JP2694259B2 - Processing method of β-type titanium alloy - Google Patents

Processing method of β-type titanium alloy

Info

Publication number
JP2694259B2
JP2694259B2 JP2245205A JP24520590A JP2694259B2 JP 2694259 B2 JP2694259 B2 JP 2694259B2 JP 2245205 A JP2245205 A JP 2245205A JP 24520590 A JP24520590 A JP 24520590A JP 2694259 B2 JP2694259 B2 JP 2694259B2
Authority
JP
Japan
Prior art keywords
temperature
titanium alloy
type titanium
processing
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2245205A
Other languages
Japanese (ja)
Other versions
JPH04124252A (en
Inventor
功 久保木
健三 加藤
豊 若林
Original Assignee
セイコーインスツルメンツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーインスツルメンツ株式会社 filed Critical セイコーインスツルメンツ株式会社
Priority to JP2245205A priority Critical patent/JP2694259B2/en
Priority to US07/755,288 priority patent/US5217548A/en
Priority to GB9119632A priority patent/GB2248849B/en
Publication of JPH04124252A publication Critical patent/JPH04124252A/en
Application granted granted Critical
Publication of JP2694259B2 publication Critical patent/JP2694259B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、β型チタン合金の恒温加工性を向上させる
ための加工方法に関するものである。
TECHNICAL FIELD The present invention relates to a processing method for improving the isothermal workability of a β-type titanium alloy.

〔発明の概要〕[Summary of the Invention]

加工率70%以上の予加工が加えられているβ型チタン
合金の恒温加工において、650℃以上β変態温度以下の
恒温加工前に、恒温加工温度以下の温度であり、しかも
400℃以上β変態温度以下の温度で析出処理を行うこと
によって、その後の恒温加工時の恒温加工性(伸び、変
形応力、変形速度など)を向上させるようにしたもので
ある。
In isothermal processing of β-type titanium alloy that has been pre-processed with a processing rate of 70% or more, the temperature is below the isothermal processing temperature before isothermal processing above 650 ° C and below β transformation temperature, and
By performing the precipitation treatment at a temperature of 400 ° C. or more and β transformation temperature or less, the isothermal workability (elongation, deformation stress, deformation speed, etc.) during the subsequent isothermal processing is improved.

〔従来の技術〕[Conventional technology]

β型チタン合金は一般に冷間加工性が良好であること
から、冷間圧延によって薄板とされ、続いてその薄板の
加工ひずみを除去するために、溶体化処理を行い、シー
ト成形加工に供給されている。溶体化処理はβ単相温度
領域まで加熱するので粒成長しやすく、成形加工前の組
織は粒径約100μm以上の粗大結晶組織である。成形加
工はβチタン合金の良好な冷間加工性を利用し、室温で
型成形されるのが一般的である。厚板についても同様に
室温で型鍛造されている。冷間成形以外にも、一部は溶
体化処理温度以上で熱間型鍛造や熱間シート成型が行わ
れている。
Since β-type titanium alloys generally have good cold workability, they are made into thin plates by cold rolling, and subsequently, in order to remove the processing strain of the thin plates, solution treatment is performed and they are supplied to sheet forming processing. ing. Since the solution heat treatment heats up to the β single phase temperature region, grain growth is likely to occur, and the structure before forming is a coarse crystal structure with a grain size of about 100 μm or more. The forming process utilizes the good cold workability of β-titanium alloy and is generally formed at room temperature. Similarly, the thick plate is die-forged at room temperature. In addition to cold forming, hot die forging and hot sheet forming are partially performed at a solution treatment temperature or higher.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

β型チタン合金は冷間加工性が優れているといって
も、従来技術の冷間成形加工では大変形は可能であるが
変形応力が大きく加工硬化するため、中間焼鈍をいれな
がら成形加工するので工程数が非常に多くなっていた。
また複雑な形状の成形は不可能であった。この問題を解
決するために溶体化処理温度以上の高温で熱間加工が行
われ、変形応力を小さくしている。しかし従来技術の熱
間加工では溶体化処理温度以上の高温まで加熱されるの
で粒成長しやすく、成形品の肌荒れが起こりやすくなっ
ていた。また粗大粒化は加工後の機械的性質に悪影響を
およぼすと考えられる。さらに従来の熱間加工では一工
程でのNear・Net・Shape成形は不可能であった。
Although β-type titanium alloy has excellent cold workability, large deformation is possible with the conventional cold forming process, but the deformation stress is large and work hardening occurs. Therefore, the number of steps was very large.
In addition, it was impossible to form a complicated shape. In order to solve this problem, hot working is performed at a temperature higher than the solution heat treatment temperature to reduce the deformation stress. However, in the hot working of the conventional technique, since it is heated to a temperature higher than the solution heat treatment temperature, grain growth is likely to occur, and roughening of the surface of the molded product is likely to occur. Moreover, it is considered that the coarsening has an adverse effect on the mechanical properties after processing. Furthermore, in the conventional hot working, Near / Net / Shape molding in one process was not possible.

そこで本発明は従来のこのような欠点を解決するため
に、予加工を加えたβ型チタン合金の恒温加工前に、そ
の恒温加工温度以下の(α+β)二相領域である温度範
囲でα相を微細に析出させることによって、α相のβ相
に対するピンニング効果による母相β相の結晶粒微細化
を達成させた。これによって、低応力で大変形の得られ
る超塑性を発現させ、この超塑性現象を製造コストの低
減だけでなく、良好な転写性および拡散接合性によるデ
ザインの多様化にも利用することのできる恒温加工性の
向上を計ることを目的としたものである。
Therefore, in order to solve such a conventional drawback, the present invention, prior to isothermal working of a pre-processed β-type titanium alloy, α phase within a temperature range which is a (α + β) two-phase region below the isothermal working temperature. By finely precipitating, the grain refinement of the parent phase β phase was achieved by the pinning effect on the α phase β phase. This makes it possible to develop superplasticity that can obtain large deformation with low stress, and this superplasticity phenomenon can be used not only for reduction of manufacturing cost but also for diversification of design due to good transferability and diffusion bonding property. The purpose is to improve the isothermal processability.

〔課題を解決するための手段〕[Means for solving the problem]

上記問題点を解決するためにこの発明は、β型チタン
合金に加工が比較的容易なα相が析出があり起こらない
温度領域で70%以上の予加工を加え、400℃以上β変態
温度以下の(α+β)二相領域で析出処理を行いα相を
均一微細に析出させ、その後に析出処理以上の温度で、
しかも650℃以上β変態温度以下の温度範囲で恒温加工
することによって、β型チタン合金に良好な超塑性を発
現させるようにした。
In order to solve the above problems, the present invention is a β-type titanium alloy, which is pre-processed at 70% or more in a temperature region where α phase, which is relatively easy to process, does not cause precipitation, and 400 ° C or more and β transformation temperature or less. In the (α + β) two-phase region, the α phase is uniformly and finely precipitated, and then at a temperature higher than the precipitation process,
Moreover, by performing isothermal working in a temperature range of 650 ° C or higher and β transformation temperature or lower, the β-type titanium alloy is made to exhibit good superplasticity.

〔作用〕[Action]

β型チタン合金に強加工を加えた後、400℃以上β変
態温度以下の温度まで加熱すると、α相は短時間に均一
微細に析出するようになる。このような組織を有するβ
型チタン合金を析出処理温度以上であり、しかも650℃
以上β変態温度以下の温度に加熱すると、母相β相の結
晶粒界(あるいは亜結晶粒界)が析出α相粒子にピンニ
ングされ移動しにくくなり、極微細な結晶粒(あるいは
亜結晶粒)組織が形成される。そして、β型チタン合金
は、このうよに結晶粒を微細化することによって、恒温
加工において超塑性現象を示すようになる。
When the β-type titanium alloy is subjected to strong working and then heated to a temperature of 400 ° C. or higher and β-transformation temperature or lower, the α phase comes to be uniformly finely precipitated in a short time. Β having such an organization
Type titanium alloy is above the precipitation temperature, and 650 ℃
When heated to a temperature below the β-transformation temperature above, the crystal grain boundaries (or sub-grain boundaries) of the parent phase β phase become pinned by the precipitated α-phase grains and become difficult to move, resulting in extremely fine crystal grains (or sub-crystal grains). Tissue is formed. Then, the β-type titanium alloy exhibits a superplastic phenomenon in isothermal processing by refining the crystal grains in this way.

〔実施例〕〔Example〕

以下実施例によって本発明を詳述する。 The present invention will be described in detail below with reference to examples.

本発明に使用した供試材は、第1表に示した化学成分
を有する板厚5mm溶体化処理されたβ型チタン合金であ
る。この供試材から次の2種の試料を作製した。1つは
供試材に圧下率70%の冷間圧延を施し1.5mm厚とした70
%冷間圧延材(Spe.A)である。残りは、このSpe.Aを溶
体化処理し、粒径約75μmとした溶体化処理材(Spe.
B)である。これらの1.5mm厚板材の試料から引張試験片
を採取した。
The test material used in the present invention is a solution-treated β-type titanium alloy having a chemical composition shown in Table 1 and a plate thickness of 5 mm. The following two types of samples were prepared from this test material. One is cold rolling with a 70% reduction of the test material to a thickness of 1.5 mm.
% Cold rolled material (Spe.A). The rest is solution treated with this Spe.A, and the solution treated material (Spe.
B). Tensile test pieces were taken from these 1.5 mm thick plate materials.

次にこの2種の試験片を400℃,500℃,600℃,700℃で
1時間の析出処理を行った。高温引張試験は析出処理を
行った2種の試験片と行わない2種の試験片について、
真空中600〜800℃の温度範囲、1×10-4〜1×10-1 S-1
のひずみ速度範囲の条件下で行った。このようにしてSp
e.AとSpe.Bの全伸びを測定した。第2表にひずみ速度を
1×10-3 S-1としたときの全伸びの値をを示す。
Next, these two kinds of test pieces were subjected to a precipitation treatment at 400 ° C, 500 ° C, 600 ° C and 700 ° C for 1 hour. The high temperature tensile test was carried out on two types of test pieces that were subjected to precipitation treatment and two types that were not
Temperature range of 600 to 800 ℃ in vacuum, 1 x 10 -4 to 1 x 10 -1 S-1
Was carried out under the condition of strain rate range of. In this way Sp
The total elongation of eA and Spe.B was measured. Table 2 shows the values of total elongation when the strain rate is set to 1 × 10 -3 S -1 .

第2表から圧下率70%の冷間圧延を行った試験片Spe.
Aにおいて、引張試験前にその試験温度以下の温度で析
出処理を行うことによって、650℃から750℃の温度範囲
で全伸びが大きくなり、同じ伸び値を得るためにはSpe.
Bよりも温度を低くすることができることがわかる。こ
こで、供試材のβ変態温度は750℃であった。この温度
は合金成分量、H,O,Nなどのガス成分量によって変化す
る。試験片の圧下率は、70%以上あればより微細な結晶
粒とすることができるので全伸びが向上することは明ら
かである。
From Table 2, the test piece Spe.
In A, by performing the precipitation treatment at a temperature below the test temperature before the tensile test, the total elongation increases in the temperature range of 650 ° C to 750 ° C, and in order to obtain the same elongation value, Spe.
It can be seen that the temperature can be lower than B. Here, the β-transformation temperature of the test material was 750 ° C. This temperature changes depending on the amount of alloy components and the amount of gas components such as H, O and N. If the rolling reduction of the test piece is 70% or more, finer crystal grains can be formed, and it is apparent that the total elongation is improved.

また、析出処理温度は400℃以上でないと、短時間に
α相の析出が生じにくく、実用上不利であるので400℃
以上とした。
If the precipitation treatment temperature is not higher than 400 ° C, the precipitation of α phase is difficult to occur in a short time, which is disadvantageous in practical use.
It was above.

以上で示したような析出処理による全伸びの向上は、
微細均一に析出したα相の母相β相粒界のピンニング効
果に起因することから、当該合金成分系のβ型チタン合
金に限らず、強加工が可能なβ型チタン合金であればい
ずれのβ型チタン合金においても確認されることは明ら
かである。
The improvement of the total elongation by the precipitation treatment as shown above is
Since it is caused by the pinning effect of the matrix phase of the α phase that is finely and uniformly precipitated and β phase, it is not limited to the β type titanium alloy of the alloy component system, but any β type titanium alloy that can undergo strong working can be used. It is clear that this is also confirmed in the β-type titanium alloy.

〔発明の効果〕〔The invention's effect〕

この発明は以上説明したように、β型チタン合金に極
めて簡単な予加工とそれに続く析出処理を施すことによ
り、恒温加工時に超塑性が発現し、従来の熱間加工およ
び恒温加工と比較して全伸びを著しく向上させることが
できる。その結果、製造コストの大幅な低減だけでな
く、転写性や拡散接合性を活かしたデザインの多様化を
図ることができる。
As described above, according to the present invention, by subjecting a β-type titanium alloy to extremely simple pre-processing and subsequent precipitation treatment, superplasticity is developed during isothermal working, and compared with conventional hot working and isothermal working. The total elongation can be significantly improved. As a result, not only the manufacturing cost can be significantly reduced, but also the diversification of the design utilizing the transferability and the diffusion bonding property can be achieved.

また、冷間圧延によって高圧下率まで圧延が可能であ
るので、精密に厚さ制御できる薄帯をつくることが可能
となる。この薄帯を同種または異種材料の間にはさんで
加工することによって、高変形能と拡散接合能をうまく
利用した金属同志あるいは金属セラミックス等の接合が
可能になるという効果も有する。
Further, since it is possible to perform high pressure reduction by cold rolling, it is possible to produce a thin strip whose thickness can be precisely controlled. By processing the thin strip between the same or different materials, it is possible to join metals or metal ceramics that make good use of high deformability and diffusion bonding ability.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22F 1/00 686 8719−4K C22F 1/00 686Z 694 8719−4K 694A 8719−4K 694B (56)参考文献 特開 昭63−230858(JP,A) 特開 平1−92333(JP,A) 特開 平2−70046(JP,A)─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location C22F 1/00 686 8719-4K C22F 1/00 686Z 694 8719-4K 694A 8719-4K 694B (56) References JP-A-63-230858 (JP, A) JP-A-1-92333 (JP, A) JP-A-2-70046 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】β型チタン合金の加工方法において、前記
β型チタン合金に実質的にα相が析出しない温度領域に
て70%以上の予加工を行い、次に前記β型チタン合金に
α相を均一に析出させるための400℃以上β変態温度以
下の温度にて析出処理を行い、その後、前記析出処理の
温度以上でしかも650℃以上でβ変態温度以下の温度範
囲にて超塑性現象を示す恒温加工を行うことを特徴とす
るβ型チタン合金の加工方法。
1. A method of processing a β-type titanium alloy, wherein a pre-processing of 70% or more is carried out in a temperature range in which the α-phase is not substantially precipitated in the β-type titanium alloy, and then the β-type titanium alloy is subjected to α-processing. Precipitation treatment is performed at a temperature of 400 ° C or more and β transformation temperature or less for uniformly precipitating a phase, and then a superplastic phenomenon in a temperature range of the precipitation treatment temperature or more and 650 ° C or more and β transformation temperature or less The method for processing a β-type titanium alloy is characterized by performing constant temperature processing.
JP2245205A 1990-09-14 1990-09-14 Processing method of β-type titanium alloy Expired - Lifetime JP2694259B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2245205A JP2694259B2 (en) 1990-09-14 1990-09-14 Processing method of β-type titanium alloy
US07/755,288 US5217548A (en) 1990-09-14 1991-09-05 Process for working β type titanium alloy
GB9119632A GB2248849B (en) 1990-09-14 1991-09-13 Process for working a beta type titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2245205A JP2694259B2 (en) 1990-09-14 1990-09-14 Processing method of β-type titanium alloy

Publications (2)

Publication Number Publication Date
JPH04124252A JPH04124252A (en) 1992-04-24
JP2694259B2 true JP2694259B2 (en) 1997-12-24

Family

ID=17130189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2245205A Expired - Lifetime JP2694259B2 (en) 1990-09-14 1990-09-14 Processing method of β-type titanium alloy

Country Status (1)

Country Link
JP (1) JP2694259B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002192297A (en) * 2000-12-21 2002-07-10 Maruman Golf Corp Golf club head and its molding method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63230858A (en) * 1987-03-20 1988-09-27 Sumitomo Metal Ind Ltd Manufacture of titanium-alloy sheet for superplastic working

Also Published As

Publication number Publication date
JPH04124252A (en) 1992-04-24

Similar Documents

Publication Publication Date Title
EP0610006A1 (en) Superplastic aluminum alloy and process for producing same
JPS6289855A (en) High strength ti alloy material having superior workability and its manufacture
JP2968822B2 (en) Manufacturing method of high strength and high ductility β-type Ti alloy material
JPH03193850A (en) Production of titanium and titanium alloy having fine acicular structure
JP2694259B2 (en) Processing method of β-type titanium alloy
JP3026854B2 (en) Processing method of metal matrix composite
JP3362428B2 (en) Processing method of hot-formed product of β-type titanium alloy
JP7028893B2 (en) Titanium alloy-based sheet material for low-temperature superplastic deformation
JPH0726184B2 (en) Method for producing hot-worked material of α + β-type titanium alloy having ultrafine grain structure
US5217548A (en) Process for working β type titanium alloy
JP2580682B2 (en) Method for producing α + β type Ti alloy member having high strength and high toughness
JPH06256919A (en) Method for working titanium alloy
JP2004277873A (en) Titanium alloy incorporated with boron added
JPS61204359A (en) Manufacture of beta type titanium alloy material
JPH06272004A (en) Method for working titanium alloy
JPH0747801B2 (en) Manufacturing method of aluminum alloy sheet for superplastic forming
JPH0116910B2 (en)
JPS61210163A (en) Hot worked material of alpha+beta type titanium alloy having hyperfine-grained structure
JP2920840B2 (en) Ti-Ni alloy processing method
JP2002088456A (en) Method for manufacturing alpha plus beta titanium alloy having ultrafine-grained structure
JP4046368B2 (en) Thermomechanical processing method for β-type titanium alloy
JP3343954B2 (en) Method of toughening treatment of near β type titanium alloy
JPH03130351A (en) Production of titanium and titanium alloy having fine and equiaxial structure
TW593691B (en) Method for producing transient room temperature superplastic zinc-aluminum alloy and method for removing the transient room temperature superplasticity thereof
JPH03115550A (en) Method for working beta-type titanium alloy

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070912

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090912

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100912

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100912

Year of fee payment: 13

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100912

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 14