JPS6365042A - Ti alloy excellent in crevice corrosion resistance and combining high strength with high ductility and its manufacture - Google Patents

Ti alloy excellent in crevice corrosion resistance and combining high strength with high ductility and its manufacture

Info

Publication number
JPS6365042A
JPS6365042A JP21118686A JP21118686A JPS6365042A JP S6365042 A JPS6365042 A JP S6365042A JP 21118686 A JP21118686 A JP 21118686A JP 21118686 A JP21118686 A JP 21118686A JP S6365042 A JPS6365042 A JP S6365042A
Authority
JP
Japan
Prior art keywords
alloy
corrosion resistance
crevice corrosion
temperature
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21118686A
Other languages
Japanese (ja)
Inventor
Yoshiharu Mae
前 義治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP21118686A priority Critical patent/JPS6365042A/en
Publication of JPS6365042A publication Critical patent/JPS6365042A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Abstract

PURPOSE:To manufacture a Ti alloy excellent in crevice corrosion resistance and combining high strength with high ductility, by subjecting a Ti-alloy ingot containing specific compositional amounts of Al, V, Mo, and Ni, to hot working and heat treatment under specific conditions. CONSTITUTION:The Ti-alloy ingot having a composition which consists of, by weight, 2-5% Al, 5-12% V, 0.5-8% Mo, 0.5-8% Ni, and the balance Ti with inevitable impurities and in which a condition represented by 14%<=1.5 V+Mo+2.4Ni<=21 is satisfied is subjected to hot working at 600-950 deg.C, to solution heat treatment at 700-800 deg.C, and then to aging treatment at 300-600 deg.C. In this way, the Ti alloy excellent in crevice corrosion resistance, causing no cracks in the course of hot working, and combining high strength with high ductility can be obtained. The above alloy is suitable for us as structural parts for aircraft, various members used under corrosive environment of seawater, etc., and the like, requiring the above characteristics.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、耐隙間腐食性にすぐれ、かつ高強度と高延
性を有し、特にこれらの特性が要求される航空機の部品
や、海水雰囲気などの腐食環境にさらされる各種部材な
どとして用いるのに適したTi合金およびその製造法に
関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention has excellent crevice corrosion resistance, high strength and high ductility, and is particularly applicable to aircraft parts that require these characteristics and seawater atmosphere. The present invention relates to a Ti alloy suitable for use as various members exposed to corrosive environments such as the present invention, and a method for producing the same.

〔従来の技術〕[Conventional technology]

従来、強度、耐酸化性、および熱間加工性の特性が良好
で、バランスが取れていることが要求される分野、例え
ば航空機のジェットエンジンには、重量%で(以下チは
重量%を示す) 、Ti −6%At−4%Vの組成に
代表されるα+β型Ti合金や、熱間加工性は劣るが、
Ti−8%、V−1%V−1%Moの組成を有し、組織
の大部分がα相である準α型Ti合金が用いられている
。これは、α型Ti合金は強度と熱間加工性が悪く、一
方β型Ti合金は耐酸化性に劣るという理由によるもの
である。
Conventionally, in fields where good and well-balanced properties of strength, oxidation resistance, and hot workability are required, such as aircraft jet engines, the ), α+β type Ti alloys represented by the composition of Ti-6%At-4%V, and those with poor hot workability,
A quasi-α-type Ti alloy having a composition of Ti-8%, V-1%V-1%Mo, and whose structure is mostly α phase is used. This is because α-type Ti alloys have poor strength and hot workability, while β-type Ti alloys have poor oxidation resistance.

そして、Ti−6%A!−4%V合金やTi−8%A!
−1チV−1%MO合金は、850℃以上、とりわけ前
者にあっては900℃以上、後者にあっては950℃以
上の温度で熱間加工され、焼鈍後に950℃以上の高温
で溶体化処理され、さらに前者のTi合金には、500
〜600℃の範囲内の温度で時効処理が施されることに
より製造されている。なお、後者のTi合金は、時効能
が小さいので、これには時効処理は施されないものであ
る。
And Ti-6%A! -4%V alloy and Ti-8%A!
-1CH V-1% MO alloy is hot worked at a temperature of 850°C or higher, particularly 900°C or higher for the former, and 950°C or higher for the latter, and after annealing, it is melted at a high temperature of 950°C or higher. The former Ti alloy is further treated with 500
It is manufactured by aging treatment at a temperature within the range of ~600°C. Note that the latter Ti alloy has a low aging ability, so it is not subjected to aging treatment.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上述のように、上記従来のα+β型Ti
合金や準α型Ti合金は、その熱間加工温度が850℃
以上と高いために、例えば恒温鍛造で最終製品の形状や
寸法に近い鍛造品を得ようとする場合には、耐熱性にす
ぐれ、かつ最終製品の形状に対応した複雑にして滑らか
な内面を有する高価な金型を必要とするばかシでなく、
これらのTi合金は、熱間加工温度だけでなく、溶体化
処理温度も高いために、熱経済性が悪く、しかもスケー
ルなどの発生も多く、さらに海水雰囲気などの腐食環境
にさらされた場合に、隙間腐食が発生し易いなどの問題
点を有するものである。
However, as mentioned above, the conventional α+β type Ti
The hot working temperature of alloys and quasi-α type Ti alloys is 850°C.
Because of the above, for example, when trying to obtain a forged product close to the shape and dimensions of the final product using constant temperature forging, it is necessary to have a forged product with excellent heat resistance and a complex and smooth inner surface that corresponds to the shape of the final product. Rather than requiring expensive molds,
These Ti alloys have poor thermoeconomic efficiency due to not only high hot working temperatures but also high solution treatment temperatures, and moreover, they often generate scale, and when exposed to corrosive environments such as seawater atmosphere. , which has problems such as the tendency to cause crevice corrosion.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、本発明者等は、上述のような観点から、よシ低
温での熱間加工′力;可能な高延性を有し、かつよシ低
温での溶体化処理および時効処理を可能とし、この時効
処理によって高強度を確保することができ、さらにすぐ
れた耐隙間腐食性を有するTi合金を開発す′べく研究
を行なった結果、M:2〜5  %、      V:
5〜12%、Mo:  0.5〜81b、     N
i:  0.5〜8  %、を含有し、さらに、必要に
応じて、 Zr: 0.5〜8%、  Cr:0.1〜3%、Fe
:0.1〜3%、  Sn:O,1〜4%。
Therefore, from the above-mentioned viewpoints, the inventors of the present invention have developed a method that has high ductility and is capable of hot working at a much lower temperature, and is also capable of solution treatment and aging treatment at a much lower temperature. As a result of conducting research to develop a Ti alloy that can ensure high strength through this aging treatment and also has excellent crevice corrosion resistance, we found that M: 2 to 5%, V:
5-12%, Mo: 0.5-81b, N
i: 0.5-8%, and further contains Zr: 0.5-8%, Cr: 0.1-3%, Fe as necessary.
:0.1-3%, Sn:O, 1-4%.

のうちの1種または2種以上、 を含有し、かつ、 14%≦1.5×V(%)+Mo(%)+ 2.4 X
 Ni(%)521%(以下条件式1という)、 14%≦1.5 X v(%)+Mo(%)+ 2.4
 XN1(%)+ 0.6 ×Zr(%)+ 1.9 
×Cr(%)−1−1,1x Fe (%)≦21チ(
以下条件式22%≦M(%)+Sn(%)≦6チ(以下
条件式3という)、の条件を満足し、残りがTiと不可
避不純物からなる組成を有するTi合金は、比較的低温
(例えば、700℃)でα+β組織を示し、しかもα相
とβ相の容1比が1:1に近いものであるために、高延
性を示すことから、従来条件よりも低い温度、すなわち
600〜950℃の範囲内の温度゛で容易に熱間加工す
ることができるばかシでなく、従来条件よシも低い温度
、すなわち700〜800℃の範囲内の温度で溶体化処
理することができ、さらに時効処理を施すことができ、
しかもこの時効処理によって上記従来α+β型Ti合金
の時効材と同等ないしはそれ以上の高強度をもつように
なシ、さらに加えてすぐれた耐隙間腐食性を具備するよ
うになるという知見を得たのである。
Contains one or more of the following, and 14%≦1.5×V (%) + Mo (%) + 2.4 X
Ni (%) 521% (hereinafter referred to as conditional expression 1), 14%≦1.5 X v (%) + Mo (%) + 2.4
XN1 (%) + 0.6 x Zr (%) + 1.9
×Cr(%)-1-1,1x Fe(%)≦21chi(
A Ti alloy that satisfies the following conditional expression 22%≦M(%)+Sn(%)≦6chi (hereinafter referred to as conditional expression 3), and has a composition with the remainder consisting of Ti and unavoidable impurities, has a relatively low temperature ( For example, it shows an α+β structure at 700°C), and the ratio of α phase to β phase is close to 1:1, so it exhibits high ductility. Not only can it be easily hot worked at temperatures in the range of 950°C, but it can also be solution treated at temperatures lower than conventional conditions, i.e. in the range of 700 to 800°C. Furthermore, aging treatment can be applied,
In addition, we have found that this aging treatment provides a strength equal to or greater than that of the conventional α+β-type aged Ti alloy, and in addition, it has excellent crevice corrosion resistance. be.

この発明は、上記知見にもとづいてなされたものであっ
て、 At:2 〜5%  、          V  二
  5 〜129暖シ 、Mo:0.5〜8%、  N
i:0.5〜8%、を含有し、さらに必要に応じて、 Zr: 0.5〜8%、  Cr: O,1〜3%、F
e:O,1〜3%、      Sn:0.1〜4%。
This invention was made based on the above findings, and includes At: 2 to 5%, V25 to 129%, Mo: 0.5 to 8%, N
i: 0.5 to 8%, and if necessary, Zr: 0.5 to 8%, Cr: O, 1 to 3%, F
e: O, 1-3%, Sn: 0.1-4%.

のうちの1種または2種以上、 を含有し、かつ上記条件式1.2、および3を満足し、
残りがTiと不可避不純物からなる組成を有するTi合
金、並びに前記組成を有するTi合金インゴットに、6
00〜950℃の範囲内の温度での熱間加工、700〜
800℃の範囲内の温度での溶体化処理、および300
〜600℃の範囲内の温度での時効処理を順次施すこと
によって、耐隙間腐食性のすぐれた高強度高延性Ti合
金を製造する方法に特徴を有するものである。
contains one or more of the following, and satisfies the above conditional expressions 1.2 and 3,
A Ti alloy having a composition in which the remainder consists of Ti and unavoidable impurities, and a Ti alloy ingot having the above composition, 6
Hot working at temperatures within the range of 00-950°C, 700-950°C
Solution treatment at temperatures within the range of 800 °C, and 300 °C
The present invention is characterized by a method for manufacturing a high-strength, high-ductility Ti alloy with excellent crevice corrosion resistance by sequentially performing aging treatments at temperatures in the range of ~600°C.

つぎに、この発明のTi合金およびその製造法において
、成分組成および製造条件を上記の通りに限定した理由
を説明する。
Next, the reason why the composition and manufacturing conditions are limited as described above in the Ti alloy and the manufacturing method thereof of the present invention will be explained.

ん 成分組成 (a)  AM M成分には、α相を強化する作用があるが、その含有量
が2チ未満ではα相の強度、ひいてはTi合金全体の強
度を所望の値に保持することができず、一方その含有量
が5チを越えると、β変態点を低く抑えるためのβ安定
化元素であるVおよびMOの含有量を多くしなければな
らなくなシ、この結果Ti合金の熱間加工性が劣化し、
具体的には変形抵抗が増大して鍛造の際に大きなプレス
が必要となることから、その含有量を2〜5%と定めた
Composition (a) AM The M component has the effect of strengthening the α phase, but if its content is less than 2 T, the strength of the α phase, and by extension the strength of the entire Ti alloy, cannot be maintained at the desired value. On the other hand, if the content exceeds 5 Ti, it is necessary to increase the content of V and MO, which are β stabilizing elements to keep the β transformation point low, and as a result, the heat of the Ti alloy increases. Machinability deteriorates,
Specifically, since deformation resistance increases and a large press is required during forging, the content is set at 2 to 5%.

(b)  v V成分には、特にβ変態点を低く抑え、かっβ相安定化
領域を広げる作用があるほか、Ti合金の延性を損なう
ことなく、β相を強化する作用があるが、その含有量が
5チ未満では、β変態点を低く抑えることができないば
かシでなく、700℃付近でのα相とβ相との容量比を
ほぼ1:1にすることが困難となシ、この結果熱間加工
温度および溶体化処理温度の低温化ができなくなシ、一
方その含有量が12%を越えると、Ti合金の熱間加工
性が劣化し、具体的には変形抵抗が増大して鍛造の際に
大きなプレスが必要となることから、その含有量を5〜
12%と定めた。
(b) v The V component has the effect of suppressing the β-transform point particularly low and widening the β-phase stabilization region, and also has the effect of strengthening the β-phase without impairing the ductility of the Ti alloy. If the content is less than 5%, it is not impossible to keep the β transformation point low, and it is difficult to maintain a volume ratio of α phase to β phase of approximately 1:1 at around 700°C. As a result, it becomes impossible to lower the hot working temperature and solution treatment temperature, and on the other hand, if its content exceeds 12%, the hot workability of the Ti alloy deteriorates, and specifically, the deformation resistance increases. Since a large press is required during forging, the content should be reduced from 5 to 5.
It was set at 12%.

(c)  M。(c) M.

Mo成分には、特にβ相を強化する作用のほか、β変態
点を低く抑え、かっβ相安定化領域を広げる作用がある
が、その含有量が0.5%未満では、β相強化、ひいて
はTi合金の強度向上効果が低く、一方その含有量が8
チを越えると、Ti合金の延性が低下するようになるこ
とから、その含有量を0.5〜8%と定めた。
In addition to particularly strengthening the β phase, the Mo component also has the effect of suppressing the β transformation point to a low level and widening the stabilization region of the β phase. However, if its content is less than 0.5%, it will not strengthen the β phase. As a result, the strength improvement effect of Ti alloy is low, while its content is 8
Since the ductility of the Ti alloy decreases when the content exceeds 0.5%, the content is set at 0.5% to 8%.

(d)  Ni N1成分には、耐隙間腐食性を著しく向上させる作用が
あるが、その含有量が0.5%未満では所望のすぐれた
耐隙間腐食性を確保することができず、一方その含有量
が8チを越えても、・前記作用にょシ一層の向上効果は
現われず、むしろ熱間加工性が低下するようになること
から、その含有量を0.5〜8チと定めた。
(d) Ni The N1 component has the effect of significantly improving crevice corrosion resistance, but if its content is less than 0.5%, the desired excellent crevice corrosion resistance cannot be secured; Even if the content exceeds 8 g, the effect of further improving the above-mentioned effects will not appear, and instead the hot workability will deteriorate, so the content was set at 0.5 to 8 g. .

(e)  Zr、 Cr、およびFe これらの成分には、Ti合金の強度を一段と向上させる
作用があるので、よシ一層の高強度が要求される場合に
必要に応じて含有されるが、その含有量が、それぞれZ
r:0.5%未満、Cr: O51%未満、およびFe
:0.1%未満では所望の強度向上効果が得られず、一
方その含有量がそれぞれZr:8%、Cr: 3%、お
よびFe:3%を越えると、延性が低下し、熱間加工性
が損なわれるようになることから、その含有量を、それ
ぞれZr:0.5〜E1%。
(e) Zr, Cr, and Fe These components have the effect of further improving the strength of the Ti alloy, so they are included as necessary when even higher strength is required. The content is Z
r: less than 0.5%, Cr: less than O51%, and Fe
If the content exceeds Zr: 8%, Cr: 3%, and Fe: 3%, the ductility decreases and hot working becomes difficult. Zr: 0.5 to E1%, respectively.

Cr:O,1〜3%、およびFe:0.1〜3%と定め
た。
Cr: O, 1-3%, and Fe: 0.1-3%.

(f)  5n Sn成分は、低温相であるα相を安定化してTi合金の
強度を向上させる作用をもち、この作用はMのもつ作用
と同じなので、必要に応じてMの一部代替成分として含
有されるが、その含有量が0.1俤未満では、Mの一部
をSnで置換含有させたことによる強度向上効果が得ら
れず、一方その含有量が4俤を越えると延性が低下し、
熱間加工性が損なわれるようになることから、その含有
量を0.1〜4チと定めた。
(f) The 5n Sn component has the effect of stabilizing the α phase, which is a low-temperature phase, and improving the strength of the Ti alloy.This effect is the same as that of M, so if necessary, a partial substitute component for M may be used. However, if the content is less than 0.1 yen, the strength improvement effect due to replacing a part of M with Sn cannot be obtained, while on the other hand, if the content exceeds 4 yen, the ductility decreases. decreases,
Since hot workability would be impaired, the content was determined to be 0.1 to 4.

また、上記のようにSn成分は、M成分と同様にTi合
金の強度を向上させる作用をもち、したがってSn成分
を含有させる場合には、Mとの合1で2−以上含有させ
れば所望の高強度を確保することができ、一方AM+S
nの含有量が6チを越えると、変態温度が上昇するよう
になって、熱間加工性が低下することから、条件式3に
示すようにAt (%) +Sn(チ):2〜6%と定
めた。
In addition, as mentioned above, the Sn component has the effect of improving the strength of the Ti alloy like the M component, so when the Sn component is included, it is necessary to include 2 or more in combination with M. can ensure high strength, while AM+S
If the content of n exceeds 6, the transformation temperature will rise and the hot workability will decrease. Therefore, as shown in conditional expression 3, At (%) + Sn (ch): 2 to 6 %.

(g)  条件式1.2 β相安定化能力には、それぞれの合金成分間には差異が
あって、MO酸成分1とした場合、V:1.5倍、Ni
:2.4倍、Zr:0.6倍、Cr:1.9倍、および
Fe:1.1倍の能力差があシ、したがってそれぞれの
成分含有量に、これらの比率を乗じた値の総和がβ相安
定化能となるが、この値がT4チ未満では、β変態点の
低下が不充分で、熱間加工温度や溶体化処理温度の低下
が充分でなく、一方その値が21%を越えると、延性が
低下し、熱間加工性が劣化するようになることから、条
件式1.2を満足しなければなら々い。
(g) Conditional Expression 1.2 There is a difference in β phase stabilizing ability between each alloy component. When the MO acid component is 1, V: 1.5 times, Ni
: 2.4 times, Zr: 0.6 times, Cr: 1.9 times, and Fe: 1.1 times. Therefore, the value obtained by multiplying the content of each component by these ratios is The sum total becomes the β phase stabilizing ability, but if this value is less than T4, the β transformation point is insufficiently lowered, and the hot working temperature and solution treatment temperature are not lowered sufficiently; %, ductility decreases and hot workability deteriorates, so conditional expression 1.2 must be satisfied.

B、製造条件 (a>  熱間加工温度 上記Aで述べた成分組成を有するTi合金インゴットに
、熱間鍛造や熱間圧延、さらに熱間押出しなどの熱間加
工が施されるが、その熱間加工温度が600℃未満では
再結晶が難しく、変形抵抗が高くなシ、一方その熱間加
工温度が950℃を越えると、結晶粒の粗大化が起って
望ましくないばかシでなく、恒温鍛造の場合には高価な
金型が必要となることから、熱間加工温度を600〜9
50℃と定めた。
B. Manufacturing conditions (a> Hot working temperature A Ti alloy ingot having the composition described in A above is subjected to hot working such as hot forging, hot rolling, and even hot extrusion. If the hot working temperature is less than 600°C, recrystallization is difficult and the deformation resistance is high. On the other hand, if the hot working temperature exceeds 950°C, coarsening of crystal grains occurs, resulting in undesirable distortion and a constant temperature. In the case of forging, expensive molds are required, so the hot working temperature is set at 600-900.
The temperature was set at 50°C.

特に、鋳造組織を消す必要がある場合には900℃近く
、あるいはこれ以上の温度で熱間加工を開始するのが好
ましく、また熱間加工の容易性からは、650〜750
℃の温度が好ましい。これは、この発明のTi合金が、
650〜750℃の範囲内の温度で熱間加工に適するα
相とβ相の割合が容量比でほぼ1:1を占める共存状態
となるからである。
In particular, if it is necessary to erase the cast structure, it is preferable to start hot working at a temperature close to 900°C or higher;
A temperature of °C is preferred. This means that the Ti alloy of this invention
α suitable for hot working at temperatures within the range of 650-750℃
This is because a coexistence state occurs in which the ratio of the phase and the β phase is approximately 1:1 in terms of capacity ratio.

(b)  焼鈍 この工程は必須の工程ではないが、後工程として冷間加
工を行なう場合に、必要に応じて行なわれるものである
。その条件としては、650〜750℃の範囲内の温度
に、0.5〜2時間保持が望ましい。
(b) Annealing This step is not an essential step, but is performed as necessary when performing cold working as a subsequent step. As for the conditions, it is desirable to maintain the temperature within the range of 650 to 750°C for 0.5 to 2 hours.

(C)  溶体化処理温度 熱間加工され、さらに必要に応じて焼鈍と冷間加工が施
されたTi合金には溶体化処理が施されるが、従来条件
よシも低温の700〜800℃の範囲内の温度で行なう
必要がある。これは、その温度が700℃未満では、α
相安定化元素であるMがβ相中に充分に固溶せず、この
ため、この工程後に時効処理を行なっても所望の強度を
確保することができず、一方、その温度が800℃を越
えると、β変態点近くになりすぎ、初析α相の量が少な
くなりすぎるために、組織が不均一になるという理由か
らである。なお、溶体化処理時間は合金が均一に加熱さ
れる時間で充分である。
(C) Solution treatment temperature Ti alloys that have been hot-worked and further annealed and cold-worked as necessary are subjected to solution treatment, but at a lower temperature than conventional conditions of 700 to 800°C. It is necessary to carry out the test at a temperature within the range of . This means that when the temperature is below 700°C, α
M, which is a phase stabilizing element, is not sufficiently dissolved in the β phase, and therefore, even if an aging treatment is performed after this step, the desired strength cannot be secured. This is because if it exceeds the β transformation point, the amount of pro-eutectoid α phase becomes too small and the structure becomes non-uniform. Note that the solution treatment time is sufficient to uniformly heat the alloy.

(d)  時効処理温度 その温度が300℃未満では、拡散速度が遅いためにβ
相中の微小なα相の析出が起らないことから、時効硬化
せず、一方その温度が600℃を越えると、過時効とな
シ強度が低下するようになることから、その温度を30
0〜600℃と定めた。
(d) Aging treatment temperature If the temperature is less than 300℃, the diffusion rate is slow and β
Since precipitation of the minute α phase in the phase does not occur, age hardening does not occur.On the other hand, if the temperature exceeds 600°C, overaging occurs and the strength decreases, so the temperature is lowered to 30°C.
The temperature was set at 0 to 600°C.

また、時効処理時間は、その温度によっても異なるが経
済性も考慮して、0.5〜10時間とするのが好ましい
Further, the aging treatment time varies depending on the temperature, but considering economic efficiency, it is preferably 0.5 to 10 hours.

なお、必要な場合は、焼鈍後、あるいは焼鈍を行なわな
い場合には溶体化処理後、すなわち時効処理前に冷間加
工を行なってもよい。
Note that, if necessary, cold working may be performed after annealing, or if annealing is not performed, after solution treatment, that is, before aging treatment.

〔実施例〕〔Example〕

つぎに、この発明のTi合金およびその製造法を実施例
によシ説明する。
Next, the Ti alloy of the present invention and its manufacturing method will be explained using examples.

真空アーク溶解炉を用いた2段溶解にょシ、それぞれ第
1表に示される成分組成をもった溶湯を調製し、直径:
20011φ×長さ=500顛の寸法をもったインゴッ
トとした後、900℃で熱間鍛造して、厚さ:50朋X
幅:600mX長さ:500聰の寸法をもったスラブと
し、ついで、このスラブを720℃で熱間圧延して厚さ
:3mの熱延板とし、この際、これらの熱延板における
熱間加工割れの有無を観察し、引続いて750℃に1時
間保持後水冷の条件で溶体化処理を行ない、さらに52
0℃に5時間保持の条件で時効処理を行なうことによっ
て、本発明Ti合金板材1〜17および従来Ti合金板
材1.2をそれぞれ製造した。
In a two-stage melting process using a vacuum arc melting furnace, molten metals having the compositions shown in Table 1 were prepared, and the diameter:
After making an ingot with dimensions of 20011φ x length = 500 pieces, it was hot forged at 900°C to a thickness of 50mm x
A slab with dimensions of width: 600 m x length: 500 cm is then hot rolled at 720°C to form a hot rolled plate with a thickness of 3 m. The presence or absence of processing cracks was observed, and then solution treatment was carried out under water cooling conditions after being held at 750°C for 1 hour.
Inventive Ti alloy plates 1 to 17 and conventional Ti alloy plate 1.2 were produced by aging under conditions of holding at 0° C. for 5 hours.

ついで、この結果得られた各種の板材について、機械的
性質(常温)を測定すると共に、これよシ30朋X30
mmX3′ItjILの試験片を切シ出し、この試験片
の中央に5.5 tsxφの孔をあけ、この表面をエメ
9−$400で湿式研磨した状態で、シーラント材を間
にして2枚の試験片を合せ、座金として厚さ:2III
mのテフロンを用い、これをTi製M5ネジで締め付け
、このようにセットした試験片を、10 % NaC1
水溶液中に浸漬し、130℃に加熱した状態で100時
間保持の条件で隙間腐食試験を行ない、試験後、試験片
表面の隙間腐食面積を測定し、その割合を算出した。こ
れらの結果を第1表に示した。
Next, the mechanical properties (at room temperature) of the various plate materials obtained as a result were measured, and the
A test piece of mm x 3'ItjIL was cut out, a hole of 5.5 tsxφ was made in the center of this test piece, and the surface was wet-polished with emme 9-$400, and two sheets were cut out with a sealant material in between. Combine the test pieces and use as a washer Thickness: 2III
Using M5 Teflon and tightening it with a Ti M5 screw, the test piece set in this way was heated with 10% NaC1.
A crevice corrosion test was conducted under the conditions of immersing the specimen in an aqueous solution, heating it to 130° C., and holding it for 100 hours. After the test, the area of crevice corrosion on the surface of the test piece was measured and its ratio was calculated. These results are shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

第1表に示される結果から明らかなように、本発明Ti
合金板材1〜17は、いずれも720℃というきわめて
低い温度での熱間加工においても割れの発生がない高延
性をもつのに対して、従来Ti合金板材1.2において
は、熱間加工温度が低すぎたために靭性不足をきたし、
割れが発生するのを避けることができないものである。
As is clear from the results shown in Table 1, the present invention Ti
All alloy plates 1 to 17 have high ductility without cracking even when hot worked at an extremely low temperature of 720°C, whereas conventional Ti alloy plates 1.2 have was too low, resulting in lack of toughness,
Cracks cannot be avoided.

このように本発明Ti合金は、従来Ti合金に比して、
著しく低い温度での熱間加工が可能なので、比較的安価
な型を用いての型鋳造を行なうことができ、この結果結
晶粒の成長を抑制することができることから、平均粒径
が1μm以下の微細組織を形成することが可能となるの
である。
In this way, the Ti alloy of the present invention, compared to the conventional Ti alloy, has
Since hot working at extremely low temperatures is possible, mold casting can be performed using relatively inexpensive molds, and as a result, grain growth can be suppressed, so This makes it possible to form a fine structure.

また、本発明Ti合金においては、熱間加工中に割れが
生じないので、仕上げのための切削加工を余シ必要とし
ない最終製品寸法に近い熱間加工材を形成することがで
きることから、必ずしも冷間加工を必要としないのであ
る。
In addition, in the Ti alloy of the present invention, cracks do not occur during hot working, so it is possible to form a hot worked material close to the final product size without the need for additional cutting for finishing. It does not require cold working.

さらに第1表に示される結果から、本発明Ti合金板材
1〜17は、いずれも従来Ti合金板材1.2と同等あ
るいはこれ以上の高強度を有するばかシでなく、これと
比較して一段とすぐれた耐隙間腐食性を、有することが
明らかである。
Furthermore, from the results shown in Table 1, none of the Ti alloy plates 1 to 17 of the present invention have high strength equal to or higher than that of the conventional Ti alloy plate 1.2. It is clear that it has excellent crevice corrosion resistance.

上述のように、この発明の方法によれば、耐隙間腐食性
のすぐれた高強度および高延性を有するTi合金を製造
することができ、したがってこれをこれらの特性が要求
される航空機の構造部品として、さらKその他の腐食環
境下で使用した場合にすぐれた性能を著しく長期に亘っ
て発揮するのである。
As mentioned above, according to the method of the present invention, it is possible to produce a Ti alloy having high strength and high ductility with excellent crevice corrosion resistance, and therefore it can be used for structural parts of aircraft where these properties are required. As a result, it exhibits excellent performance over a long period of time when used in corrosive environments such as K and other corrosive environments.

Claims (5)

【特許請求の範囲】[Claims] (1)Al:2〜5%、V:5〜12%、 Mo:0.5〜8%、Ni:0.5〜8%、を含有し、
かつ 14%≦1.5×V(%)+Mo(%)+2.4×Ni
(%)≦21%、の条件を満足し、残りがTiと不可避
不純物からなる組成(以上重量%)を有することを特徴
とする耐隙間腐食性のすぐれた高強度高延性Ti合金。
(1) Contains Al: 2-5%, V: 5-12%, Mo: 0.5-8%, Ni: 0.5-8%,
and 14%≦1.5×V(%)+Mo(%)+2.4×Ni
A high-strength, high-ductility Ti alloy with excellent crevice corrosion resistance, which satisfies the following condition: (%)≦21%, with the remainder consisting of Ti and unavoidable impurities (weight percent).
(2)Al:2〜5%、V:5〜12%、 Mo:0.5〜8%、Ni:0.5〜8%、を含有し、
さらに、 Zr:0.5〜8%、 Cr:0.1〜3%、 Fe:0.1〜3%、 のうちの1種または2種以上を含有し、かつ、14%≦
1.5×V(%)+Mo(%)+2.4×Ni(%)+
0.6×Zr(%)+1.9×Cr(%)+1.1×F
e(%)≦21%、の条件を満足し、残りがTiと不可
避不純物からなる組成(以上重量%)を有することを特
徴とする耐隙間腐食性のすぐれた高強度高延性Ti合金
(2) Contains Al: 2-5%, V: 5-12%, Mo: 0.5-8%, Ni: 0.5-8%,
Furthermore, it contains one or more of the following: Zr: 0.5-8%, Cr: 0.1-3%, Fe: 0.1-3%, and 14%≦
1.5×V(%)+Mo(%)+2.4×Ni(%)+
0.6 x Zr (%) + 1.9 x Cr (%) + 1.1 x F
A high-strength, high-ductility Ti alloy with excellent crevice corrosion resistance, which satisfies the condition of e (%)≦21%, and has a composition (weight %) with the remainder consisting of Ti and unavoidable impurities.
(3)Al:2〜5%、V:5〜12%、 Mo:0.5〜8%、Ni:0.5〜8%、を含有し、
さらに、 Sn:0.1〜4%、 を含有し、かつ、 14%≦1.5×V(%)+Mo(%)+2.4×Ni
(%)≦21%、2%≦Al(%)+Sn(%)6%、 の条件を満足し、残りがTiと不可避不純物からなる組
成(以上重量%)を有することを特徴とする耐隙間腐食
性のすぐれた高強度高延性Ti合金。
(3) Contains Al: 2-5%, V: 5-12%, Mo: 0.5-8%, Ni: 0.5-8%,
Further, contains Sn: 0.1 to 4%, and 14%≦1.5×V (%) + Mo (%) + 2.4×Ni
(%) ≦ 21%, 2% ≦ Al (%) + Sn (%) 6%, and has a composition (weight %) with the remainder consisting of Ti and unavoidable impurities. High strength, high ductility Ti alloy with excellent corrosion resistance.
(4)Al:2〜5%、V:5〜12%、 Mo:0.5〜8%、Ni:0.5〜8%、を含有し、
さらに、 Zr:0.5〜8%、 Cr:0.1〜3%、 Fe:0.1〜3%、 のうちの1種または2種以上と、 Sn:0.1〜4%、 を含有し、かつ 14%≦1.5×V(%)+Mo(%)+2.4×Ni
(%)+0.6×Zr(%)+1.9×Cr(%)+1
.1×Fe(%)≦21%、2%≦Al(%)+Sn(
%)≦6%、 の条件を満足し、残りがTiと不可避不純物からなる組
成(以上重量%)を有することを特徴とする耐隙間腐食
性のすぐれた高強度高延性Ti合金。
(4) Contains Al: 2 to 5%, V: 5 to 12%, Mo: 0.5 to 8%, Ni: 0.5 to 8%,
Furthermore, one or more of Zr: 0.5-8%, Cr: 0.1-3%, Fe: 0.1-3%, and Sn: 0.1-4%. Contains and 14%≦1.5×V (%) + Mo (%) + 2.4×Ni
(%) + 0.6 x Zr (%) + 1.9 x Cr (%) + 1
.. 1×Fe(%)≦21%, 2%≦Al(%)+Sn(
A high-strength, high-ductility Ti alloy with excellent crevice corrosion resistance, which satisfies the following conditions:
(5)Ai:2〜5%、V:5〜12%、 Mo:0.5〜8%、Ni:0.5〜8%、を含有する
Ti合金インゴット(以上重量%)を、600〜950
℃の範囲内の温度で熱間加工した後、700〜800℃
の範囲内の温度で溶体化処理し、ついで300〜600
℃の範囲内の温度で時効処理することを特徴とする耐隙
間腐食性のすぐれた高強度高延性Ti合金。
(5) A Ti alloy ingot containing 2 to 5% of Ai, 5 to 12% of V, 0.5 to 8% of Mo, and 0.5 to 8% of Ni (weight %) of 600 to 600%. 950
After hot working at a temperature within the range of 700-800℃
solution treatment at a temperature within the range of 300 to 600
A high-strength, high-ductility Ti alloy with excellent crevice corrosion resistance, which is characterized by being subjected to aging treatment at a temperature within the range of °C.
JP21118686A 1986-09-08 1986-09-08 Ti alloy excellent in crevice corrosion resistance and combining high strength with high ductility and its manufacture Pending JPS6365042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21118686A JPS6365042A (en) 1986-09-08 1986-09-08 Ti alloy excellent in crevice corrosion resistance and combining high strength with high ductility and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21118686A JPS6365042A (en) 1986-09-08 1986-09-08 Ti alloy excellent in crevice corrosion resistance and combining high strength with high ductility and its manufacture

Publications (1)

Publication Number Publication Date
JPS6365042A true JPS6365042A (en) 1988-03-23

Family

ID=16601829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21118686A Pending JPS6365042A (en) 1986-09-08 1986-09-08 Ti alloy excellent in crevice corrosion resistance and combining high strength with high ductility and its manufacture

Country Status (1)

Country Link
JP (1) JPS6365042A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327132A (en) * 2006-06-09 2007-12-20 Kobe Steel Ltd Titanium alloy with excellent press formability, and press formed member
US7910052B2 (en) * 2004-10-15 2011-03-22 Sumitomo Metal Industries, Ltd. Near β-type titanium alloy
CN108893631A (en) * 2018-08-03 2018-11-27 燕山大学 A kind of high-strength titanium alloy and preparation method thereof
CN108913942A (en) * 2018-08-03 2018-11-30 中鼎特金秦皇岛科技股份有限公司 A kind of high-strength corrosion-resistant erosion titanium alloy and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7910052B2 (en) * 2004-10-15 2011-03-22 Sumitomo Metal Industries, Ltd. Near β-type titanium alloy
JP2007327132A (en) * 2006-06-09 2007-12-20 Kobe Steel Ltd Titanium alloy with excellent press formability, and press formed member
CN108893631A (en) * 2018-08-03 2018-11-27 燕山大学 A kind of high-strength titanium alloy and preparation method thereof
CN108913942A (en) * 2018-08-03 2018-11-30 中鼎特金秦皇岛科技股份有限公司 A kind of high-strength corrosion-resistant erosion titanium alloy and preparation method thereof
CN108913942B (en) * 2018-08-03 2019-08-02 中鼎特金秦皇岛科技股份有限公司 A kind of high-strength corrosion-resistant erosion titanium alloy and preparation method thereof
CN108893631B (en) * 2018-08-03 2020-11-13 燕山大学 High-strength titanium alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
JPS6289855A (en) High strength ti alloy material having superior workability and its manufacture
JP2606023B2 (en) Method for producing high strength and high toughness α + β type titanium alloy
EP3775307B1 (en) High temperature titanium alloys
JPS62177143A (en) Aluminum alloy sheet excellent in formability and baking hardening and its production
CN114990382B (en) Ultra-low-gap phase transition induced plasticity metastable beta titanium alloy and preparation method thereof
JPS62267438A (en) High-strength ti alloy material excellent in workability and its production
JPH01279736A (en) Heat treatment for beta titanium alloy stock
US5417779A (en) High ductility processing for alpha-two titanium materials
JPS6365042A (en) Ti alloy excellent in crevice corrosion resistance and combining high strength with high ductility and its manufacture
JP2005060821A (en) beta TYPE TITANIUM ALLOY, AND COMPONENT MADE OF beta TYPE TITANIUM ALLOY
JPS62284060A (en) Manufacture of hot rolled titanium alloy plate
JPS6123751A (en) Manufacture of al-li alloy having superior ductility and toughness
JP3297011B2 (en) High strength titanium alloy with excellent cold rollability
JPH02270938A (en) Iron-based shape memorizing alloy and preparation thereof
JPH04235262A (en) Manufacture of ti-al intermetallic compound-series ti alloy excellent in strength and ductility
JPS61166938A (en) Al-li alloy for expansion and its production
JPS61227157A (en) Manufacture of al-li alloy for elongation working
JPS60187652A (en) High-elasticity alloy
JP3297012B2 (en) High strength titanium alloy with excellent cold rollability
JP3486209B2 (en) Heat treatment method for titanium alloy
JPH07316699A (en) Corrosion-resistant nitride-dispersed nickel base alloy having high hardness and strength
JPH0633206A (en) Method for heat-treating ni-base alloy
JPS61204359A (en) Manufacture of beta type titanium alloy material
JPH04355A (en) Production of titanium alloy
CN116397131A (en) High-strength high-plasticity metastable beta titanium alloy reinforced by oxygen element and preparation method thereof