JPS61204359A - Manufacture of beta type titanium alloy material - Google Patents

Manufacture of beta type titanium alloy material

Info

Publication number
JPS61204359A
JPS61204359A JP4384485A JP4384485A JPS61204359A JP S61204359 A JPS61204359 A JP S61204359A JP 4384485 A JP4384485 A JP 4384485A JP 4384485 A JP4384485 A JP 4384485A JP S61204359 A JPS61204359 A JP S61204359A
Authority
JP
Japan
Prior art keywords
transformation point
ingot
titanium alloy
beta
type titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4384485A
Other languages
Japanese (ja)
Other versions
JPS634912B2 (en
Inventor
Ichiro Sawamura
一郎 澤村
Shinichi Arima
伸一 有馬
Hideo Takatori
英男 高取
Chiaki Ouchi
大内 千秋
Hiroyoshi Suenaga
末永 博義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd, NKK Corp, Nippon Kokan Ltd filed Critical Nippon Mining Co Ltd
Priority to JP4384485A priority Critical patent/JPS61204359A/en
Publication of JPS61204359A publication Critical patent/JPS61204359A/en
Publication of JPS634912B2 publication Critical patent/JPS634912B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
  • Forging (AREA)

Abstract

PURPOSE:To obtain the titled material having superior mechanical strength and plenty ductility, by applying ingot break down such as forging or bloom rolling to beta Ti alloy ingot at two temp. ranges by specified drafts respectively. CONSTITUTION:beta Ti alloy ingot is forged or rolled by iota10%, favorably >=30% draft at temp. of beta transformation point +>=100 deg.C, favorably beta transformation point +200 deg.C- said point +300 deg.C. Next, said ingot is heated to temp. range of beta transformation point +100 deg.C- said point -150 deg.C, successively forged or loom rolled by >=30% total draft at >=2 heats in said temp. range to carry out ingot break down. Since beta Ti alloy material obtd. by the method has extremely superior ductility, working at the following process is easy and is applied as intermediate material for hot rolling, warm rolling, finish forging, extrusion, cold rolling, etc.

Description

【発明の詳細な説明】 発明の目的 この出願の発明は機械的強度に優れ、しかも延性に富む
β型チタン合金材の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention The invention of this application relates to a method for producing a β-type titanium alloy material that has excellent mechanical strength and is highly ductile.

従来技術及び問題点 チタン及びチタン合金はその優れた比強度・耐食性及び
耐熱性を保有しているために、宇宙航空機材料、各種化
学プラント、海水淡水化装置等の広範囲な用途に利用さ
れている。
Prior Art and Problems Titanium and titanium alloys have excellent specific strength, corrosion resistance, and heat resistance, so they are used in a wide range of applications such as spacecraft materials, various chemical plants, and seawater desalination equipment. .

チタン合金の中ではα+β型チタン合金であるTi−6
AI−4V合金がよく知られているが、このα+β型チ
タン合金は一般に加工性が悪く、最終製品に到るまでに
多くの煩雑な工程を要するといった欠点があった。
Among titanium alloys, Ti-6 is an α+β type titanium alloy.
AI-4V alloy is well known, but this α+β type titanium alloy generally has poor workability and has the drawback of requiring many complicated steps to produce the final product.

これに対し、β域からの急冷によって常温でもβ単−相
となるβ型チタン合金は加工性に優れ、また、時効硬化
性をもつという点で優れているといわれているが、その
製造工程が充分に解明されているわけではない。
On the other hand, β-type titanium alloys, which form a single β phase even at room temperature by rapid cooling from the β region, are said to have excellent workability and age hardenability, but their manufacturing process has not been fully elucidated.

そしてまた、実際の製造に際しては、上記のよ5な特性
を充分に引出すことは難しいとされていた。
Furthermore, in actual manufacturing, it has been considered difficult to fully bring out the five characteristics mentioned above.

発明の構成 この出願の発明は、この点に鑑みてなされたもので、β
型チタン合金鋳造インゴットをβ変態点+100℃以上
の温度に加熱し、引続き上記温度範囲で10%以上の加
工率の鍛造又は分塊圧延を行い、次にβ変態点+100
℃〜β変態点−150℃の温度域に加熱し、引続き上記
温度範囲において少くとも2 heat 以上で全加工
率50%以上の鍛造又は分塊圧延を行うととくよるイン
ゴットブレイクダウンを行うことを%微とするβ屋チタ
ン合金材の製造方法及びβ型チタン合金鋳造インゴット
を、β変態点+100℃以上の温度に加熱し、引続き上
記温度範囲で、10チ以上の加工率の鍛造又は、分塊圧
延を行い、次にβ変態点+100℃〜β変態点−150
℃の温度域に加熱し引続き上記温度範囲において少くと
も2 heat 以上で全加工率50q6以上の鍛造又
は分塊圧延を行うことによるインゴットブレイクダウン
を行った後、β変態点−250℃〜β変態点で熱間圧延
等を行うことを特徴とするβ凰チタン合金材の製造方法
を提供するものである。
Structure of the Invention The invention of this application was made in view of this point, and β
The type titanium alloy cast ingot is heated to a temperature of β transformation point +100°C or higher, then forged or bloomed at a processing rate of 10% or more in the above temperature range, and then heated to β transformation point +100°C.
It is recommended to perform ingot breakdown by heating to a temperature range of ℃ to β transformation point -150 ℃, and then performing forging or blooming at a total processing rate of 50% or more in the above temperature range at least 2 heat or more. A method for producing a β-type titanium alloy material with a fine β-type titanium alloy material, and a β-type titanium alloy casting ingot is heated to a temperature of β transformation point + 100 ° C. or higher, and then forged or fractionated at a working rate of 10 mm or higher in the above temperature range. Perform block rolling, then β transformation point +100℃ to β transformation point -150℃
After the ingot is broken down by heating to a temperature range of °C and then forging or blooming at a total working rate of 50q6 or more at at least 2 heat in the above temperature range, β transformation point -250 °C to β transformation The present invention provides a method for producing a β-titanium alloy material, characterized in that hot rolling or the like is performed at a point.

上記のβ裂チタン合金は厳密に言えば準安定β型合金で
あり、このような準安定β型チタン合金としで、Ti−
15V−!1Cr−3Sn−3AI合金、Ti−13V
−11Cr−!iA1合金、’l’l−115MO−1
−1l5.5Sn合金、Tl−8Mo−8V−2Fe−
5A1合金などがあるが、本発明はこのような合金を含
むβ凰テタy合金に適用される。
Strictly speaking, the β-cracked titanium alloy mentioned above is a metastable β-type alloy, and as such a metastable β-type titanium alloy, Ti-
15V-! 1Cr-3Sn-3AI alloy, Ti-13V
-11Cr-! iA1 alloy, 'l'l-115MO-1
-1l5.5Sn alloy, Tl-8Mo-8V-2Fe-
5A1 alloy, etc., and the present invention is applied to beta-teta y alloys containing such alloys.

発明の詳細な説明 一般に溶解、鋳造されたインゴットは、その鋳造組織を
破壊するとともに、その後の工程に適した中間素材をつ
くるためにインゴットブレイクダウン空行なわれるが、
本発明のβ凰チタン合金材の製造に際しで、まずβ型チ
タン合金鋳造インゴットをβ変態点+100℃以上の温
度に加熱し、引続き上記温度範囲で10−以上の加工率
の鍛造又は分塊圧延することに特徴を有している。
Detailed Description of the Invention Generally, ingots that have been melted and cast are subjected to ingot breakdown in order to destroy the casting structure and to create an intermediate material suitable for subsequent processes.
When producing the β-type titanium alloy material of the present invention, first, a β-type titanium alloy cast ingot is heated to a temperature of β transformation point + 100°C or higher, and then forged or bloomed at a processing rate of 10- or higher in the above temperature range. It is characterized by the fact that

この工程においてインゴットの鋳造組織が破壊されるが
、拡散速度が速くかつ加工性の良好な高温領域が望まし
い。加工率が低いと鋳造組織を破壊する前記の目的が達
成されない。また温度が低過ぎると割れなどが生じ易く
危険である。
Although the cast structure of the ingot is destroyed in this step, a high temperature region with a fast diffusion rate and good workability is desirable. If the processing rate is low, the above-mentioned objective of destroying the cast structure cannot be achieved. Furthermore, if the temperature is too low, cracks are likely to occur, which is dangerous.

より好ましくはβ変態点+200℃〜β変態点+300
℃で、30チ以上の加工率を与えて鍛造又は圧延を行う
とより良好な結果が得られる。
More preferably β transformation point +200°C to β transformation point +300
Better results can be obtained if forging or rolling is carried out at a temperature of 30° C. and a processing rate of 30 inches or more.

以上の工程のみでは材料のβ粒径が粗大化しているため
に、延性に劣る。
If only the above steps are used, the β grain size of the material becomes coarse, resulting in poor ductility.

次に本発明は、β変態点+100℃〜β変態点−150
’Cの温度域に加熱し、引続き上記温度範囲において少
くとも2 heat 以上で全加工率30嘩以上の鍛造
又は分塊圧延を行うことにさらに特徴を有している。
Next, the present invention has a β-transformation point of +100°C to a β-transformation point of −150°C.
It is further characterized in that it is heated to a temperature range of 'C, and then forged or bloomed at a total working rate of 30 heat or more in the above temperature range at least 2 heat or more.

これによってβ粒が細かくなり、延性が著しく向上する
。上記においてβ−150℃未満の温度では変形抵抗が
高く、表面割れを生ずるため不適である。またβ変態点
+100℃を超える温度ではβ粒の粗大化の傾向がある
ため延性向上の効果は期待できない。
This makes the β grains finer and significantly improves ductility. In the above, temperatures below β-150°C are unsuitable because the deformation resistance is high and surface cracks occur. Further, at temperatures exceeding the β transformation point +100° C., the β grains tend to become coarser, so no improvement in ductility can be expected.

さらにこの工程においては少くとも2回以上繰り返し全
加工率30チ以上の加工を行うことが必要である。
Further, in this step, it is necessary to repeat the process at least twice or more with a total processing rate of 30 inches or more.

以上の工程によってインゴットブレイクダウンを終了す
るわけであるが、本方法によって得られたβ屋チタン合
金材は極めて優れた延性を有するため、次工程における
加工が容易であり、熱間圧延、温間圧延、仕上鍛造、押
出し、冷間圧延材などの中間素材として適用される。
Ingot breakdown is completed through the above steps, but since the β-ya titanium alloy material obtained by this method has extremely excellent ductility, it is easy to process in the next step, and it is suitable for hot rolling, warm rolling, etc. It is applied as an intermediate material for rolling, finish forging, extrusion, cold rolled materials, etc.

本発明は、以上のインゴットブレイクダウンを終了した
材料をさらにβ変態点−250℃〜β変態点の温度域に
加熱後熱間圧延等の加工を行うことによっで、一層優れ
た延性と強度を付与することができる。
In the present invention, the material which has undergone the above ingot breakdown is further heated to a temperature range of -250°C to the β transformation point, and then subjected to processing such as hot rolling, thereby achieving even better ductility and strength. can be granted.

この熱間圧延等の加工は、β変態点−250℃保持を数
次繰り返して行い、通常2〜20回程度縁り返す。この
加熱と圧延等の加工のくり返しは、特に5回〜15回で
優れた上記の特性が得られる。
This processing such as hot rolling is performed by repeatedly holding the β-transformation point at −250° C. several times, and usually turning the material around 2 to 20 times. The above-mentioned excellent properties can be obtained by repeating this heating and processing such as rolling 5 to 15 times.

前記熱間圧延等の加工後のβ変態点−450℃〜β変態
点の加熱によっで、α相などが析出する。
The α phase and the like are precipitated by heating from the β transformation point of −450° C. to the β transformation point after processing such as hot rolling.

この析出は前工程における加工歪のため短時間側ヘシフ
トし析出が良好に打力われる。また前記圧延等の加工で
たくわえられた歪すなわち転位は析出サイトとなり5る
ため、析出が粒界へ集中することがないので、材料の延
性が失われることはない。前記熱間圧延等の加工に際し
で、加工中に若干のα相などの析出が認められることが
あるが、これは本発明の効果をなんら妨げるものではな
い。
This precipitation is shifted to the short time side due to the processing strain in the previous process, and the precipitation is well impacted. Furthermore, since the strain or dislocation accumulated during processing such as rolling becomes a precipitation site, the precipitation does not concentrate on the grain boundaries, so the ductility of the material is not lost. During processing such as hot rolling, some precipitation of α phase may be observed during processing, but this does not impede the effects of the present invention in any way.

前記熱間圧延加工に加えで、熱間における鍛造、押出し
絞りなどの加工を行っても同様の効果が得られ、本発明
においては、これらの加工を全て包含するものである。
In addition to the hot rolling process, similar effects can be obtained by performing processes such as hot forging and extrusion drawing, and the present invention includes all of these processes.

本発明の効果 本発明は単にβ変態点以上の高温のみでインゴットブレ
イクダウンを行う従来の方法に比べ、極めて延性に優れ
たチタン合金材を提供できるものである。
Effects of the Present Invention The present invention can provide a titanium alloy material with extremely excellent ductility compared to the conventional method of simply performing ingot breakdown at a high temperature higher than the β transformation point.

また本発明のインゴットブレイクダウン後、前記に示す
温度域で熱間圧延を行うことにより、優れた延性を維持
しかつ強度を付与することができる著しい効果を有する
ものである。
Further, by hot rolling in the temperature range shown above after the ingot breakdown of the present invention, it has a remarkable effect of maintaining excellent ductility and imparting strength.

次に実施例について説明する。Next, an example will be described.

実施例 Ti−15V−5Cr−3Sn−5AI合金に適用した
場合のインゴットブレイクダウン条件及び熱間圧延条件
並びにこれらによって生ずる特性を第1表及び第2表に
示す。また同表には本発明の条禅と異なる比較例も同時
に示す。
Tables 1 and 2 show the ingot breakdown conditions and hot rolling conditions as well as the resulting properties when applied to the Ti-15V-5Cr-3Sn-5AI alloy of Example. The same table also shows comparative examples different from the articles of the present invention.

なお前記チタン合金のβ変態点は760℃であり、71
0φのインゴットを用いインゴットブレイクダウンは鍛
造でおこなった。
Note that the β transformation point of the titanium alloy is 760°C, and 71
Ingot breakdown was performed by forging using a 0φ ingot.

第1表は種々のインゴットブレイクダウン条件を経た材
料を、溶体化(ST)状態788℃×20 m1nAC
の引張り特性を表面割れ状態で評価したものである。引
張り試片は1−のJIS13号B試片を用いた。また表
面割れ状態は表面積100 cm”  における深さα
5fi以上の表面割れの合計長さによって評価した。
Table 1 shows the materials that have gone through various ingot breakdown conditions, in solution treatment (ST) state at 788°C x 20 m1nAC.
The tensile properties of the specimen were evaluated in the state of surface cracking. A 1- JIS No. 13 B test piece was used as the tensile test piece. In addition, the surface crack condition is determined by the depth α in a surface area of 100 cm.
Evaluation was made based on the total length of surface cracks of 5 fi or more.

また表中の工程■、工程■は工程Iを行った後に工程■
を行っている。以上第1表の本発明の実施例1〜4から
明らかなように、工程Iにおいで、10%以上の加工率
を与えることにより、比較例に比べ著しい延性が得られ
ることがわかる。また加工率が次第に増していくと伸び
の値はさらに向上する。
In addition, process ■ and process ■ in the table are performed after step I.
It is carried out. As is clear from Examples 1 to 4 of the present invention shown in Table 1 above, it can be seen that by applying a processing rate of 10% or more in Step I, remarkable ductility can be obtained compared to the comparative example. Moreover, as the processing rate gradually increases, the elongation value further improves.

実施例3.5〜8では工程■のヒート回数及び全加工率
において異っているが、ヒート回数が5回以上になると
伸びの値がさらに向上していることがわかる。このヒー
ト回数は、2回以上であれば比較例に比べて優れた延性
が得られていることがわかる。
Examples 3.5 to 8 are different in the number of heats in step (2) and the total processing rate, but it can be seen that when the number of heats is 5 or more, the elongation value further improves. It can be seen that when the number of times of heating is two or more, superior ductility is obtained compared to the comparative example.

また実施例3.10.11では工程■の加工温度域を異
ならしめた例を示しているが、いずれも比較例に比べて
優れた延性を示している。この中で加熱温度800℃に
おいて最も優りていることがわかる。
In addition, Examples 3, 10, and 11 show examples in which the processing temperature range in step (2) was different, and all of them show superior ductility compared to the comparative example. It can be seen that among these, the heating temperature of 800° C. is the most superior.

比較例12〜17は、いずれも本発明を満していない条
件において行なわれたものであるが、延性(伸びの値)
及び表面割れ等の面で劣っている。
Comparative Examples 12 to 17 were all conducted under conditions that did not satisfy the present invention, but the ductility (elongation value)
It is also inferior in terms of surface cracks, etc.

第2表は本発明によるインゴットブレイクダウン後、さ
らに本発明の熱間圧延を行った材料を評価したもの、及
び本発明と異なる実施条件の比較例を示したものである
。評価方法は第1表と同じであるが、熱処理は溶体化時
効処理(STA) 78 s”CX20m1nAC+5
10℃X 8 hrAcを行っている。
Table 2 shows evaluations of materials obtained by hot rolling according to the present invention after ingot breakdown according to the present invention, and comparative examples under different implementation conditions from the present invention. The evaluation method is the same as in Table 1, but the heat treatment is solution aging treatment (STA) 78 s”CX20m1nAC+5
Conducting 10°C x 8 hrAc.

この第2表から明らかなように、本発明を満すものは強
度、延性、表面状態のすべての点で良好であるが、比較
例ではこれらの点で本発明に比べ劣っている。
As is clear from Table 2, the samples satisfying the present invention are good in all aspects of strength, ductility, and surface condition, but the comparative examples are inferior to the present invention in these respects.

Claims (2)

【特許請求の範囲】[Claims] (1)β型チタン合金鋳造インゴットをβ変態点+10
0℃以上の温度に加熱し、引続き上記温度範囲で10%
以上の加工率の鍛造又は分塊圧延を行い、次にβ変態点
+100℃〜β変態点−150℃の温度域に加熱し、引
続き上記温度範囲において少くとも2heat以上で全
加工率30%以上の鍛造又は分塊圧延を行うことによる
インゴットブレイクダウンを行うことを特徴とするβ型
チタン合金材の製造方法。
(1) β-type titanium alloy casting ingot with β transformation point +10
Heating to a temperature of 0℃ or higher, then 10% in the above temperature range
Forging or blooming at the above processing rate is performed, then heated to a temperature range of β transformation point +100°C to β transformation point -150°C, and then the total processing rate is 30% or more with at least 2 heat or more in the above temperature range 1. A method for producing a β-type titanium alloy material, which comprises performing ingot breakdown by forging or blooming.
(2)β型チタン合金鋳造インゴットをβ変態点+10
0℃以上の温度に加熱し、引続き上記温度範囲で、10
%以上の加工率の鍛造又は、分塊圧延を行い、次にβ変
態点+100℃〜β変態点−150℃の温度域に加熱し
引続き上記温度範囲において少くとも2heat以上で
全加工率30%以上の鍛造又は分塊圧延を行うことによ
るインゴットブレイクダウンを行つた後、β変態点−2
50℃〜β変態点で熱間圧延等の加工を行うことを特徴
とするβ型チタン合金材の製造方法。
(2) β-type titanium alloy casting ingot with β transformation point +10
Heating to a temperature of 0°C or higher, and then heating in the above temperature range for 10
Forging or blooming with a working rate of % or more, then heating to a temperature range of β transformation point +100°C to β transformation point -150°C, and then continuing at least 2 heat in the above temperature range to 30% total working rate. After performing ingot breakdown by performing the above forging or blooming rolling, β transformation point -2
A method for producing a β-type titanium alloy material, which comprises performing processing such as hot rolling at a temperature of 50° C. to a β transformation point.
JP4384485A 1985-03-07 1985-03-07 Manufacture of beta type titanium alloy material Granted JPS61204359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4384485A JPS61204359A (en) 1985-03-07 1985-03-07 Manufacture of beta type titanium alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4384485A JPS61204359A (en) 1985-03-07 1985-03-07 Manufacture of beta type titanium alloy material

Publications (2)

Publication Number Publication Date
JPS61204359A true JPS61204359A (en) 1986-09-10
JPS634912B2 JPS634912B2 (en) 1988-02-01

Family

ID=12675040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4384485A Granted JPS61204359A (en) 1985-03-07 1985-03-07 Manufacture of beta type titanium alloy material

Country Status (1)

Country Link
JP (1) JPS61204359A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63171862A (en) * 1987-01-08 1988-07-15 Nkk Corp Manufacture of heat resistant ti-al alloy
US4802930A (en) * 1987-10-23 1989-02-07 Haynes International, Inc. Air-annealing method for the production of seamless titanium alloy tubing
US4902355A (en) * 1987-08-31 1990-02-20 Bohler Gesellschaft M.B.H. Method of and a spray for manufacturing a titanium alloy
WO2021020808A1 (en) * 2019-07-26 2021-02-04 주식회사 포스코 Titanium slab and method for manufacturing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63171862A (en) * 1987-01-08 1988-07-15 Nkk Corp Manufacture of heat resistant ti-al alloy
US4902355A (en) * 1987-08-31 1990-02-20 Bohler Gesellschaft M.B.H. Method of and a spray for manufacturing a titanium alloy
US4802930A (en) * 1987-10-23 1989-02-07 Haynes International, Inc. Air-annealing method for the production of seamless titanium alloy tubing
WO2021020808A1 (en) * 2019-07-26 2021-02-04 주식회사 포스코 Titanium slab and method for manufacturing same

Also Published As

Publication number Publication date
JPS634912B2 (en) 1988-02-01

Similar Documents

Publication Publication Date Title
US5264055A (en) Method involving modified hot working for the production of a titanium alloy part
JPH0686638B2 (en) High-strength Ti alloy material with excellent workability and method for producing the same
JPH01279736A (en) Heat treatment for beta titanium alloy stock
JP2001517735A (en) Aluminum alloy and heat treatment method thereof
JPH03193850A (en) Production of titanium and titanium alloy having fine acicular structure
JP3362428B2 (en) Processing method of hot-formed product of β-type titanium alloy
JPS61204359A (en) Manufacture of beta type titanium alloy material
JPS63130755A (en) Working heat treatment of alpha+beta type titanium alloy
JPH05132745A (en) Production of aluminum alloy excellent in formability
WO1999049091A1 (en) Ti-V-Al BASED SUPERELASTICITY ALLOY
JPS62151551A (en) Manufacture of cold worked titanium alloy material
JPH06293929A (en) Beta titanium alloy wire and its production
JPS61204358A (en) Manufacture of beta type titanium alloy material
GB2248849A (en) Process for working a beta type titanium alloy
KR102589875B1 (en) Fine grained pure titanium and manufacturing method for the same
JPH03130351A (en) Production of titanium and titanium alloy having fine and equiaxial structure
JPS60187652A (en) High-elasticity alloy
JPH0353038A (en) High strength titanium alloy
JP3841290B2 (en) Manufacturing method of β-type titanium alloy and β-type titanium alloy manufactured by the manufacturing method
JPH01222038A (en) Manufacture of alpha+beta type ti alloy member having high strength and high toughness
JPH0266142A (en) Manufacture of plate stock, bar stock, and wire rod of alpha plus beta titanium alloy
JP2002088456A (en) Method for manufacturing alpha plus beta titanium alloy having ultrafine-grained structure
JPH02217452A (en) Method for toughening near beta-type titanium alloy
JPH01195265A (en) Manufacture of high-strength beta-type titanium alloy
JPS60155657A (en) Production of ti-ni superelastic alloy