JPS61217563A - Manufacture of titanium alloy - Google Patents

Manufacture of titanium alloy

Info

Publication number
JPS61217563A
JPS61217563A JP6033085A JP6033085A JPS61217563A JP S61217563 A JPS61217563 A JP S61217563A JP 6033085 A JP6033085 A JP 6033085A JP 6033085 A JP6033085 A JP 6033085A JP S61217563 A JPS61217563 A JP S61217563A
Authority
JP
Japan
Prior art keywords
region
beta
processing
alpha
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6033085A
Other languages
Japanese (ja)
Inventor
Minoru Okada
稔 岡田
Tomio Nishikawa
西川 富雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6033085A priority Critical patent/JPS61217563A/en
Publication of JPS61217563A publication Critical patent/JPS61217563A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Abstract

PURPOSE:To minimize the amount of working in an alpha+beta region and to improve productivity by carrying out working successively in alpha+beta and beta regions at each prescribed reduction in area and then by carrying out ageing after water quenching in subjecting an alpha+beta type titanium alloy to strengthening heat treatment. CONSTITUTION:The alpha+beta type titanium alloy e.g. Ti-6Al-4V is worked at >=20% reduction in area at the temp. slightly lower than its beta-transus (usually 980-1,000 deg.C), at 800-950 deg.C in a high temp. region of the alpha+beta region. After that the alloy is hot-worked again at >=10% reduction in area, with or without cooling to the room temp., at 1,000-1,050 deg.C in a low temp. region of the beta-region, above the beta-transus; as to the above heating, it is desirable that the alloy is held with heating e.g. for <=30min in order to inhibit the growth of beta-recrystallized grains. After the hot working in the beta-region, the alloy is subjected to water quenching without delay and then to ageing treatment as usual.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、チタン合金の製造方法、特にα+β域での加
工量をできるだけ少なくし、なおかつ延性を確保した、
高強度、高延性チタン合金の製造方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention provides a method for producing a titanium alloy, in particular, a method for manufacturing a titanium alloy, in which the amount of processing in the α+β region is minimized, and ductility is ensured.
This invention relates to a method for producing a high-strength, high-ductility titanium alloy.

(従来の技術) α+β型チタン合金は高温からの焼入れによりマルテン
サイト組織とした後、500〜600℃での時効により
マルテンサイトから細かなα+βに分解させることによ
る強化、すなわち溶体化処理一時効による強化が可能で
ある。このような溶体化処理一時効を行う場合の前組織
はα+β域での十分な加工により得られた微細な等軸α
+β組織であることが必要である。したがって、従来、
延性を害せずに強度を確保するチタン合金の加ニー熱処
理方法はα+β域で十分な加工率の熱間加工を加え、等
軸α+β組織を生成させるとともに微細化を図り、次い
でそのようにして得られた微細な等軸α+β相に対し、
溶体化処理十時効を行ってきたのであった。
(Prior art) α+β type titanium alloy is hardened by high temperature quenching to form a martensitic structure, and then aged at 500 to 600°C to decompose the martensite into fine α+β, thereby strengthening it, i.e. by temporary solution treatment. Strengthening is possible. When such temporary solution treatment is performed, the pre-structure is a fine equiaxed α obtained by sufficient processing in the α+β region.
It is necessary to have a +β structure. Therefore, conventionally,
The annealing heat treatment method for titanium alloys that ensures strength without impairing ductility is to apply hot working at a sufficient working rate in the α + β region to generate an equiaxed α + β structure and to refine it, and then to For the obtained fine equiaxed α+β phase,
It had been subjected to solution treatment and aging.

ところで、チタン合金の代表例であるTi−6AQ−4
V合金はα+β型合金といわれ約1000℃以下の温度
ではα+βの2相から成り、それ以上ではβ単相となる
。高温で加工を行うほうが変形抵抗が少ないということ
から、α+β型チタン合金も、熱間加工性の面からは約
1000℃以上のβ相単相域で行うのが好ましいと云い
得るが、β単相領域が1000℃以上と余りにも高いた
め、加熱中にβ結晶粒の粗大化が起こり、この粗大粒が
強化熱処理である溶体化処理一時効を行った最終製品に
までもち来たされてその延性の劣化をもたらす。
By the way, Ti-6AQ-4, which is a typical example of titanium alloy,
V alloy is said to be an α+β type alloy, and consists of two phases of α+β at temperatures below about 1000°C, and becomes a single β phase at temperatures above that temperature. Since deformation resistance is lower when processing is carried out at high temperatures, it can be said that it is preferable to process α+β type titanium alloys in the β-phase single phase range of about 1000°C or higher from the viewpoint of hot workability. Because the phase region is too high, over 1000℃, the β crystal grains become coarse during heating, and these coarse grains are carried over to the final product that has been subjected to temporary solution treatment, which is a strengthening heat treatment. resulting in deterioration of ductility.

したがって、前述のように、従来より、α+β型チタン
合金の強化熱処理は必要な延性を得るためには十分なα
+β加工を行って得た等軸α+β組織を有する材料につ
いて行う必要があると考えられてきた。また、このよう
な等軸α+β組織を得るにはα+β域における断面減少
率で50%以上の加工が必要であることも報告されてい
る。
Therefore, as mentioned above, the strengthening heat treatment of α+β type titanium alloys has traditionally been carried out with sufficient α to obtain the necessary ductility.
It has been thought that it is necessary to perform this on materials having an equiaxed α+β structure obtained by +β processing. It has also been reported that in order to obtain such an equiaxed α+β structure, processing with a cross-sectional reduction rate of 50% or more in the α+β region is required.

第1図は従来の強化熱処理法を示す線図であって、80
0〜950℃のα+β域での加工度(断面減少率)は5
0%以上と、かなり多量の加工を行わなければならず、
α+β域が難加工領域であることを考えれば、それによ
る生産性の低下は大きい。
FIG. 1 is a diagram showing a conventional strengthening heat treatment method,
The processing degree (section reduction rate) in the α+β range from 0 to 950℃ is 5
0% or more, which requires a considerable amount of processing,
Considering that the α+β region is a difficult-to-process region, the resulting drop in productivity is significant.

α+β域での加工後、空冷してから次工程の溶体化処理
を行うが、これについても955℃で1〜2時間の加熱
保持時間を要し、この面からもコスト高は免れない。
After processing in the α+β region, the next process of solution treatment is performed after air cooling, but this also requires heating and holding time at 955° C. for 1 to 2 hours, which also increases costs.

(発明が解決しようとする問題点) ところが、すでに述べたように、α+β型チタン合金は
一般にα+β域での加工が困難であり、このα+β域で
の加工量を減少させることは大中なコスト・ダウンにつ
ながると考えられる。
(Problem to be solved by the invention) However, as already mentioned, it is generally difficult to process α+β type titanium alloys in the α+β region, and reducing the amount of processing in the α+β region requires a large or medium cost.・It is thought that it will lead to down.

したがって、本発明の目的とするところは、α+β域で
の加工量をできるだけ少なくして生産性の向上を図る方
法を提供することである。
Therefore, an object of the present invention is to provide a method for improving productivity by minimizing the amount of processing in the α+β region.

また、本発明の別の目的は、熱間加工と時効処理とを組
合せた効率的な方法を提供することである。
Another object of the present invention is to provide an efficient method that combines hot working and aging treatment.

本発明のさらに別な目的は、α+β域での加工量を少な
くしたにもかかわらず、むしろ後続の強化熱処理に際し
、微細β結晶粒が得られ、強度ばかりでなく、延性も改
善される方法を提供することである。
A further object of the present invention is to develop a method in which fine β crystal grains are obtained during the subsequent strengthening heat treatment, improving not only strength but also ductility, even though the amount of processing in the α+β region is reduced. It is to provide.

(問題点を解決するための手段) すでに述べたように、本発明者らの研究によれば、β域
での熱間加工を行った材料を用いた場合、溶体化処理中
時効によっても十分な延性が得られないのは、β域での
加工中にβ結晶粒が容易に成長し、母相であるβ相の粒
径が大きくなるため、上記溶体化処理につづく焼入れに
より生成するマルテンサイトの結晶粒も大きくなってし
まうためであることがわかった。
(Means for solving the problem) As already mentioned, according to the research conducted by the present inventors, when using a material that has been hot-worked in the β region, aging during solution treatment is sufficient. The reason why such ductility cannot be obtained is that β crystal grains easily grow during processing in the β region, and the grain size of the β phase, which is the parent phase, increases. It turns out that this is because the crystal grains at the site also become larger.

例えば、前述のTi  6A12 4Vは980〜10
00℃(7)β−transus以上の温度においてβ
単相となるが、β域は高温であるためβ加工を行っても
容易にβ結晶粒の細粒化は達成できない。
For example, the Ti 6A12 4V mentioned above is 980-10
At temperatures above 00°C (7) β-transus
Although it becomes a single phase, the β region is at a high temperature, so even if β processing is performed, the β crystal grains cannot be easily refined.

ところが、Ti−6に!−4Vについて本発明者らが研
究を行った結果、α+β域で断面減少比20%以上の加
工を行った後、β域の低温部(1050℃以下)に短時
間保持した後水焼入れを行うことにより、α+β域での
加工が20%以上という僅かなものであるにもかかわら
ず、β結晶粒の微細化が達成されることがわかり、さら
に、上述のような短時間のβ域での保持後、これも僅か
な(10%以上)加工を行った直後に水焼入れを行うこ
とにより、予想外にもより細かいβ結晶粒が得られるこ
とが判明し、本発明を完成した。
However, Ti-6! As a result of our research on -4V, we found that after processing with a cross-section reduction ratio of 20% or more in the α+β region, we held it in the low temperature region of the β region (below 1050°C) for a short time and then water-quenched it. As a result, it was found that β crystal grain refinement was achieved even though the machining in the α+β region was only 20% or more. It was found that unexpectedly finer β-crystal grains could be obtained by water quenching immediately after a slight (10% or more) processing after holding, and the present invention was completed.

このように、本発明は、加工が困難であるといわれてい
るα+β域での加工量をできるだけ少なくしたにもかか
わらず必要な延性を確保して溶体化処理一時効による強
化を達成する方法であり、その要旨とするところは、熱
間加工を行うに際しα+β型チタン合金をα+β域の高
温域である800〜950℃の温度域で断面減少率20
%以上の加工を行い、さらにβ域の低温域である100
0〜1050℃の間の温度域に加熱した後、断面減少率
10%以上の加工を行い、次いで直ちに水焼入れを行っ
てから時効処理を行うことを特徴とする、高強度および
延性にすぐれたチタン合金の製造方法である。
In this way, the present invention is a method that secures the necessary ductility and achieves strengthening through temporary solution treatment, even though the amount of processing in the α+β region, which is said to be difficult to process, is minimized. The gist of this is that when hot working α+β type titanium alloys, the area reduction rate is 20 in the temperature range of 800 to 950°C, which is the high temperature range of α+β range.
% or more, and furthermore, the low temperature range of β region is 100%.
After being heated to a temperature range of 0 to 1050℃, it is processed to a cross-section reduction rate of 10% or more, then immediately water quenched, and then subjected to aging treatment.It has excellent strength and ductility. This is a method for manufacturing titanium alloy.

ここに、本発明におけるチタン合金は、すでにこれまで
の説明から明らかなように、α+β型であれば特に制限
はない0本発明が、他のα+β合金であるTi −6A
Q  6V  25nSTi −6A12 2 Sn 
−4Zr−2MO% Ti−6Kl  2Sn−4Zr
−6Mo等のα+β型チタン合金にも同様に通用可能で
あることは明らかである。
Here, as is already clear from the above description, the titanium alloy in the present invention is not particularly limited as long as it is α+β type.
Q 6V 25nSTi-6A12 2 Sn
-4Zr-2MO% Ti-6Kl 2Sn-4Zr
It is clear that it can be similarly applied to α+β type titanium alloys such as -6Mo.

(作用) 以下、本発明を代表的なα+β型チタン合金であるTi
 −6A12−4Vを例にとってその構成を説明するが
、すでに述べたように本発明はそれにのみ制限されるも
のでないことは勿論である。
(Function) Hereinafter, the present invention will be explained using Ti, which is a typical α+β type titanium alloy.
-6A12-4V will be taken as an example to explain its configuration, but as already stated, it goes without saying that the present invention is not limited thereto.

第2図は、本発明に係る方法の各工程を示す線図であり
、まず、α+β型チタン合金のβ−transus  
(一般に980〜1000℃)よりわずかに低い800
〜950℃という温度域に加熱してからα+β組織の状
態で断面減少率20%以上の熱間加工を行い、次いで室
温まで冷却しあるいは冷却せず再びβ−transus
より高いβ域の1000〜1050℃という温度域に加
熱しβ組織の状態で断面減少率10%以上の熱間加工を
加えるのである。このときの加熱はβ再結晶粒の成長を
抑えるため、例えば30分以下の時間の加熱保持とする
のがよい。β域での熱間加工終了後は直ちに水焼入れし
、そして従来法の如く時効処理する。この時効処理はす
でに従来も強化熱処理法の一部として行われていたもの
であって、その限りにおいて特に制限はないが、好まし
くは540〜620℃で4〜8時間加熱後、空冷により
行う。
FIG. 2 is a diagram showing each step of the method according to the present invention.
(generally 980-1000℃) slightly lower than 800℃
After heating to a temperature range of ~950°C, hot working with a cross-sectional reduction rate of 20% or more is performed in the state of α + β structure, then cooling to room temperature or again without cooling to β-transus.
It is heated to a temperature range of 1000 to 1050°C, which is the higher β range, and hot worked with a cross-section reduction rate of 10% or more in the β structure state. In order to suppress the growth of β-recrystallized grains, the heating at this time is preferably maintained for 30 minutes or less, for example. Immediately after hot working in the β region, water quenching is performed and aging treatment is performed as in the conventional method. This aging treatment has already been carried out as part of the strengthening heat treatment method in the past, and is not particularly limited as far as it goes, but it is preferably carried out by heating at 540 to 620° C. for 4 to 8 hours, followed by air cooling.

このように、本発明によれば、α+β域での加工温度の
範囲は800〜950℃に制限するが、800℃未満で
は加工性に問題があり割れが発生し易い、一方、950
℃超では、α相の比率が極端に少なくなり(例、50%
以下)α相に歪を与えるという目的を達成しなくなる。
As described above, according to the present invention, the processing temperature range in the α+β region is limited to 800 to 950°C;
At temperatures exceeding ℃, the ratio of α phase becomes extremely small (e.g., 50%
(below) The purpose of imparting distortion to the α phase will no longer be achieved.

したがって、本発明にあっては上述のように800〜9
50℃に制限する。好ましくは、850〜950℃であ
る。
Therefore, in the present invention, as mentioned above, 800 to 9
Limit to 50°C. Preferably it is 850-950°C.

上記温度域での加工度(減面減少率)は20%以上とす
るが、一般には20〜30%で十分であり、すでに述べ
たように従来技術が50%以上必要としていたことを考
えれば、その効果は著しいものといえル、 、:、、:
ニ、第3図は、Ti−6Ai24V合金を95θ℃のα
+β域で鍛造加工を行い、次いで1050℃で30分間
加熱してこのβ域で減面減少率10%の加工を施しであ
るいは施さずして、水焼入れしたときの、α+β域での
加工量(断面減少率)と水焼入れ後のβ結晶粒の粒径(
am)との関係を示すグラフである。β域での加工を行
ったほうがいずれの場合にも結晶粒は微細化されている
。またα+β域での加工度は20%以上とするほうが微
細化効果は大きい、しかもその微細化効果は加工度30
%程度で飽和してしまうためそれ以上の加工度での加工
は微細化を達成する観点からは不用である。
The degree of working (area reduction rate) in the above temperature range should be 20% or more, but generally 20 to 30% is sufficient, considering that the conventional technology required 50% or more as mentioned above. ,The effect can be said to be remarkable.
D. Figure 3 shows the Ti-6Ai24V alloy at 95θ℃.
The processing amount in the α+β region when forging is performed in the +β region, then heated at 1050°C for 30 minutes, and water quenched with or without processing with a 10% area reduction rate in the β region. (area reduction rate) and grain size of β grains after water quenching (
It is a graph which shows the relationship with am). In all cases, the crystal grains are finer when processing is performed in the β region. In addition, the finer effect is greater when the processing degree in the α+β region is 20% or more, and moreover, the refinement effect is greater than the processing degree of 30%.
%, processing at a processing degree higher than that is unnecessary from the viewpoint of achieving miniaturization.

次いで、α+β域での加工が終了してから、室温まで冷
却してからあるいは冷却せずに、1000〜1050℃
にまで加熱してβ域での10%以上の加工を行うが、こ
れはすでに述べたように、さらにβ結晶粒の微細化を図
るためであって、加熱温度が1050℃超となるとβ結
晶粒の粗大化がみられ、一方1000℃未満ではβ単相
とならないため、温度域を1000〜1050℃とする
のである。
Next, after the processing in the α+β region is completed, the temperature is heated to 1000 to 1050°C after cooling to room temperature or without cooling.
As mentioned above, this is to further refine the β crystal grains, and if the heating temperature exceeds 1050°C, the β crystal grains will be processed by 10% or more. The temperature range is set to 1000 to 1050°C because grains tend to become coarser and β single phase does not occur at temperatures below 1000°C.

β域での加工量は10%以上と限定するが、β結晶粒の
微細化という観点からは一般には10〜20%で十分で
ある。しかし、所要の形状を付与するためにそれ以上の
加工を加えてもよいことは言うまでもない、β域での加
工ということで加工それ自体は比較的容易と考えられる
。加工終了後は、これまでと同様に直ちに水焼入れして
マルテンサイト組織とする。
The processing amount in the β region is limited to 10% or more, but from the viewpoint of refining the β crystal grains, 10 to 20% is generally sufficient. However, it goes without saying that further processing may be added to give the desired shape, and the processing itself is considered to be relatively easy since it is processing in the β region. After completion of processing, water quenching is immediately performed to form a martensitic structure as before.

なお、このようにして得られた室温でのミクロ組織は、
細かな結晶粒となったβ母相中に、焼入れにより微細な
マルテンサイトが生じたものとなる0次いで、これを時
効処理するが、例えば540〜b 従来の等軸α+β組織を持つ材料の溶体化処理および時
効によるものと同等の強度延性を有することになるので
ある。
The microstructure at room temperature obtained in this way is
Fine martensite is generated by quenching in the β matrix, which has become fine crystal grains.Next, this is subjected to an aging treatment, for example 540~b.A conventional solution of a material with an equiaxed α+β structure. It has the same strength and ductility as those obtained by chemical treatment and aging.

次に、実施例によって本発明をさらに説明する。Next, the present invention will be further explained by examples.

実施例 第1表にその合金組成を示すTi−6AQ−4V合金を
第2図の工程線図に従って加工熱処理した。このときの
各処理条件は第2表にまとめて示す。加工は鍛造により
行った。
EXAMPLE A Ti-6AQ-4V alloy whose alloy composition is shown in Table 1 was processed and heat treated according to the process diagram shown in FIG. Each processing condition at this time is summarized in Table 2. Processing was performed by forging.

得られた供試合金について機械的特性を決定した。同じ
く結果を第2表にまとめて示す。同表に示す結果からも
明らかなように、第2図に示す本発明に係る方法によれ
ば、微細な再結晶β粒を得た後、溶体化処理一時効を行
うことにより、加工の困難なα+β域での加工率を減ら
し必要な延性を確保して強化することが可能となった。
The mechanical properties of the obtained sample gold were determined. Similarly, the results are summarized in Table 2. As is clear from the results shown in the same table, according to the method according to the present invention shown in FIG. It has become possible to reduce the processing rate in the α+β region, secure the necessary ductility, and strengthen the steel.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来法の工程を示す線図; 第2図は、本発明に係る方法の工程を示す線図;および 第3図は、本発明におけるα+β域での加工量がβ結晶
粒の粒径に及ぼす影響を示すグラフである。 出願人  住友金属工業株式会社 代理人  弁理士 広 瀬 章 − 第1図 第2図
Fig. 1 is a diagram showing the steps of the conventional method; Fig. 2 is a diagram showing the steps of the method according to the present invention; and Fig. 3 shows that the processing amount in the α+β region in the present invention is FIG. 2 is a graph showing the influence of Applicant Sumitomo Metal Industries Co., Ltd. Agent Patent Attorney Akira Hirose - Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 熱間加工を行うに際しα+β型チタン合金をα+β域の
高温域である800〜950℃の温度域で断面減少率2
0%以上の加工を行い、さらにβ域の低温域である10
00〜1050℃の間の温度域に加熱した後、断面減少
率10%以上の加工を行い、次いで直ちに水焼入れを行
ってから時効処理を行うことを特徴とする、高強度およ
び延性にすぐれたチタン合金の製造方法。
When performing hot working, α + β type titanium alloy has a reduction in area of 2 in the temperature range of 800 to 950 °C, which is the high temperature range of α + β region.
0% or more processing, and furthermore, the low temperature range of β region is 10
After heating to a temperature range of 00 to 1050 degrees Celsius, processing with a cross-section reduction rate of 10% or more is performed, followed by immediately water quenching and then aging treatment.It has excellent strength and ductility. Method of manufacturing titanium alloy.
JP6033085A 1985-03-25 1985-03-25 Manufacture of titanium alloy Pending JPS61217563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6033085A JPS61217563A (en) 1985-03-25 1985-03-25 Manufacture of titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6033085A JPS61217563A (en) 1985-03-25 1985-03-25 Manufacture of titanium alloy

Publications (1)

Publication Number Publication Date
JPS61217563A true JPS61217563A (en) 1986-09-27

Family

ID=13139046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6033085A Pending JPS61217563A (en) 1985-03-25 1985-03-25 Manufacture of titanium alloy

Country Status (1)

Country Link
JP (1) JPS61217563A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4902355A (en) * 1987-08-31 1990-02-20 Bohler Gesellschaft M.B.H. Method of and a spray for manufacturing a titanium alloy
KR101151616B1 (en) 2011-12-28 2012-06-08 한국기계연구원 A method of grain refinement for titanium alloy ingot

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4902355A (en) * 1987-08-31 1990-02-20 Bohler Gesellschaft M.B.H. Method of and a spray for manufacturing a titanium alloy
KR101151616B1 (en) 2011-12-28 2012-06-08 한국기계연구원 A method of grain refinement for titanium alloy ingot

Similar Documents

Publication Publication Date Title
EP0683242B1 (en) Method for making titanium alloy products
JPH0686638B2 (en) High-strength Ti alloy material with excellent workability and method for producing the same
JP2968822B2 (en) Manufacturing method of high strength and high ductility β-type Ti alloy material
US4295901A (en) Method of imparting a fine grain structure to aluminum alloys having precipitating constituents
JPH06212378A (en) Treatment of beta type titanium alloy hot formed product
JPS61217563A (en) Manufacture of titanium alloy
JPS63230858A (en) Manufacture of titanium-alloy sheet for superplastic working
JPS63130755A (en) Working heat treatment of alpha+beta type titanium alloy
JPH0266142A (en) Manufacture of plate stock, bar stock, and wire rod of alpha plus beta titanium alloy
JPH01195265A (en) Manufacture of high-strength beta-type titanium alloy
JPH06272004A (en) Method for working titanium alloy
JPH02310348A (en) Manufacture of alpha+beta titanium alloy rolled bar and wire having good structure
JPS62284051A (en) Heat treatment of alpha-beta type titanium alloy
JPS634912B2 (en)
JPH08158028A (en) Toughening of titanium alloy
JPH0116910B2 (en)
JPS63241150A (en) Heat treatment for titanium alloy
JPS61106758A (en) Heat treatment of alpha+beta type titanium alloy
JPS63105954A (en) Hot-working method for near beta-type titanium alloy
JPS61194163A (en) Heat treatment of (alpha+beta) type titanium alloy
JPS647151B2 (en)
JPS61284560A (en) Manufacture of alpha+beta titanium alloy
JPH04263051A (en) Method for working heat treatment for beta type titanium alloy
JPS62133051A (en) Manufacture of alpha+beta (alpha+beta)-type titanium alloy
JPS63230857A (en) Manufacture of titanium-alloy sheet for superplastic working