JPS61194163A - Heat treatment of (alpha+beta) type titanium alloy - Google Patents

Heat treatment of (alpha+beta) type titanium alloy

Info

Publication number
JPS61194163A
JPS61194163A JP3283985A JP3283985A JPS61194163A JP S61194163 A JPS61194163 A JP S61194163A JP 3283985 A JP3283985 A JP 3283985A JP 3283985 A JP3283985 A JP 3283985A JP S61194163 A JPS61194163 A JP S61194163A
Authority
JP
Japan
Prior art keywords
toughness
beta
titanium alloy
type titanium
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3283985A
Other languages
Japanese (ja)
Other versions
JPH0373623B2 (en
Inventor
Hisashi Maeda
尚志 前田
Tomio Nishikawa
西川 富雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3283985A priority Critical patent/JPS61194163A/en
Publication of JPS61194163A publication Critical patent/JPS61194163A/en
Publication of JPH0373623B2 publication Critical patent/JPH0373623B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Abstract

PURPOSE:To easily attain the increase of the toughness of the titled alloy by performing the proper heat treatment for (alpha+beta) type titanium alloy wherein the thermal working is performed. CONSTITUTION:After an (alpha+beta) type titanium alloy wherein the thermal working is performed is heated and held in the temp. range of 10-60 deg.C desirably about 20-50 deg.C lower than beta-transus, it is cooled up to the temp. of <=500 deg.C in 0.1-5 deg.C/sec cooling velocity. By the above-mentioned simple operation, the toughness of the (alpha+beta) type titanium alloy is improved without necessitating the annealing treatment or the aging treatment and without the large decrease of the strength and the ductility.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、チタン合金の熱処理方法、特に靭性、  改
善を目的とするα+β型チタン合金の熱処理方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method of heat treating titanium alloys, particularly to a method of heat treating α+β type titanium alloys for the purpose of improving toughness.

(従来の技術) チタン合金は鋼に比べて靭性が非常に小さく、チタン合
金がいくつもの長所を有する中でこの低靭性は数少ない
欠点のひとつである。数多いチタン合金の用途の中でも
他の適当な代替材のない深海で使用される耐圧容器や耐
圧殻への利用においてかかる欠点は特に問題となる: α+β型合金の場合、代表的熱処理法として溶体化処理
と時効処理とを組合せたSTA処理があるが、その方法
によれば単なる焼鈍材よりも強度はかなり優れるが、靭
性が劣る。また、β域で加熱または加工されたときに生
成する針状α組織やプレート状α組織といったいわゆる
transforIIledβ組織は靭性は高いが強度
や延性が著しく低い。
(Prior Art) Titanium alloys have very low toughness compared to steel, and while titanium alloys have many advantages, this low toughness is one of the few drawbacks. Among the many uses of titanium alloys, these shortcomings are particularly problematic in pressure vessels and shells used in the deep sea where there are no other suitable substitutes: In the case of α+β type alloys, solution treatment is the typical heat treatment method. There is STA treatment, which combines treatment and aging treatment, but this method provides considerably better strength than simply annealed material, but has inferior toughness. Furthermore, so-called transform II led β structures such as acicular α structures and plate-like α structures that are generated when heated or processed in the β region have high toughness but extremely low strength and ductility.

したがって、従来にあってもチタン合金、特にα+β型
チタン合金の大きな強度低下なしの靭性改善を目的にし
て多(の方法が提案されてきた。
Therefore, a number of methods have been proposed in the past for the purpose of improving the toughness of titanium alloys, particularly α+β type titanium alloys, without significantly reducing their strength.

例えば、M、 Peters et al、論文rTi
−6AQ  4Vの疲労に及ぼすミクロ組織の影響J 
、Titanium’80  (1980) 、pp、
 1777〜1786には等軸α+β組織を2相V4域
である900℃から急冷してβ相をマルテンサイトに変
態させ、次いで800℃で焼戻しでこのマルテンサイト
からα相を析出、成長させた後に急冷する。そして最後
に残ったマルテンサイトを500℃で24時間時効する
方法が開示されている。かかるいわば三段階熱処理法に
よれば、得られるbi−moda1組織は元の初析α粒
、これより細かいプレート状αとβ相が焼戻された3つ
の部分から成り、疲労強度が高く、疲労亀裂伸展速度が
遅い。
For example, M. Peters et al.
-6AQ Effect of microstructure on fatigue of 4V J
, Titanium'80 (1980), pp.
In 1777-1786, the equiaxed α+β structure was rapidly cooled from 900°C, which is the two-phase V4 region, to transform the β phase into martensite, and then tempered at 800°C to precipitate and grow the α phase from this martensite. Cool quickly. A method is disclosed in which the last remaining martensite is aged at 500° C. for 24 hours. According to this so-called three-step heat treatment method, the resulting bi-moda1 structure consists of the original pro-eutectoid α grains and three tempered parts of finer plate-like α and β phases, and has high fatigue strength and fatigue resistance. Crack extension rate is slow.

また、等軸α+β組織の熱処理法として、特公昭50−
37004号には、βトランザスから150〜60℃低
いα+β温度領域から空冷より速い速度で冷却し、その
後安定化焼鈍を行い、切欠プラチャ強度を向上させる熱
処理方法が開示されている。
In addition, as a heat treatment method for equiaxed α+β structure,
No. 37004 discloses a heat treatment method in which cooling is performed at a faster rate than air cooling from an α+β temperature range 150 to 60° C. lower than the β transus, and then stabilization annealing is performed to improve notch placha strength.

しかしながらいずれも、三段階の熱処理を必要としたり
、あるいは安定化焼鈍処理を必要とするなど処理操作に
時間がかかったり、あるいは得られる組織が焼戻し組織
であったりして、十分な靭性改善を示さない。
However, all of these methods require a three-step heat treatment or a stabilizing annealing treatment, which takes a long time, or the resulting structure is a tempered structure, resulting in insufficient improvement in toughness. do not have.

(発明が解決しようとする問題点) かくして、本発明の目的は、チタン合金は熱処理をする
ことにより機械的性質が大きく変化することか、ら、熱
処理により靭性を向上させる方法を提供することを目的
としている。
(Problems to be Solved by the Invention) Thus, the purpose of the present invention is to provide a method for improving the toughness of titanium alloys by heat treatment, since the mechanical properties of titanium alloys change significantly when heat treated. The purpose is

(問題点を解決する手段) 前述のように、チタン合金の靭性改善という目的に対し
従来はbi−moda1組織としたり、あるいはα−β
変態を通じて初析α粒を微細化し、さらに微細針状α相
を生成させて靭性改善を図ってきたのであった。
(Means for solving the problem) As mentioned above, in the past, for the purpose of improving the toughness of titanium alloys, a bi-moda1 structure or an α-β structure was used.
Toughness has been improved by refining the pro-eutectoid α grains through transformation and generating fine acicular α phases.

しかしながら、本発明者らが鋭意検討を重ねた結果、組
織的にはむしろ微細球状α相とプレート状α相との混在
相が適度な強度を保ちながら靭性を向上させるのに有効
であることを見い出して本発明を完成した。
However, as a result of extensive studies by the present inventors, we found that a mixed phase of fine spherical α phase and plate-like α phase is more effective in improving toughness while maintaining appropriate strength. They discovered this and completed the present invention.

よって、ここに、本発明の要旨とするところは、熱間加
工を行ったα+β型のチタン合金をβトランザス以下1
0〜60℃の温度範囲で加熱保持した後、0.1〜b ことを特徴とする靭性の改善を目的とするα+β型チタ
ン合金の熱処理方法である。
Therefore, the gist of the present invention is to prepare a hot worked α+β type titanium alloy with a β transus or less.
This is a method of heat treating an α+β type titanium alloy for the purpose of improving toughness, characterized in that after heating and holding in a temperature range of 0 to 60°C, the toughness is 0.1 to b.

このように、本発明にあっては、対象合金はTi−6A
(24V、 Ti  6AQ  6V  2Sn等のα
+β型チタン合金であって上記合金をβトランザス以下
10〜60℃、望ましくは20〜50℃の範囲内で適当
な時間だけ加熱保持し、続いて0.1〜b しくはO62〜3℃/秒の速度で冷却するのである。
Thus, in the present invention, the target alloy is Ti-6A
(24V, α of Ti 6AQ 6V 2Sn etc.
+β-type titanium alloy, the above-mentioned alloy is heated and held at a temperature below the β transus of 10 to 60°C, preferably 20 to 50°C, for an appropriate period of time, and then heated to 0.1 to b or O62 to 3°C/ It cools down at a speed of seconds.

ここに、「βトランザス」はβ−α+β変態点であり、
例えばTi−6AQ−4V系のチタン合金では一般に9
70〜1000℃の範囲内である。
Here, "β transus" is the β-α+β transformation point,
For example, Ti-6AQ-4V titanium alloys generally have 9
It is within the range of 70 to 1000°C.

かくして得られる組織は初析α粒とプレート状のα相か
ら成り、旧β粒界にプレート状にαが析出し、初析α粒
をそれによってつないでいる組織になっている。 3i
−moda1組織と類偵するが、本発明の組織はマルテ
ンサイトが焼戻された部分が存在しない点で異なる。
The structure thus obtained consists of pro-eutectoid α grains and a plate-shaped α phase, with plate-shaped α precipitated at the prior β grain boundaries, thereby connecting the pro-eutectoid α grains. 3i
Although similar to the -modal structure, the structure of the present invention differs in that there is no part where martensite is tempered.

加熱温度には初析α粒の球状化とα、β相の量比に大き
く影響する。そして冷却速度のコントロールにより、初
析αの寸法、粒界3粒の生成、プレート状α相の成長が
影響されるた、ここでは初析αを粗大化させないように
冷却速度をコントロールする。
The heating temperature greatly affects the spheroidization of pro-eutectoid α grains and the ratio of α and β phases. By controlling the cooling rate, the dimensions of the pro-eutectoid α, the formation of three grain boundaries, and the growth of the plate-like α phase are affected, so here the cooling rate is controlled so as not to coarsen the pro-eutectoid α.

したがって、本発明によれば、加熱、冷却という簡単な
操作だけで上述のような組織が得られる結果、この組織
が亀裂の伸展を妨げ、靭性は向上するのである。しかも
、従来、靭性が高いとされていた全体がtransfo
ro+edβ組織の場合よりも予想外に高い靭性が得ら
れるのであり、本発明の効果には著しいものがあるのが
分かる。
Therefore, according to the present invention, the above-mentioned structure can be obtained by simply heating and cooling, and as a result, this structure prevents crack extension and improves toughness. Moreover, the entire structure, which was traditionally considered to have high toughness, is transformed
Unexpectedly higher toughness is obtained than in the case of the ro+edβ structure, and it can be seen that the effects of the present invention are significant.

(作用) 次に添付図面に関連させて本発明を説明すると、第1図
は、本発明に係る方法を模式的に示す説明図であり、ま
ず、α+β型チタン合金をそのβトランザス以下10〜
60℃の温度範囲(図中、斜線で示す)に加熱する。こ
のときβトランザスに近い温度でα相とβ相比がほぼ等
しくなることが必要である。最終の室温におけるα・相
とβ相の量比は加熱温度と冷却速度に影響されるが加熱
速度は限定されない。
(Function) Next, the present invention will be explained with reference to the accompanying drawings. FIG. 1 is an explanatory diagram schematically showing the method according to the present invention.
Heat to a temperature range of 60°C (indicated by diagonal lines in the figure). At this time, it is necessary that the α phase and β phase ratios be approximately equal at a temperature close to the β transus. The final quantitative ratio of the α phase and the β phase at room temperature is influenced by the heating temperature and cooling rate, but the heating rate is not limited.

このように、本発明にあって加熱温度をβトランザス以
下10〜60℃、望ましくは20〜50℃に制限するの
は、10℃未満では加熱時に大部分がβ相となり、冷却
速度をコントロールしても冷却後のミクロ組織はプレー
ト状α相の量が多くなりすぎ、靭性はやや低下するため
である。一方、60℃を超えると、つまり低温であると
所要量のプレート状α相が確保できない。
Thus, in the present invention, the heating temperature is limited to 10 to 60 degrees Celsius below the β transus, preferably 20 to 50 degrees Celsius, because at temperatures below 10 degrees Celsius, most of the material becomes the β phase during heating, and the cooling rate cannot be controlled. This is because, even after cooling, the microstructure after cooling has an excessive amount of plate-like α phase, and the toughness slightly decreases. On the other hand, if the temperature exceeds 60° C., that is, if the temperature is low, the required amount of plate-like α phase cannot be secured.

つまり、この加熱温度は最終的組織における初析α粒と
プレート状α相の部分の量比をほとんど決定するもので
あり、本発明の効果を得るには適切な量比が必要であり
、そのため上述の範囲に制限するのである。
In other words, this heating temperature almost determines the quantitative ratio of the pro-eutectoid α grains and the plate-like α phase in the final structure, and an appropriate quantitative ratio is necessary to obtain the effects of the present invention. It is limited to the range mentioned above.

なお、このときの加熱時間は限定されない。一般には高
温はど結晶粒は成長するが、本発明の温度領域において
は、β相の量比も50%前後存在するためα粒の成長が
抑えられるため、加熱時間によって結晶粒成長がほとん
ど影響されないためである。
Note that the heating time at this time is not limited. Generally, crystal grains grow at high temperatures, but in the temperature range of the present invention, the growth of α grains is suppressed because the amount ratio of β phase is around 50%, so grain growth is hardly affected by heating time. This is so that it will not happen.

次いで、上述の温度範囲に加熱されたα+β型チタン合
金は、冷却速度0.1〜b れる。このときの冷却速度が0.1℃/秒未満では冷却
途中で初析α相が成長してしまい、初析α粒とプレート
状のα相から成る組織が得られず、また適当な量比にな
らず靭性は低下し、初析α粒の成長により強度も低下す
る。一方、冷却速度が5℃/秒を超えるとプレート状α
相の厚みが薄くなり、目的とする組織が得られず靭性は
低下してしまう。
Next, the α+β type titanium alloy heated to the above-mentioned temperature range is cooled at a cooling rate of 0.1 to b. If the cooling rate at this time is less than 0.1°C/sec, the pro-eutectoid α phase will grow during cooling, and a structure consisting of pro-eutectoid α grains and plate-shaped α phase will not be obtained. The toughness decreases, and the strength also decreases due to the growth of pro-eutectoid α grains. On the other hand, when the cooling rate exceeds 5°C/sec, the plate-like α
The thickness of the phase becomes thinner, the desired structure cannot be obtained, and the toughness decreases.

このようにして本発明により処理されたチタン合金は従
来のように焼鈍処理あるいは時効処理は必要としないた
め、その簡便な処理方法と相俟って実用上の効果は大き
い。
The titanium alloy thus treated according to the present invention does not require annealing treatment or aging treatment as in the conventional methods, and this combined with the simple treatment method has a great practical effect.

次に、本発明を実施例に関連させてさらに具体的に説明
する。
Next, the present invention will be described in more detail with reference to examples.

裏隻■土 供試材として化学成分を第1表に示すβトランザスが9
70℃のTi−6AQ  4V (ELI )合金(E
LI−JztrB l□HInterstitial)
の25+u+厚板から熱処理用試験片として幅70mm
 X長さ150鵬−×厚み20+sm寸法のものを切り
出し、本発明にしたがって熱処理を施した。この板の圧
延方向(L)とそれに垂直な方向(T)に沿って引張試
験片とシャルピー衝撃試験片(JIS4号)を採取した
。衝撃試験片のノツチは板厚に平行な方向と垂直な方向
に設けたものを2種用意した。このシャルピー衝撃試験
片の採取要領は第2図に模式的に示す。図中、符号rT
Jは圧延方向に垂直方向であること、rLJは圧延方向
に平行であることを示し、また符号「N」はノツチ方向
が板表面に対し直角方向であること、rPJは平行であ
ることをそれぞれ示す。
Urasen ■ As a soil sample material, β transus whose chemical composition is shown in Table 1 is 9.
Ti-6AQ 4V (ELI) alloy (E
LI-JztrB l□HInterstitial)
Width 70mm as a test piece for heat treatment from 25+U+ thick plate of
A piece having dimensions of x length 150mm - x thickness 20+sm was cut out and heat treated according to the present invention. A tensile test piece and a Charpy impact test piece (JIS No. 4) were taken from this plate along the rolling direction (L) and the direction (T) perpendicular thereto. Two types of impact test specimens were prepared: one in which the notches were provided in a direction parallel to the plate thickness and one in a direction perpendicular to the plate thickness. The procedure for collecting this Charpy impact test piece is schematically shown in FIG. In the figure, the symbol rT
J indicates that the notch direction is perpendicular to the rolling direction, rLJ indicates that it is parallel to the rolling direction, and the symbol "N" indicates that the notch direction is perpendicular to the plate surface, and rPJ indicates that it is parallel. show.

シャルピー衝撃試験の結果を第2表および第3表に各熱
処理条件とともにまとめて示す。
The results of the Charpy impact test are summarized in Tables 2 and 3 together with each heat treatment condition.

それらのデータからも分かるように、本発明による限り
、いずれの場合にもすぐれた靭性が得られるのが分かる
As can be seen from these data, as long as the present invention is used, excellent toughness can be obtained in any case.

なお、添付図面の第3図(alないし第3図(dlはそ
れぞれ熱処理前、940℃Xlh加熱後0.01’C/
秒、1℃/秒および30℃/秒でそれぞれ冷却した場合
の顕微鏡組織写真を示す。
In addition, Fig. 3 (al to Fig. 3 (dl) of the attached drawings are respectively before heat treatment and 0.01'C/ after heating at 940°C
Microscopic structure photographs are shown when cooling at 1° C./second, 1° C./second, and 30° C./second, respectively.

本発明により得た組織は第3図(C1に示すもので、プ
レート状α相が十分発達しているのが分かる。
The structure obtained according to the present invention is shown in FIG. 3 (C1), and it can be seen that the plate-like α phase is sufficiently developed.

第3図(dlの場合はこのプレート状α相が生成せず、
その部分が非常に微細な針状組織になっている。
Figure 3 (In the case of dl, this plate-like α phase is not generated,
That part has a very fine needle-like structure.

第3表に示す結果からも、その場合、靭性はかなり劣化
しているのが分かる。
The results shown in Table 3 also show that the toughness is considerably degraded in that case.

第2表 QD  * : 31yMM!yJ”c、冷却速度は通
℃までの平1匁第3表 Ql)*:試験温度に℃、冷却1宴は力次までの平を戟
実、MJL影 本例は実施例1と同様にして行ったが、比較例として従
来のbi−moda1組織を得るための熱処理を行った
ものも示した。熱処理条件およびシャルピー衝撃試験の
結果を第4表にまとめて示す。
Table 2 QD *: 31yMM! yJ"c, the cooling rate is 1°C to 1°C Table 3) However, as a comparative example, a sample subjected to heat treatment to obtain a conventional bi-modal structure is also shown.The heat treatment conditions and the results of the Charpy impact test are summarized in Table 4.

第4表 (注)試験温度20℃ また、上述のように得た本発明例の供試材について、L
方向およびT方向のそれぞれについて機械的性質を調べ
た。結果を第5表にまとめて示す。
Table 4 (Note) Test temperature: 20°C Also, regarding the sample material of the invention example obtained as described above, L
Mechanical properties were investigated in each of the directions and the T direction. The results are summarized in Table 5.

第5表 (効果) 以上のように、本発明によれば、1回の熱処理だけで、
複雑な処理操作を必要とした従来のものと比較して、強
度、伸び等の大きな低下なしにその靭性が顕著に改善さ
れるのであり、本発明の効果は実用上著しいものである
Table 5 (Effects) As described above, according to the present invention, with only one heat treatment,
Compared to conventional products that required complicated processing operations, the toughness is significantly improved without any significant decrease in strength, elongation, etc., and the effects of the present invention are significant in practice.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の熱処理方法を略式で示す説明図; 第2図は、シャルピー衝撃試験片の採取要領を示す模式
図;および 第3図(alないし第3図+d+は、実施例1における
各チタン合金の顕微鏡組織・写真である。 出願人  住友金属工業株式会社 代理人  弁理士 広 瀬 章 − 第1図 第3図 1シゴ
FIG. 1 is an explanatory diagram schematically showing the heat treatment method of the present invention; FIG. 2 is a schematic diagram showing the procedure for collecting Charpy impact test pieces; and FIG. These are microscopic structures and photographs of each titanium alloy in. Applicant Sumitomo Metal Industries Co., Ltd. Agent Patent Attorney Akira Hirose - Figure 1 Figure 3 Figure 1

Claims (1)

【特許請求の範囲】[Claims] 熱間加工を行ったα+β型のチタン合金をβトランザス
以下10〜60℃の温度範囲で加熱保持した後、0.1
〜5℃/秒の速度で500℃以下まで冷却することを特
徴とする靭性の改善を目的とするα+β型チタン合金の
熱処理方法。
After heating and holding a hot-worked α+β type titanium alloy in a temperature range of 10 to 60°C below the β transus, 0.1
A method for heat treating an α+β type titanium alloy for the purpose of improving toughness, the method comprising cooling to 500°C or less at a rate of ~5°C/sec.
JP3283985A 1985-02-22 1985-02-22 Heat treatment of (alpha+beta) type titanium alloy Granted JPS61194163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3283985A JPS61194163A (en) 1985-02-22 1985-02-22 Heat treatment of (alpha+beta) type titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3283985A JPS61194163A (en) 1985-02-22 1985-02-22 Heat treatment of (alpha+beta) type titanium alloy

Publications (2)

Publication Number Publication Date
JPS61194163A true JPS61194163A (en) 1986-08-28
JPH0373623B2 JPH0373623B2 (en) 1991-11-22

Family

ID=12369989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3283985A Granted JPS61194163A (en) 1985-02-22 1985-02-22 Heat treatment of (alpha+beta) type titanium alloy

Country Status (1)

Country Link
JP (1) JPS61194163A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5679183A (en) * 1994-12-05 1997-10-21 Nkk Corporation Method for making α+β titanium alloy
JP2020041190A (en) * 2018-09-11 2020-03-19 日本製鉄株式会社 Titanium alloy and manufacturing method therefor
JP2020045536A (en) * 2018-09-20 2020-03-26 Ntn株式会社 Machine component

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
TITANIUM AND TITANIUM ALLOYS EFFECT OF THEMAL TREATMENT ONMICROSTRUCTURE OF TI-6AL-4V =1982 *
TITANIUM AND TITANIUM ALLOYS MICROSTRUCTURE OF TITANUM AND TITANIUM ALLOYS=1982 *
TITANIUM AND TITANIUM ALLOYS PHYSICAL METALLURGY AND MATALLOGRAPHY OF TITANIUMALLOYS=1982 *
ZEITSCHRIFT FUR METALLKUNDE=1976 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5679183A (en) * 1994-12-05 1997-10-21 Nkk Corporation Method for making α+β titanium alloy
JP2020041190A (en) * 2018-09-11 2020-03-19 日本製鉄株式会社 Titanium alloy and manufacturing method therefor
JP2020045536A (en) * 2018-09-20 2020-03-26 Ntn株式会社 Machine component

Also Published As

Publication number Publication date
JPH0373623B2 (en) 1991-11-22

Similar Documents

Publication Publication Date Title
Ivasishin et al. Precipitation and recrystallization behavior of beta titanium alloys during continuous heat treatment
US5358586A (en) Aging response and uniformity in beta-titanium alloys
JP2606023B2 (en) Method for producing high strength and high toughness α + β type titanium alloy
JPH08209317A (en) Increasing of toughness of alpha plus beta titanium alloy
JP2006517259A (en) Fine-grained martensitic stainless steel and method for producing the same
US4842652A (en) Method for improving fracture toughness of high strength titanium alloy
Li et al. Aging response of laser melting deposited Ti–6Al–2Zr–1Mo–1V alloy
Ostovari Moghaddam et al. Effect of accumulative roll bonding and equal channel angular rolling on microstructural and mechanical properties of Cu–Al–Mn shape memory alloys
JPS61194163A (en) Heat treatment of (alpha+beta) type titanium alloy
US3314831A (en) Heat treatment for precipitationhardening steels
JP3409278B2 (en) High strength, high ductility, high toughness titanium alloy member and its manufacturing method
JPS63230858A (en) Manufacture of titanium-alloy sheet for superplastic working
JP2010111928A (en) Titanium alloy, titanium alloy member and method for producing titanium alloy member
CN109207892B (en) Texture control process of deformed two-phase titanium alloy
JPH08144034A (en) Production of titanium-aluminium intermetallic compound-base alloy
JPS63130755A (en) Working heat treatment of alpha+beta type titanium alloy
JPH08134615A (en) Production of high strength titanium alloy excellent in characteristic of balance of mechanical property
JPS61159564A (en) Production of titanium alloy material having (alpha+beta) two-phase structure of equiaxial fine grain
US5223053A (en) Warm work processing for iron base alloy
JPH04355A (en) Production of titanium alloy
JPS63219558A (en) Heat treatment for ti-6al-4v alloy material
JP4046368B2 (en) Thermomechanical processing method for β-type titanium alloy
SU744040A1 (en) Method of thermal treatment of martensite-aged steel
JP3036396B2 (en) Method for producing near β type titanium alloy
JPH0790523A (en) Heat treatment for titanium alloy