JPH02217452A - Method for toughening near beta-type titanium alloy - Google Patents

Method for toughening near beta-type titanium alloy

Info

Publication number
JPH02217452A
JPH02217452A JP3908089A JP3908089A JPH02217452A JP H02217452 A JPH02217452 A JP H02217452A JP 3908089 A JP3908089 A JP 3908089A JP 3908089 A JP3908089 A JP 3908089A JP H02217452 A JPH02217452 A JP H02217452A
Authority
JP
Japan
Prior art keywords
type titanium
temp
beta
titanium alloy
precipitated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3908089A
Other languages
Japanese (ja)
Inventor
Minoru Okada
稔 岡田
Yasuhiro Sato
佐藤 恭博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3908089A priority Critical patent/JPH02217452A/en
Publication of JPH02217452A publication Critical patent/JPH02217452A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Abstract

PURPOSE:To toughen the Near beta-type titanium alloy in an ultra highstrength level by successively executing specified solution heat treatment in different temp. range to the Near beta-type titanium alloy and thereafter subjecting the alloy to low temp. aging. CONSTITUTION:The Near beta-type titanium alloy is held to the one less than the beta transformation temp. to (the transformation temp. -15 deg.C) or above for 0.5 to 4hr and is thereafter cooled to a room temp. at >=0.5 deg.C/sec rate. In this way, the alpha phase having relatively coarse grains of about 100mum order is precipitated into the beta mother phase. Next, the alloy is furthermore held to (the betatransformation temp. -20 deg.C) or below to (the beta transformation temp. -100 deg.C) or above for 0.5 to 4hr and is thereafter cooled to a room temp. at >=5 deg.C/sec rate. In this way, the alpha phase having relatively coarse grains of about 10mum order is precipitated. The alloy after finished with the solution heat treatment is subjected to low temp. aging treatment and the alpha phase having fine grains of about 1mum order is precipitated to secure sufficient strength. In this way, the Near beta-type titanium alloy in which the precipitated alpha phase coexists with two kinds of relatively coarse grains and fine grains and having high roughness even in an ultra high-strength of >=140kg/mm<2> level or above can be obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、β母相中にα相が混合し、α+β型チタン合
金とβ型チタン合金との中間的な組織構造を有するNe
arβ型チタン型金2フに関する。
Detailed Description of the Invention [Industrial Application Field] The present invention is directed to Ne
This invention relates to arβ type titanium mold 2F.

〔従来の技術〕[Conventional technology]

近年、Ti−10V−2Fe−3Alに代表されるNe
arβ型チタン型金2フ 造用材料として注目を集めている。この合金は、Ti−
6Af−4Vに代表されるα+β型チタン合金よりも高
強度かつ高靭性であり、更にβ型チタン合金より合金成
分が少なく、熱間変形抵抗が小さいため、恒m鍛造性に
も優れており、そのために、航空機の機体構造用材料の
分野ではTi −6Al−4Vに代わる材料として期待
されているのである。
In recent years, Ne as represented by Ti-10V-2Fe-3Al
It is attracting attention as a material for making arβ type titanium molds. This alloy is Ti-
It has higher strength and toughness than the α+β type titanium alloy represented by 6Af-4V, and has less alloy components than the β type titanium alloy, and has lower hot deformation resistance, so it has excellent constant molar forgeability. For this reason, it is expected to be an alternative material to Ti-6Al-4V in the field of aircraft body structural materials.

このようなNearβ型チタン型金2フ13V−1 1
Cr−3A1等の工業用β型チタン合金と同様、溶体化
処理後の急冷により準安定β相を残留させ、このβ母相
中に低温時効により細粒のα相を析出させることで強靭
化できる。
Such Near β type titanium mold 2F 13V-1 1
Similar to industrial β-type titanium alloys such as Cr-3A1, the metastable β phase remains through rapid cooling after solution treatment, and the fine grained α phase is precipitated in this β matrix by low-temperature aging, resulting in toughness. can.

従来のNearβ型チタン型金2フ 方法は、β型チタン合金に対する強靭化方法に準じた形
で行われており、β型チタン合金に対する強靭化方法と
しては、β変態点直下での溶体処理後の急冷と2段の低
温時効処理との組合せが「金属チタンとの応用」日刊工
業新聞社(1983)に開示され、また、AMS規格4
983にはβ変態点−15〜40℃の温度で30分以上
保持した後、炉冷または空冷により室温まで冷却し、そ
の後さらに同様の加熱保持後に水冷により室温まで冷却
する2段溶体化方法が開示されている。
The conventional near β-type titanium mold 2F method is carried out in a manner similar to the toughening method for β-type titanium alloys. A combination of quenching and two-stage low-temperature aging treatment was disclosed in "Applications with titanium metal" Nikkan Kogyo Shimbunsha (1983), and also complied with AMS standard 4.
983 has a two-stage solution treatment method in which the material is held at a temperature of -15 to 40°C, the β-transformation point, for 30 minutes or more, then cooled to room temperature by furnace cooling or air cooling, and then further heated and held in the same manner and then cooled to room temperature by water cooling. Disclosed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このような従来からのβ型チタン合金に対する強靭化方
法を上記Ti−10V−2Fe−3Alに対して行った
場合、実用上の引張強さは130kg f /閣3程度
に制限されてしまう、これは、上記強靭化方法により引
張強さが140 kg f 7m”を超えるような極め
て高強度化された状態゛になると、靭性が著しく低下し
て破壊靭性値(K + c値)が100 kg f /
 m””以下になり、靭性面から引張強さが130 k
g f 7m”程度に抑えられるからである。
If such conventional toughening methods for β-type titanium alloys were applied to the Ti-10V-2Fe-3Al, the practical tensile strength would be limited to about 130 kg f /3. When the above-mentioned toughening method reaches an extremely high strength state where the tensile strength exceeds 140 kg f7m, the toughness decreases significantly and the fracture toughness value (K + c value) reaches 100 kg f7m. /
m"" or less, and the tensile strength is 130 k from the toughness perspective.
This is because g f can be suppressed to about 7 m''.

本発明は、斯かる状況に鑑みなされたもので、Near
β型チタン合金の優れた特性、とりわけ140kgf 
/am”を超えるような超高強度レベルにおいても、航
空機の機体用構造材料として十分その機能が果たせ得る
ような優れた破壊靭性値(K r c値)が確保できる
Nearβ型チタン合金の強靭化方法を提供することを
目的とする。
The present invention was made in view of this situation, and
Excellent properties of β-type titanium alloy, especially 140kgf
Strengthening of the Near β type titanium alloy, which can secure an excellent fracture toughness value (K r c value) that can sufficiently fulfill its function as a structural material for aircraft bodies even at ultra-high strength levels exceeding 100% / am” The purpose is to provide a method.

(課題を解決するための手段) 代表的なNearβ型チタン合金であるTi10V−2
Fe−3Aj!に溶体化処理と低温時効処理との組合せ
からなる強靭化を行った場合、その挙動は基本的にはβ
型チタン合金と同じであり、溶体処理後の急冷により残
留した準安定β相からなる母相中に、低温時効で細粒の
α相が析出し、このα相が微細で均一に析出するほど強
度が高くなる。しかし、強度が高(なりすぎると前述し
たとおり靭性が急激に低下する。
(Means for solving the problem) Ti10V-2, a typical Near β type titanium alloy
Fe-3Aj! When toughening is performed by combining solution treatment and low-temperature aging treatment, the behavior is basically β
It is the same as type titanium alloy, and fine-grained α-phase precipitates during low-temperature aging in the matrix consisting of metastable β-phase that remains after rapid cooling after solution treatment. Increases strength. However, if the strength is too high (too high), the toughness will drop sharply as mentioned above.

本発明者らは、強度確保上微細α相の均一析出は必須で
あるとの前促にたち、この@細α相の析出に制限を加え
ることなく、靭性が改善できる方法について鋭意研究を
続けた結果、低温時効処理前の溶体化処理でサイズの異
なる2種類の比較的粗粒のα相をβ母相中に析出させて
おくのが有効なことを知見した。
The present inventors have been advised that uniform precipitation of fine α-phase is essential to ensure strength, and have continued to conduct intensive research on methods for improving toughness without imposing restrictions on the precipitation of this @fine α-phase. As a result, it was found that it is effective to precipitate two relatively coarse-grained α phases of different sizes into the β matrix during solution treatment before low-temperature aging treatment.

本発明は、斯かる知見に基づきなされたもので、Nea
rβ型チタン合金をβ変態点未満、(β変態点−15℃
)以上の温度に0.5時間以上、4時間以下保持した後
、0.5℃/秒以上の速度で室温まで冷却し、その後さ
らに(β変態点−20℃)以下、(β変態点−100℃
)以上の温度に0.5、・時間以上、4時間以下保持し
た後、5”07秒以上の速度で室温まで冷却し、その後
、低温時効を行うことを特徴とするNearβ型チタン
合金の強靭化方法を要旨とする。
The present invention was made based on such knowledge, and is based on the Nea
The rβ type titanium alloy is below the β transformation point (β transformation point -15℃
) or above for 0.5 hours or more and 4 hours or less, then cooled to room temperature at a rate of 0.5°C/sec or more, and then further heated to (β transformation point - 20°C) or less, (β transformation point - 100℃
) to a temperature of 0.5 to 4 hours, cooled to room temperature at a rate of 5"07 seconds or more, and then subjected to low-temperature aging. The gist is how to

本発明の強靭化方法によると、1段目の溶体化処理で約
100μmオーダの第1の比較的粗粒のα相がβ母相中
に析出し、2段目の溶体化処理で約10μmオーダの第
2の比較的粗粒のα相がβ母相中に析出する。その結果
、低温時効処理後は、これらのサイズの異なる2種類の
比較的粗粒のα相と、低温時効処理で析出した1μmオ
ーダの細粒α相とが共存した&1lva構造となり、後
者の細粒α相で十分な強度が保証されるとともに、前者
の2種類の比較的粗粒のα相によりL 40 kgf/
cm”を超える超高強度レベルにおいても高い靭性が確
保される。
According to the toughening method of the present invention, a first relatively coarse-grained α phase of about 100 μm order is precipitated in the β matrix in the first stage solution treatment, and about 10 μm in size is precipitated in the second stage solution treatment. A second, relatively coarse-grained α phase of the order of magnitude precipitates in the β matrix. As a result, after the low-temperature aging treatment, a &1lva structure was formed in which these two relatively coarse-grained α phases with different sizes coexisted with the fine-grained α-phase on the order of 1 μm that precipitated during the low-temperature aging treatment, and the latter fine grained α phase coexisted. Sufficient strength is guaranteed by the grain α phase, and the former two types of relatively coarse grain α phase provide L 40 kgf/
High toughness is ensured even at ultra-high strength levels exceeding 3.5 cm.

サイズの異なる2種類の比較的粗粒のα相で靭性が改善
されるメカニズムは明らかでないが、本発明者らが得た
実験データは、いずれもこの事実を裏づけるものである
Although the mechanism by which toughness is improved by two types of relatively coarse α phases of different sizes is not clear, the experimental data obtained by the present inventors all support this fact.

〔作  用〕[For production]

以下に本発明の強靭化方法における数値限定理由を説明
する。
The reasons for limiting the numerical values in the toughening method of the present invention will be explained below.

1段目の溶体化処理では、約100μmオーダの第1の
比較的粗粒のα相をβ母相中に析出させる。この処理で
の加熱温度がβ変態点以上では、α相そのものの析出が
不可能になり、(β変態点−15℃)未満では、所定粒
度の粗粒α相が析出せず、いずれの場合も低温時効後の
靭性が不足する。したがって、加熱温度はβ変態点未満
、(β変態点−15℃)以上とした。
In the first stage solution treatment, a first relatively coarse-grained α phase on the order of about 100 μm is precipitated in the β matrix. If the heating temperature in this treatment is above the β transformation point, the α phase itself cannot be precipitated, and if it is lower than (β transformation point -15°C), the coarse α phase of the predetermined grain size cannot be precipitated. Also, toughness is insufficient after low temperature aging. Therefore, the heating temperature was set below the β-transformation point and above (β-transformation point -15°C).

加熱保持時間については、0.5時間未満ではα相が十
分に析出せず、4時間超では析出したα相が成長し、所
定粒度の粗粒α相が得られないので、0.5〜4時間と
した。
Regarding the heating holding time, if it is less than 0.5 hours, the alpha phase will not be sufficiently precipitated, and if it is more than 4 hours, the precipitated alpha phase will grow and a coarse grained alpha phase of the predetermined grain size cannot be obtained. It was set as 4 hours.

加熱保持後の冷却は、0,5℃/秒以上の速度で行うが
、これは、0.5℃/秒未満では、析出したα相の成長
が起こるためである。冷却速度が0.5℃/秒以上であ
れば、析出したα相の成長が抑えられるので、その上限
は規定しない。
Cooling after heating and holding is carried out at a rate of 0.5° C./sec or more, because if the temperature is less than 0.5° C./sec, the precipitated α phase will grow. If the cooling rate is 0.5° C./sec or more, the growth of the precipitated α phase can be suppressed, so there is no upper limit to the cooling rate.

2段目の溶体化処理では、約10μmオーダの第2の比
較的粗粒のα相をβ相中に析出させる。
In the second stage solution treatment, a second relatively coarse-grained α phase on the order of about 10 μm is precipitated in the β phase.

この処理での加熱温度が(β変態点−20℃)を超える
と、析出するα相が粗粒すぎ、(β変態点100℃)以
下では、逆に析出するα相が細粒すぎ、いずれの場合も
低温時効処理後の靭性が不足する。したがって、加熱温
度は(β変態点−20℃)以下、(β変態点−100℃
)以上とした。
If the heating temperature in this treatment exceeds (β transformation point - 20°C), the precipitated α phase will be too coarse grained, and if the heating temperature is below (β transformation point 100°C), the precipitated α phase will be too fine grained, and eventually In this case, the toughness is also insufficient after low temperature aging treatment. Therefore, the heating temperature is below (β transformation point - 20℃), (β transformation point - 100℃
) and above.

加熱保持時間および加熱保持後の冷却速度は、1段目の
溶体化処理と同じ理由から、加熱保持時間については0
.5〜4時間、冷却速度については0.5℃/秒とした
The heating holding time and the cooling rate after heating holding are set to 0 for the same reason as the first stage solution treatment.
.. The cooling rate was 0.5°C/sec for 5 to 4 hours.

なお、溶体化処理後の低温時効処理は、強度確保のため
にβ母相中に約1μmオーダ細粒のα相を析出させるも
ので、必要とする強度に応じ、溶体化処理で得た2NH
4の比較的粗粒のα相が消失しない温度域で適宜行なう
In addition, the low-temperature aging treatment after the solution treatment precipitates a fine grained α phase of approximately 1 μm order in the β matrix to ensure strength, and depending on the required strength, the 2NH
The process is carried out appropriately in a temperature range in which the relatively coarse-grained α phase of No. 4 does not disappear.

〔実施例〕〔Example〕

次に、本発明の効果を実施例に基づいて説明する。 Next, the effects of the present invention will be explained based on examples.

真空アーク溶解により第1表に示す組成のTi−l0V
−2Fe−3Alからなる直径300謳のインゴットを
溶製し、このインゴットをβ鍛造およびα十β鍛造によ
り幅80M、厚み40mmの厚板とした。このチタン合
金のβ変態点は785゛Cである。
Ti-10V with the composition shown in Table 1 by vacuum arc melting
An ingot made of -2Fe-3Al with a diameter of 300 mm was melted, and this ingot was made into a thick plate with a width of 80M and a thickness of 40 mm by β forging and α10β forging. The β transformation point of this titanium alloy is 785°C.

製造された厚板を種々の条件で強靭化処理した後、各厚
板に対してAM34983に規定される引張試験および
破壊靭性試験を行った。結果を処理条件とともに第2表
に示す。
After toughening the manufactured thick plates under various conditions, each thick plate was subjected to a tensile test and a fracture toughness test as specified in AM34983. The results are shown in Table 2 along with the processing conditions.

律1〜3は本発明の強靭化方法で処理した場合の結果を
示しており、いずれの場合もi 、i 0kgf/m”
を超える引張強サト、130 kg f /1m””以
上の破壊靭性値(K+c値)が確保されている。
Laws 1 to 3 show the results when treated with the toughening method of the present invention, and in each case, i , i 0 kgf/m"
A tensile strength of over 130 kg f /1 m'' and a fracture toughness value (K+c value) of over 130 kg f /1 m'' are ensured.

これに対し、隘4はAMS規格4983に示された2段
溶体化処理の後に低温時効処理を行った場合であり、低
温時効処理によって引張強さは140kgf/履1に達
しているが、破壊靭性値は100 kg r /van
”” Lか過ぎない、Nl17もβ型チタン合金に対し
て一般に行われている強靭化処理であるが、引張強さが
145kgf/謹1では破壊靭性値は80 kg f 
/wm””にしか過ぎない。また階5および律6は本発
明の強靭化方法に類似するものの、その条件が外れた場
合であり、引張強さが140 kg f /1m”を超
える超高強度レベルでは、十分な破壊靭性値は確保され
ない、なお、阻6で引張強さが十分でないのは、溶体化
処理温度での保持時間が長く、β相の結晶粒が粗大化し
たことによる。
On the other hand, No. 4 is a case where low-temperature aging treatment is performed after the two-stage solution treatment shown in AMS standard 4983, and the tensile strength reaches 140 kgf/1 shoe due to low-temperature aging treatment, but the fracture Toughness value is 100 kg r/van
"" L is too much, Nl17 is also a toughening treatment that is generally performed on β-type titanium alloys, but when the tensile strength is 145 kgf/1, the fracture toughness value is 80 kg f.
/wm"" is nothing more than that. In addition, although floors 5 and 6 are similar to the toughening method of the present invention, they are cases where the conditions are not met, and at an ultra-high strength level where the tensile strength exceeds 140 kg f /1 m'', sufficient fracture toughness is not achieved. However, the reason why the tensile strength is not sufficient in case 6 is that the holding time at the solution treatment temperature was long and the crystal grains of the β phase became coarse.

本発明の強靭化方法は、実施例で示したTi10V−2
Fe−3AI!、たけてなく、α+β型チタン合金とβ
型チタン合金との中間的な組織構造を有するNearβ
型チタン型金タフ合金、いずれに対しても有効である。
The toughening method of the present invention is based on the Ti10V-2 toughening method shown in the example.
Fe-3AI! , and α+β type titanium alloy and β
Nearβ has an intermediate structure with type titanium alloys.
Effective for both type titanium type metal tough alloy.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明の強靭化方法は
、Nearβ型チタン型金タフ合金140kgf/wt
a”を超えるような超高強度を付与した場合にも、航空
機の機体用構造材料として十分その機能を果たし得るに
十分な靭性を確保することができ、これによりNear
β型チタン型金タフ合金大等、ひいては航空機等の軽量
化、高強度化等に寄与するものである。
As is clear from the above explanation, the toughening method of the present invention can be applied to the Near β type titanium type gold tough alloy 140kgf/wt
Even when ultra-high strength exceeding a” is imparted, it is possible to ensure sufficient toughness to fulfill its function as a structural material for the aircraft body.
This contributes to reducing the weight and increasing the strength of β-type titanium-type gold tough alloys, etc., and ultimately aircraft.

Claims (1)

【特許請求の範囲】 1、Nearβ型チタン合金をβ変態点未満、(β変態
点−15℃)以上の温度に0.5時間以上、4時間以下
保持した後、0.5℃/秒以上の速度で室温まで冷却し
、その後さらに (β変態点−20℃)以下、(β変態点−100℃)以
上の温度に0.5時間以上、4時間以下保持した後、5
℃/秒以上の速度で室温まで冷却し、その後、低温時効
を行うことを特徴とするNearβ型チタン合金の強靭
化方法。
[Claims] 1. After holding the near β type titanium alloy at a temperature below the β transformation point and above (β transformation point -15°C) for 0.5 hours or more and 4 hours or less, 0.5°C/second or more After cooling to room temperature at a rate of
A method for toughening a Near β-type titanium alloy, which comprises cooling to room temperature at a rate of at least °C/second, and then subjecting it to low-temperature aging.
JP3908089A 1989-02-17 1989-02-17 Method for toughening near beta-type titanium alloy Pending JPH02217452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3908089A JPH02217452A (en) 1989-02-17 1989-02-17 Method for toughening near beta-type titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3908089A JPH02217452A (en) 1989-02-17 1989-02-17 Method for toughening near beta-type titanium alloy

Publications (1)

Publication Number Publication Date
JPH02217452A true JPH02217452A (en) 1990-08-30

Family

ID=12543124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3908089A Pending JPH02217452A (en) 1989-02-17 1989-02-17 Method for toughening near beta-type titanium alloy

Country Status (1)

Country Link
JP (1) JPH02217452A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999037704A1 (en) * 1998-01-21 1999-07-29 Mitsubishi Plastics, Inc. Heat-resistant insulating film, raw substrate for printed wiring board using the same and method for producing the substrate
JP2017002390A (en) * 2015-06-16 2017-01-05 株式会社神戸製鋼所 Titanium alloy forging material
JP2017002373A (en) * 2015-06-12 2017-01-05 株式会社神戸製鋼所 Titanium alloy forging material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999037704A1 (en) * 1998-01-21 1999-07-29 Mitsubishi Plastics, Inc. Heat-resistant insulating film, raw substrate for printed wiring board using the same and method for producing the substrate
JP2017002373A (en) * 2015-06-12 2017-01-05 株式会社神戸製鋼所 Titanium alloy forging material
JP2017002390A (en) * 2015-06-16 2017-01-05 株式会社神戸製鋼所 Titanium alloy forging material

Similar Documents

Publication Publication Date Title
JPH01279736A (en) Heat treatment for beta titanium alloy stock
JP2001517735A (en) Aluminum alloy and heat treatment method thereof
JPS619561A (en) Manufacture of al alloy plate having superior hot formability
JP3362428B2 (en) Processing method of hot-formed product of β-type titanium alloy
JP5210874B2 (en) Cold workable titanium alloy
JPH02217452A (en) Method for toughening near beta-type titanium alloy
JPH05132745A (en) Production of aluminum alloy excellent in formability
JPS63130755A (en) Working heat treatment of alpha+beta type titanium alloy
JPH0588302B2 (en)
JPH06207254A (en) Production of high strength al-li series alloy casting
JPS61204359A (en) Manufacture of beta type titanium alloy material
JPH03130351A (en) Production of titanium and titanium alloy having fine and equiaxial structure
JPH06272004A (en) Method for working titanium alloy
JPH03115551A (en) Method for heat treating beta-type titanium alloy
JPH0196360A (en) Manufacture of titanium alloy material for cold working
JP2849965B2 (en) Thermomechanical treatment of β-type titanium alloy
JPH0517858A (en) Manufacture of aluminum alloy excellent in formability
JPH06299306A (en) Production of tial-based isothermally forged alloy
JPS62174358A (en) Manufacture of titanium alloy material
JPS61106758A (en) Heat treatment of alpha+beta type titanium alloy
JPS62182256A (en) Manufacture of aluminum alloy superior in formability
JPH0472046A (en) Titanium stock and titanium alloy stock and their production
JPS61217563A (en) Manufacture of titanium alloy
JPH04103747A (en) Manufacture of ti alloy
JPH0417650A (en) Production of titanium alloy