, the thickness of the surface oxidation scale, and the maximum working rate that allows good cold working. The results are shown in Table 1.

第 1 表 焼鈍温度 酸化スケールの厚さ 最大加工率(℃) (
μ) (%) 200 0.01 4 300 0.01 15 400 0.01 40 500 0.5 55 eoo i、o e。
Table 1 Annealing temperature Oxide scale thickness Maximum processing rate (℃) (
μ) (%) 200 0.01 4 300 0.01 15 400 0.01 40 500 0.5 55 eoo i, o e.

700 1 、0 60 800 4.0 60 900 5.0 60 1000 8.0 60 第1表から明らかなように、焼鈍温度が400℃未満で
は十分な加工率が得られず、作業効率が劣ることが判る
。また焼@渇度が700℃を越えると、酸化スケールが
厚くなって表面状態が悪くなり、歩留りも低下覆ること
が判る。
700 1 , 0 60 800 4.0 60 900 5.0 60 1000 8.0 60 As is clear from Table 1, if the annealing temperature is less than 400°C, a sufficient processing rate cannot be obtained and the work efficiency is poor. I understand. It is also seen that when the degree of quenching exceeds 700°C, the oxide scale becomes thicker, the surface condition deteriorates, and the yield also decreases.

次に600℃で10分間最終中間焼鈍したものについて
、種々の加工率で最終圧延加工し、これまり幅1omm
、長さ100mの短冊状試片を切り出し、これを2枚の
ステンレンス板(厚さ2 mm >間に挾み500°C
ig度で30分間加熱処理(形状記憶処理)して平板状
態を記憶させた。これを第1図(イ)に示すように平板
状短冊(1)を直径15mmの丸棒(2)に巻きf4け
て変形さゼた後、湯水に浸梢して形状回復を行なわせ、
第1図(ロ)に示すように形状回復した短Ill (1
)の聞き角φを測定し7.−6その結果を第2表に示す
。尚この形状記憶板の形状回復温度は53°であっlC
6 第 2 表 最終加工率(%) 聞き角φ。
Next, final intermediate annealing was performed at 600°C for 10 minutes, and final rolling was performed at various processing rates to give a width of 1 mm.
, cut out a strip specimen with a length of 100 m, sandwiched it between two stainless steel plates (thickness 2 mm), and heated it at 500°C.
A heat treatment (shape memory treatment) was performed for 30 minutes at a temperature of 150°C to memorize the flat plate state. As shown in Fig. 1 (a), the flat strip (1) was wound around a round rod (2) with a diameter of 15 mm and deformed by f4 degrees, and then immersed in hot water to recover its shape.
As shown in Figure 1 (b), the short Ill (1
) Measure the hearing angle φ of 7. -6 The results are shown in Table 2. The shape recovery temperature of this shape memory plate is 53° and lC.
6 Table 2 Final processing rate (%) Hearing angle φ.

513゜ 10 1’50 15 175 20 178 30 180 40 179 50 178 60 180 第2表から明らかなように、最終中間焼鈍後の最終冷間
圧延において、加工率15%以上の冷間圧延を行なうこ
とにより、良好な形状記憶特性が得られることが判る。
513゜10 1'50 15 175 20 178 30 180 40 179 50 178 60 180 As is clear from Table 2, in the final cold rolling after the final intermediate annealing, cold rolling with a processing rate of 15% or more is performed. It can be seen that good shape memory properties can be obtained.

また加工率60%を越える冷間圧延は加工硬化が著しく
、板が割れるなど良好な合金板を得ることができなかっ
た。
In addition, cold rolling with a processing rate of more than 60% resulted in significant work hardening, resulting in cracking of the plate, making it impossible to obtain a good alloy plate.

このように本発明によれば冷間圧延における最終中間焼
鈍を400〜700℃で行ない、その後最終冷間圧延の
加工率を15〜60%とづることにより、良好な形状記
憶特性を示すNiTi系合金扱が得られるもので、産業
用温度レンザー、アクチュエーター等に使用し、その精
度を向−J二することがCき顕著にな効果を奏するもの
である。
As described above, according to the present invention, the final intermediate annealing during cold rolling is performed at 400 to 700°C, and the processing rate of the final cold rolling is then set to 15 to 60%. It can be treated as an alloy, and is used in industrial temperature lenses, actuators, etc., and has a remarkable effect in improving the accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(イ)、(ロ)は形状記憶特性の試験方法の一例
を示すもので、(イ)は変形状態、(【コ)は回復状態
を示す説明図である。 第11 (イ) 7−くき≧ ≧−)
FIGS. 1(A) and 1(B) show an example of a method for testing shape memory properties, with (A) being an explanatory diagram showing a deformed state and ([C]) being a recovery state. Chapter 11 (a) 7-kuki≧ ≧-)

Claims (1)

【特許請求の範囲】[Claims] N i 49.0〜52.0at%又はN i 49.
0〜52.Oat%とV、Cr、Mn、Fe、Go、C
u、ZrSNblMo 、Pd 、A(1、Ru 、T
a 、Wの内何れか1種又は2種以上を合計3.0at
%以下を含み、残部T1からなるNiTi系台金素板を
中間焼鈍と冷間圧延加工するNi Ti系合金板の製造
において、圧延板を400〜700℃で最終中間焼鈍後
、加工率15〜60%の最終冷間圧延加工を施すことを
特徴とする形状記憶Ni’li系合金板の製造法。
N i 49.0 to 52.0 at% or N i 49.
0-52. Oat% and V, Cr, Mn, Fe, Go, C
u, ZrSNblMo, Pd, A(1, Ru, T
A total of 3.0at of any one or two or more of a and W
% or less, with the balance T1, in the production of a NiTi base metal plate, which is subjected to intermediate annealing and cold rolling. A method for manufacturing a shape memory Ni'li alloy sheet, characterized by subjecting it to a final cold rolling process of 60%.
JP13330083A 1983-07-21 1983-07-21 Manufacture of shape memory ni-ti alloy plate Pending JPS6026648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13330083A JPS6026648A (en) 1983-07-21 1983-07-21 Manufacture of shape memory ni-ti alloy plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13330083A JPS6026648A (en) 1983-07-21 1983-07-21 Manufacture of shape memory ni-ti alloy plate

Publications (1)

Publication Number Publication Date
JPS6026648A true JPS6026648A (en) 1985-02-09

Family

ID=15101432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13330083A Pending JPS6026648A (en) 1983-07-21 1983-07-21 Manufacture of shape memory ni-ti alloy plate

Country Status (1)

Country Link
JP (1) JPS6026648A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210233A (en) * 1985-07-09 1987-01-19 Tohoku Metal Ind Ltd Shape memory alloy
JPS6210234A (en) * 1985-07-09 1987-01-19 Tohoku Metal Ind Ltd Shape memory alloy
JPS6247445A (en) * 1985-08-24 1987-03-02 Tohoku Metal Ind Ltd Pseudoelastic alloy
JPS62270203A (en) * 1986-05-16 1987-11-24 Daido Steel Co Ltd Descaling method for thin shape memory alloy sheet
JPS6311636A (en) * 1986-07-01 1988-01-19 Keijiyou Kioku Gokin Gijutsu Kenkyu Kumiai Shape memory alloy
JPS6314834A (en) * 1986-07-07 1988-01-22 Tohoku Metal Ind Ltd Tiniv shape memory alloy
KR20010058382A (en) * 1999-12-27 2001-07-05 한기석 Ti―Ni―Mo system memory alloy
WO2007108180A1 (en) * 2006-03-20 2007-09-27 University Of Tsukuba High-temperature shape memory alloy, actuator and motor
US8007604B2 (en) 2006-03-17 2011-08-30 University Of Tsukuba Titanium-tantalum base shape memory alloys, actuator and engine
US8152941B2 (en) 2009-11-02 2012-04-10 Saes Smart Materials Ni-Ti semi-finished products and related methods
CN113106317A (en) * 2021-03-29 2021-07-13 北京科技大学 Preparation method of high-superelasticity NiTiHf high-temperature shape memory alloy

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210233A (en) * 1985-07-09 1987-01-19 Tohoku Metal Ind Ltd Shape memory alloy
JPS6210234A (en) * 1985-07-09 1987-01-19 Tohoku Metal Ind Ltd Shape memory alloy
JPS6247445A (en) * 1985-08-24 1987-03-02 Tohoku Metal Ind Ltd Pseudoelastic alloy
JPS62270203A (en) * 1986-05-16 1987-11-24 Daido Steel Co Ltd Descaling method for thin shape memory alloy sheet
JPS6311636A (en) * 1986-07-01 1988-01-19 Keijiyou Kioku Gokin Gijutsu Kenkyu Kumiai Shape memory alloy
JP2603463B2 (en) * 1986-07-01 1997-04-23 形状記憶合金技術研究組合 Low temperature reversible shape memory alloy
JP2541802B2 (en) * 1986-07-07 1996-10-09 株式会社トーキン Shape memory TiNiV alloy and manufacturing method thereof
JPS6314834A (en) * 1986-07-07 1988-01-22 Tohoku Metal Ind Ltd Tiniv shape memory alloy
KR20010058382A (en) * 1999-12-27 2001-07-05 한기석 Ti―Ni―Mo system memory alloy
US8007604B2 (en) 2006-03-17 2011-08-30 University Of Tsukuba Titanium-tantalum base shape memory alloys, actuator and engine
WO2007108180A1 (en) * 2006-03-20 2007-09-27 University Of Tsukuba High-temperature shape memory alloy, actuator and motor
US8152941B2 (en) 2009-11-02 2012-04-10 Saes Smart Materials Ni-Ti semi-finished products and related methods
US9315880B2 (en) 2009-11-02 2016-04-19 Saes Smart Materials Ni-Ti semi-finished products and related methods
CN113106317A (en) * 2021-03-29 2021-07-13 北京科技大学 Preparation method of high-superelasticity NiTiHf high-temperature shape memory alloy
CN113106317B (en) * 2021-03-29 2022-02-11 北京科技大学 Preparation method of high-superelasticity NiTiHf high-temperature shape memory alloy

Similar Documents

Publication Publication Date Title
RU2720276C2 (en) Thermomechanical processing of nickel-titanium alloys
JPS6159390B2 (en)
JP3884316B2 (en) Superelastic titanium alloy for living body
EP2982777A1 (en) Titanium slab for hot rolling and method for manufacturing same
JPS6026648A (en) Manufacture of shape memory ni-ti alloy plate
RU2351687C2 (en) Method of receiving of flat bar made of zirconium alloy, received by this method flat bar and reactor lattice of atomic power station, made of this bar
US4047978A (en) Processing copper base alloys
JPS6157390B2 (en)
US2859143A (en) Ferritic aluminum-iron base alloys and method of producing same
EP0031800B1 (en) Austenitic, precipitation hardenable stainless steel
JP5459633B1 (en) Austenitic alloy tube
US2943960A (en) Process for making wrought coppertitanium alloys
US3341373A (en) Method of treating zirconium-base alloys
JP5278987B2 (en) Manufacturing method for eyeglass frames
JPH0147525B2 (en)
JP3452335B2 (en) NiTi-based alloy
JP3379767B2 (en) Method for producing NiTi-based superelastic material
JPS6365042A (en) Ti alloy excellent in crevice corrosion resistance and combining high strength with high ductility and its manufacture
JPS6123862B2 (en)
JPH06184632A (en) Production of ferritic stainless steel thin sheet
Popa et al. Some structural effects related to the abnormal grain growth in FeMnAlNi shape memory alloys
US2103777A (en) Ductilizing process
JPS61272322A (en) Manufacture of sea water resistant stainless steel sheet
JPH02247358A (en) Fe-base alloy for nuclear reactor member and its manufacture
JPS58189348A (en) Shape memory or superelastic ni-ti alloy having high corrosion resistance