JPH03115550A - Method for working beta-type titanium alloy - Google Patents

Method for working beta-type titanium alloy

Info

Publication number
JPH03115550A
JPH03115550A JP25308189A JP25308189A JPH03115550A JP H03115550 A JPH03115550 A JP H03115550A JP 25308189 A JP25308189 A JP 25308189A JP 25308189 A JP25308189 A JP 25308189A JP H03115550 A JPH03115550 A JP H03115550A
Authority
JP
Japan
Prior art keywords
working
processing
temperature
alloy
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25308189A
Other languages
Japanese (ja)
Inventor
Isao Kuboki
久保木 功
Kenzo Kato
健三 加藤
Yutaka Wakabayashi
豊 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP25308189A priority Critical patent/JPH03115550A/en
Publication of JPH03115550A publication Critical patent/JPH03115550A/en
Pending legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Abstract

PURPOSE:To give superplasticity in the titanium alloy and to easily execute its working with good workability at a low cost by subjecting a beta-type Ti alloy having a specified compsn. contg. V, Cr, Sn, Al and Ti to preworking at a specified high working ratio and thereafter executing isothermal working. CONSTITUTION:A beta-type Ti alloy contg., by weight, 10 to 20% V, 1 to 5% Cr, 1 to 5% Sn, 1 to 5% Al and the balance Ti is subjected to preworking at >=70% working ratio. The preworking is preferably executed in the temp. range of a room temp. to 750 deg.C. After that, the alloy is subjected to isothermal working. The isothermal working is preferably executed in the temp. range of 650 to 775 deg.C. Furthermore, the above isothermal working is preferably executed in the range of 1X10<-4>S<-1> to 3X10<-2>S<-1> strain rate. In this way, at the time of executing the isothermal working to the alloy, crystalline grains are refined in the stage of holding under heating to give superplasticity, by which the reduction of the manufacturing cost, the improvement of the transferability, the diversification of the design by diffusion joining or the like are permitted.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は、β型チタン合金の恒温加工性を向上させるた
めの加工方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a processing method for improving the isothermal workability of β-type titanium alloy.

−〔発明の概要〕 バナジウム10〜20%、クロム1〜5%、スズ1〜5
%、アルミニウム1〜5%、残部チタンであるβ型チタ
ン合金に、室温から750℃までの温度範囲において7
0%以上の加工率で予加工を施すことにより、続く恒温
加工、即ち加工温度範囲650℃から775℃、ひずみ
速度範囲I ×10−’ S−’から3 ×10−” 
S−’の条件において、前記合金の恒温加工性(伸び、
変形応力など)を向上させるようにしたものである。
- [Summary of the invention] Vanadium 10-20%, chromium 1-5%, tin 1-5
%, aluminum 1-5%, balance titanium, in the temperature range from room temperature to 750°C.
By performing pre-processing at a processing rate of 0% or more, subsequent constant-temperature processing, i.e. processing temperature range from 650°C to 775°C, strain rate range from I × 10-'S-' to 3 × 10-''
Under the conditions of S-', the isothermal workability (elongation, elongation,
deformation stress, etc.).

〔従来の技術〕[Conventional technology]

β型チタン合金は一般に冷間加工性が良好であることか
ら、冷間圧延によって薄板とされ、続いてその薄板の加
工ひずみを除去するために溶体化処理を行い、シート成
形加工に供されている。溶体化処理はβ単相温度領域ま
で加熱するので粒成長しやすく、成形加工前のMi織は
粒径約100μm以上の粗大結晶粒組織である。成形加
工はβ型チタン合金の良好な冷間加工性を利用し、室温
で型成形されるのが一般的である。厚板についても同様
に室温で型鍛造されている。冷開成形以外にも一部は溶
体化処理温度以上で熱間型鍛造や熱間シート成形が行わ
れている。
Since β-type titanium alloys generally have good cold workability, they are made into thin sheets by cold rolling, then subjected to solution treatment to remove processing strain from the thin sheets, and then subjected to sheet forming processing. There is. Since the solution treatment heats to the β single-phase temperature range, grain growth is likely to occur, and the Mi texture before forming is a coarse grain structure with a grain size of about 100 μm or more. Forming is generally performed at room temperature, taking advantage of the good cold workability of β-type titanium alloys. Thick plates are also die forged at room temperature. In addition to cold-open forming, hot die forging and hot sheet forming are also carried out at temperatures above the solution treatment temperature.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

β型チタン合金の冷間加工性が優れているといっても、
従来技術の冷間加工では、耳割れなしに大変形は可能で
あるが、加工硬化するため中間焼鈍を入れながら成形加
工するので、工程数が非常に多くなる。この問題を解決
するために、溶体化処理温度以上の高温で熱間加工が行
われ、変形抵抗を小さくしている。しかし従来技術の熱
間加工では、溶体化処理温度以上の高温まで加熱される
ので粒成長しやすく、成形品は肌荒れが起こりやすい、
また粗大粒化は加工後の機械的性質に悪影響を及ぼすと
考えられる。さらに従来の熱間加工では、Near・N
et  −3hape成形は不可能であった。
Although β-type titanium alloy has excellent cold workability,
With conventional cold working, large deformations can be made without edge cracking, but the forming process requires intermediate annealing in order to harden the material, resulting in a very large number of steps. To solve this problem, hot working is performed at a high temperature higher than the solution treatment temperature to reduce the deformation resistance. However, in conventional hot processing, the temperature is higher than the solution treatment temperature, which tends to cause grain growth, and the molded product is prone to rough skin.
It is also believed that coarse grains have a negative effect on mechanical properties after processing. Furthermore, in conventional hot working, Near/N
et-3 hape molding was not possible.

そこで本発明は従来のこのような欠点を解決するために
、β型チタン合金の恒温加工前に予加工を与え、恒温加
工温度までの昇温、恒温加工温度での保持中に結晶粒を
微細化し、低応力下で大変形の得られる超塑性を発現さ
せ、この超塑性現象を製造コストの低減だけでなく、良
好な転写性および粒数接合性によるデザインの多様化に
も利用することのできる恒温加工性の向上を図ることを
目的としたものである。
Therefore, in order to solve these conventional drawbacks, the present invention provides pre-processing before constant-temperature processing of β-type titanium alloy, increases the temperature to the constant-temperature processing temperature, and refines the crystal grains during holding at the constant-temperature processing temperature. It is possible to develop superplasticity that allows large deformations under low stress, and to utilize this superplasticity not only to reduce manufacturing costs but also to diversify designs through good transferability and grain number bondability. The purpose of this is to improve the constant temperature processability that can be achieved.

〔課題を解決するための手段〕[Means to solve the problem]

上記問題点を解決するためにこの発明は、バナジウム1
0〜20%、クロム1〜5%、スズ1〜5%。
In order to solve the above problems, the present invention provides vanadium 1
0-20%, chromium 1-5%, tin 1-5%.

アルミニウム1〜5%、残部チタンであるβ型チタン合
金に、恒温加工前に室温から750℃の温度範囲で70
%以上の予加工を与えることにより、続く恒温加工、す
なわち加工温度650℃から775℃、ひずみ速度l×
10−’から3 ×10−” S−’の範囲の条件にお
いて、前記合金に超塑性を発現させるようにした。
A β-type titanium alloy consisting of 1 to 5% aluminum and the balance titanium was heated at a temperature range of 750°C from room temperature to 750°C before isothermal processing.
% or more, the subsequent isothermal processing, i.e. processing temperature from 650°C to 775°C, strain rate l ×
The alloy was made to exhibit superplasticity under conditions ranging from 10-' to 3 x 10-''S-'.

〔作用〕[Effect]

バナジウム1註〜20 〜5%.アルミニウム1〜5%,残部チタンであるβ型
チタン合金は、強加工を加えた後、熱処理を行い適当な
条件で再結晶を終了させることにより、均一微細な等軸
結品位Mi襟とすることができる.また、再結晶を終了
させなくても前記合金は、回復の進行がはやく、強加工
を行うことによりα相が均一微細に粒状析出するため、
再結晶温度直下では均一微細な亜結晶粒組織となる。
Vanadium 1 to 20 to 5%. β-type titanium alloy, which is made up of 1 to 5% aluminum and the balance titanium, can be made into a uniformly fine, equiaxed grade Mi collar by applying heavy working and then heat treatment to complete recrystallization under appropriate conditions. Can be done. In addition, even if the recrystallization is not completed, the alloy recovers quickly, and the α phase precipitates in uniform and fine grains when subjected to strong working.
Just below the recrystallization temperature, it becomes a uniform, fine sub-grain structure.

当該合金は結晶粒あるいは亜結晶粒を微細化することに
より、恒温加工において超塑性現象を示すようになる。
By refining the crystal grains or subgrains, the alloy exhibits a superplastic phenomenon during constant temperature processing.

〔実施例〕〔Example〕

以下実施例によって本発明を詳述する。 The present invention will be explained in detail below with reference to Examples.

実施例−1 本発明に使用した供試材の化学成分を第−表に示す.供
試材は熱間圧延により15 w Wとした。
Example-1 Table 1 shows the chemical components of the test materials used in the present invention. The test material was hot rolled to a strength of 15 wW.

板材である。この供試材から次の3f!1iの試料を作
製した.一つは、この供試材をそのまま90%冷間圧延
を行い1.5 0厚とした90%冷間圧延材(Spe。
It is a board material. Next 3F from this sample material! A sample of 1i was prepared. One is a 90% cold-rolled material (Spe.

^〉である、二つめは、この供試材を51)厚まで冷間
圧延後溶体化処理を行い、さらに圧下率70%の冷間圧
延を行い1.5龍厚とした70%冷間圧延材(Spe.
B)である、三つめは、90%冷間圧延材を溶体化処理
し、粒径75μmとした溶体化処理材(Spe。
The second method is to cold-roll this sample material to a thickness of 51), then solution treatment, and then cold-roll it at a reduction rate of 70% to obtain a 70% cold-rolled thickness of 1.5 mm. Rolled material (Spe.
The third one, which is B), is a solution-treated material (Spe.

C)である、これら1.5fi厚の試料から圧延方向と
引張軸が平行となるように引張試験片を採取した.なお
、ここで冷間圧延した温度は常温であり、本発明では2
0℃であった。
C), tensile test pieces were taken from these 1.5 fi thick samples so that the rolling direction and the tensile axis were parallel. Note that the cold rolling temperature here is room temperature, and in the present invention, 2
It was 0°C.

高温引張試験(恒温加工)は、前記引張試験片を真空中
、鐸O℃から825℃の温度範囲、l×10−4S−1
からI ×10−’ S−’のひずみ速度範囲の条件下
で、インストロン型引張試験機を用いて行った。
In the high temperature tensile test (constant temperature processing), the tensile test piece was placed in a vacuum at a temperature range of 0°C to 825°C, 1 x 10-4S-1.
The test was conducted using an Instron type tensile tester under the strain rate range of I x 10-'S-'.

そして各試験片の全伸びおよび流動応力を測定した。第
2表に試験温度を750℃、ひずみ速度をl×10−’
 S−’とした場合の試験結果を示す。
The total elongation and flow stress of each test piece were then measured. Table 2 shows the test temperature at 750℃ and the strain rate at l×10-'
The test results in the case of S-' are shown.

第2表 冷間圧延した各試験片の試験温度750℃、ひ
ずみ速度l×10−4S での全伸びと流動応力 −実施例−2 実施例−1と同様の供試材を使用した。この供試材から
次の4種の試料を作製した。まず、この供試材を400
℃と750℃でそれぞれ90%温間圧延を行った。そし
て、それぞれ400℃での90%温間圧延材をSpe、
 D、  750℃での90%温間圧延材をSpe、E
とした0次に、供試材を51厚まで冷間圧延後溶体化処
理を行い、さらに400℃と750℃でそれぞれ70%
温間圧延を行った。この時の400℃での70%温間圧
延材をSpe、P、 750℃での70%温間圧延材を
Spe、Gとした。このようにして得た試料の厚さはす
べて約1.5fiである。続いて、これらl。
Table 2 Total elongation and flow stress of each cold rolled test piece at a test temperature of 750° C. and a strain rate of 1×10 −4 S - Example 2 The same test materials as in Example 1 were used. The following four types of samples were prepared from this sample material. First, this test material was
90% warm rolling was performed at 750°C and 750°C, respectively. Then, the 90% warm rolled material at 400°C was Spe,
D, 90% warm rolled material at 750℃ Spe, E
Next, the sample material was cold rolled to a thickness of 51, then solution-treated, and further rolled to a thickness of 70% at 400°C and 750°C.
Warm rolling was performed. The 70% warm-rolled material at 400°C at this time was designated as Spe and P, and the 70% warm-rolled material at 750°C was designated as Spe and G. The thickness of all samples thus obtained is approximately 1.5 fi. Next, these l.

5龍厚の試料から圧延方向と引張軸が平行となるように
引張試験片を採取した。ここで750℃以上の圧延では
圧延終了後に回復および再結晶が急激に進行し、高温引
張試験時に微細結晶粒を得ることが困難であった。当該
合金の再結晶温度は740℃である。
A tensile test piece was taken from a sample with a thickness of 5 mm so that the rolling direction and the tensile axis were parallel. Here, when rolling at 750° C. or higher, recovery and recrystallization proceeded rapidly after the rolling was completed, making it difficult to obtain fine crystal grains during the high-temperature tensile test. The recrystallization temperature of the alloy is 740°C.

高温引張試験(恒温加工)は前記試験片を真空中、実施
例−1と同様の温度範囲およびひずみ速度範囲の条件下
でインストロン型引張試験機を用いて行った。第3表に
試験温度を750℃、ひずみ速度をI ×10−’ S
−’とした場合の試験結果を示す。
A high-temperature tensile test (constant temperature processing) was performed on the test piece in vacuum using an Instron type tensile tester under the same temperature range and strain rate range as in Example-1. Table 3 shows the test temperature at 750℃ and the strain rate at I × 10-'S.
-' test results are shown.

第3表 温間圧延した各試験片の試験温度750℃、ひ
ずみ速度I ×10−’ S−’での全伸びと流動応力
前記した第2表および第3表から、恒温加工前に、室温
から再結晶温度付近までの温度領域で、70%以上の予
加工を施すことによって、恒温加工時に大きな全伸びが
得られ、流動応力を低下させることができることがわか
った。
Table 3. Total elongation and flow stress of each warm-rolled specimen at a test temperature of 750°C and a strain rate of I × 10-'S-'. It has been found that by performing pre-processing of 70% or more in the temperature range from 100 to about the recrystallization temperature, a large total elongation can be obtained during constant temperature processing and flow stress can be reduced.

この結果から予加工温度が再結晶温度付近(750℃)
以下であり、加工率が70%以上であれば、予加工に冷
間加工と温間加工を組合わせたり、押出し等の圧延以外
の加工方法を用いてもよいことは勿論である。
From this result, the pre-processing temperature is near the recrystallization temperature (750℃)
or less, and as long as the processing rate is 70% or more, it goes without saying that cold working and warm working may be combined in the preprocessing, or a processing method other than rolling such as extrusion may be used.

第1図は、90%冷間圧延したままの試験片(Spe、
 A)と90%冷間圧延した後、溶体化処理を行い粒径
16μmとした試験片(Spe、H)および粒径75μ
mとした試験片(Spe、C)における引張試験温度に
ともなう全伸びと流動応力の変化を示す。
Figure 1 shows a 90% as-cold-rolled specimen (Spe,
After 90% cold rolling with A), a test piece (Spe, H) with a grain size of 16 μm by solution treatment and a grain size of 75 μm were obtained.
Figure 2 shows changes in total elongation and flow stress with tensile test temperature for a test piece (Spe, C) with m.

650℃から775℃の温度範囲では、Spe、^はS
pa、CおよびSpe、Hよりも全伸びが向上し、流動
応力が低下することがわかる。775℃以上ではSpa
In the temperature range from 650°C to 775°C, Spe, ^ is S
It can be seen that the total elongation is improved and the flow stress is lower than that of pa, C and Spe, H. Spa above 775℃
.

Aも粒成長し、結晶粒が粗大化するためにSpe、Cお
よびSpe、Hと全伸びがあまり変わらなくなるものと
考えられる。従って、恒温加工温度範囲は650℃から
775℃とした。
It is thought that A also undergoes grain growth and the crystal grains become coarser, so that the total elongation does not differ much from that of Spe, C and Spe, H. Therefore, the constant temperature processing temperature range was set from 650°C to 775°C.

第2図は、前記Spe、AとSpe、lIにおける種々
の試験温度での初期ひずみ速度にともなう全伸びの変化
を示す、これより、Spe、Aではひずみ速度104S
−1から3 ×10−” S−’の範囲で100%以上
の得られることがわかる。従って、恒温加工ひずみ速度
範囲はto−’ s−’から3 ×10−” S−’と
した。
Figure 2 shows the change in total elongation with the initial strain rate at various test temperatures for Spe, A and Spe, II.
It can be seen that 100% or more can be obtained in the range of -1 to 3 x 10-''S-'. Therefore, the isothermal processing strain rate range was set from to-'s-' to 3 x 10-''S-'.

さらに、第1図および第2図より、90%冷間圧延材(
Spe、^)では加工温度700℃から750℃、ひず
み速度I ×10−’ S−1からI ×10−’ S
−’付近が最適加工条件であることがわかる。
Furthermore, from Fig. 1 and Fig. 2, 90% cold rolled material (
Spe, ^), the processing temperature was 700°C to 750°C, and the strain rate was I × 10-' S-1 to I × 10-' S.
It can be seen that the optimum machining conditions are around -'.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したように、β型チタン合金に極め
て簡単な予加工を施すことにより、恒温加工時に超塑性
が発現し、従来の熱間加工および恒温加工と比較して全
伸びを著しく向上させるとともに、流動応力も著しく小
さくさせることができる。その結果、製造コストの大幅
な低減だけでなく、転写性や拡散接合性を活かしたデザ
インの多様化を図ることができる。
As explained above, in this invention, superplasticity is developed during constant temperature processing by subjecting β-type titanium alloy to extremely simple pre-processing, and the total elongation is significantly improved compared to conventional hot working and constant temperature working. At the same time, flow stress can also be significantly reduced. As a result, it is possible not only to significantly reduce manufacturing costs, but also to diversify designs that take advantage of transferability and diffusion bonding properties.

また高圧下率まで圧延が可能であるので薄帯化が可能と
なり、この薄帯を同様または異種材料の間にはさんで加
工することによって、高変形態と拡散接合態をうまく利
用した金属同志あるいは金属とセラミックス等の接合が
可能になるという効果も有する。
In addition, since it is possible to roll to a high reduction rate, it is possible to make thin strips, and by processing these thin strips by sandwiching them between similar or dissimilar materials, metal-to-metal bonding that takes advantage of high deformation and diffusion bonding is possible. It also has the effect of making it possible to join metals, ceramics, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の方法を評価する特性図で、90%冷
間圧延したままの試験片(Spe、A)と90%冷間圧
延した後、溶体化処理を行い粒径16μmとした試験片
(Spe、H)および粒径75μmとした試験片(Sp
e、C)における初期ひずみ速度I ×10−’ S−
1とI ×10−” S−’での試験温度にともなう全
伸びと流動応力の変化を示した図、第2図は第1図のS
pe。 AとSpe、 Hにおける種々の試験温度での初期ひず
み速度にともなう全伸びの変化を示した特性図である。 以上
Figure 1 is a characteristic diagram for evaluating the method of the present invention, showing a test piece (Spe, A) that was 90% cold rolled and a test piece that was 90% cold rolled and then subjected to solution treatment to obtain a grain size of 16 μm. A test piece (Spe, H) and a test piece with a particle size of 75 μm (Sp
Initial strain rate I ×10-' S-
Figure 2 shows the change in total elongation and flow stress with test temperature at 1 and I x 10-''S-'.
pe. It is a characteristic diagram showing changes in total elongation with initial strain rate at various test temperatures in A, Spe, and H. that's all

Claims (4)

【特許請求の範囲】[Claims] (1)重量%でバナジウム10〜20%、クロム1〜5
%、スズ1〜5%、アルミニウム1〜5%、残部チタン
を含むβ型チタン合金において、70%以上の加工率で
予加工を加えた後、恒温加工を行うことを特徴とするβ
型チタン合金の加工方法。
(1) Vanadium 10-20%, chromium 1-5% by weight
%, tin 1 to 5%, aluminum 1 to 5%, and the balance titanium, β type titanium alloy is characterized by performing constant temperature processing after pre-processing at a processing rate of 70% or more.
Processing method of type titanium alloy.
(2)予加工が室温から750℃の温度範囲で行われる
ことを特徴とする特許請求範囲第1項記載のβ型チタン
合金の加工方法。
(2) The method for processing a β-type titanium alloy according to claim 1, characterized in that the pre-processing is performed in a temperature range from room temperature to 750°C.
(3)恒温加工が650℃から775℃の温度範囲で行
われることを特徴とする特許請求範囲第1項記載のβ型
チタン合金の加工方法。
(3) The method for processing a β-type titanium alloy according to claim 1, wherein the constant temperature processing is performed in a temperature range of 650°C to 775°C.
(4)恒温加工が1×10^−^4S^−^1から3×
10^−^2S^−^1のひずみ速度範囲で行われるこ
とを特徴とする特許請求範囲第1項記載のβ型チタン合
金の加工方法。
(4) Constant temperature processing from 1x10^-^4S^-^1 to 3x
A method for processing a β-type titanium alloy according to claim 1, characterized in that the processing is carried out in a strain rate range of 10^-^2S^-^1.
JP25308189A 1989-09-27 1989-09-27 Method for working beta-type titanium alloy Pending JPH03115550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25308189A JPH03115550A (en) 1989-09-27 1989-09-27 Method for working beta-type titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25308189A JPH03115550A (en) 1989-09-27 1989-09-27 Method for working beta-type titanium alloy

Publications (1)

Publication Number Publication Date
JPH03115550A true JPH03115550A (en) 1991-05-16

Family

ID=17246227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25308189A Pending JPH03115550A (en) 1989-09-27 1989-09-27 Method for working beta-type titanium alloy

Country Status (1)

Country Link
JP (1) JPH03115550A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6319340B1 (en) * 1998-03-23 2001-11-20 Mikio Takeuchi Ti-V-A1 based superelasticity alloy and process for preparation thereof
WO2003091468A1 (en) * 2000-11-09 2003-11-06 Jfe Steel Corporation Method for forging titanium alloy and forged titanium alloy material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6319340B1 (en) * 1998-03-23 2001-11-20 Mikio Takeuchi Ti-V-A1 based superelasticity alloy and process for preparation thereof
WO2003091468A1 (en) * 2000-11-09 2003-11-06 Jfe Steel Corporation Method for forging titanium alloy and forged titanium alloy material

Similar Documents

Publication Publication Date Title
JPS60155658A (en) Thermodynamic treatment for superalloy to obtain structure equipped with good mechanical properties
JPH0474856A (en) Production of beta ti alloy material having high strength and high ductility
US6074498A (en) Heat treated Al-Cu-Li-Sc alloys
US4486244A (en) Method of producing superplastic aluminum sheet
JPS63114951A (en) Method for forming fatique and cracking resistant nickel-base superalloy by thermal processing and formed product
JPH03115550A (en) Method for working beta-type titanium alloy
JPH03193850A (en) Production of titanium and titanium alloy having fine acicular structure
US3966506A (en) Aluminum alloy sheet and process therefor
US4528042A (en) Method for producing superplastic aluminum alloys
JPH01127653A (en) Manufacture of alpha+beta type titanium alloy cold rolled plate
JPH03285055A (en) Method for working beta titanium alloy
US5217548A (en) Process for working β type titanium alloy
US4935069A (en) Method for working nickel-base alloy
JP2694259B2 (en) Processing method of β-type titanium alloy
JPH03240939A (en) Manufacture of high ductility and high toughness titanium alloy
Yu et al. Diffusion bonding in superplastic ZK60 magnesium alloy
TW477820B (en) The thermomechanical treatment for low temperature superplasticity in 5083 Al-Mg base alloys
JPH06272004A (en) Method for working titanium alloy
Mulyukov et al. Current status of research and development on superplasticity at the Institute for Metals Superplasticity Problems
JPS63206457A (en) Working and heat treatment of alpha+beta type titanium alloy
SU834231A1 (en) Method of treating aluminium alloys
Takahashi et al. Microstructures and Mechanical Properties of High Strength beta-Rich alpha+ beta Titanium Alloy; SP-700
JPH0196359A (en) Manufacture of titanium alloy plate for super plastic molding
JPH01222037A (en) Cold rolling method for ti-6al-4v sheet
JPH03193838A (en) Ti-al base alloy capable of superplastic working and diffusion joining and its manufacture